CHAPTER


DOI :10.26650/B/LS32LS24.2024.005.014   IUP :10.26650/B/LS32LS24.2024.005.014    Full Text (PDF)

Application of Imta Systems in Aquaculture

Esin BatırMustafa YıldızÖmer Metin

Many technological developments in our world are inspired by nature through bio imitation. Likewise, the development of breeding techniques for living things under controlled conditions began with the imitation of nature. The integrated multi trophic aquaculture approach is also a production plan inspired by the food chain model designed to eliminate energy loss in the environment (Ridler et al., 2007; Chopin, 2013; Zhang et al., 2019). Two or more species (one as primary species and others as extractive species) from different levels in the food chain are farmed together without requirements of additional feed, using the waste products of one species at the other level in an integrated multi-trophic aquaculture (IMTA) system. High income and waste bioremediation are achieved since more than one product is produced in the same system in this way (Barrington et al., 2009; Chary et al., 2020; Mohsen and Yang, 2021; Hossain et al., 2022). Necessary information about the purpose of use of IMTA systems, system design and selection of species to be grown in this system, advantages and disadvantages of the system are presented below. In addition, information is given about the studies, theses and research about the use of IMTA systems in Turkish aquaculture.



References

  • Abreu, M. H., Pereira, R., Yarish, C., Buschmann, A. H., & Sousa-Pinto, I. (2011). IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture, 312(1-4), 77-87. https://doi.org/10.1016/j.aquaculture.2010.12.036. google scholar
  • Araujo, R., Vazquez Calderon, F., Sanchez Lopez, J., Azevedo, I. C., Bruhn, A., Fluch, S., Garcia Tasende, M., Ghaderiardakani, F., Ilmjarv, T., Laurans, M., Mac Monagail, M., Mangini, S., Peteiro, C., Rebours, C., Stefansson, T., & Ullmann, J. (2021). Current Status of the Algae Production Industry in Europe: An google scholar
  • Emerging Sector of the Blue Bioeconomy. Frontiers in Marine Science, 7, 626389. https://doi.org/10.3389/ fmars.2020.626389. google scholar
  • Badinotti. (2023). Retrieved March, 12, 2023 from https://www.badinotti.com/wp-content/uploads/2018/03/ CAGE-FARMING-EQUIPMENT_PRESS.pdf. google scholar
  • Baltadakis, A., Casserly, J., Falconer, L., Sprague, M., & Telfer, T. (2020). European lobsters utilise Atlantic sal-mon wastes in coastal integrated multi-trophic aquaculture systems. Aquaculture Environment Interactions, 12, 485-494. https://doi.org/10.3354/aei00378. google scholar
  • Barrington, K., Chopin, T., Robinson & S. M. C. (2009). Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In book: Integrated Mariculture: a Global review Chapter: Integrated multi-trophic aqu-aculture (IMTA) in marine temperate waters, FAO, Edit. D. Soto. google scholar
  • Bellona Report. (2013). Traditional and integrated aquaculture - Today’s environmental challenges and solutions of tomorrow Bellona Foundation, Oslo. google scholar
  • Beveridge, M. (2004). Cage Aquaculture. 3rd Edition. Wiley-Blackwell. google scholar
  • Biris-Dorhoi, E.-S., Michiu, D., Pop, C. R., Rotar, A. M., Tofana, M., Pop, O. L., Socaci, S. A., & Farcas, A. C. (2020). Macroalgae—A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients, 12(10), 3085. https://doi.org/10.3390/nu12103085. google scholar
  • Bouchard, R. W. Jr. (2004). Guide to Aquatic Macroinvertebrates of the Upper Midwest Waters. Water Resources Center, University of Minnesota, St. Paul, MN. 208 pp. google scholar
  • Buck, B. H., Troell, M. F., Krause, G., Angel, D. L., Grote, B., & Chopin, T. (2018). State of the Art and Chal-lenges for Offshore Integrated Multi-Trophic Aquaculture (IMTA). Frontiers in Marine Science, 5, 165. https://doi.org/10.3389/fmars.2018.00165. google scholar
  • Buschmann, A. H., Camus, C., Infante, J., Neori, A., Israel, A., Hernandez-Gonzalez, M. C., Pereda, S. V., Gomez-Pinchetti, J. L., Golberg, A., Tadmor-Shalev, N., & Critchley, A. T. (2017). Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. European Journal of Phycology, 52(4), 391-406. https://doi.org/10.1080/09670262.2017.1365175. google scholar
  • Chang, Z., Neori, A., He, Y., Li, J., Qiao, L., Preston, S. I., Liu, P., & Li, J. (2020). Development and current state of seawater shrimp farming, with an emphasis on integrated multi-trophic pond aquaculture farms, in China - a review. Reviews in Aquaculture, 12(4), 2544-2558. https://doi.org/10.1111/raq.12457 google scholar
  • Chary, K., Aubin, J., Sadoul, B., Fiandrino, A., Coves, D., & Callier, M. D. (2020). Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): Assessing bioreme-diation and life-cycle impacts. Aquaculture, 516, 734621. https://doi.org/10.1016/j.aquaculture.2019.734621 google scholar
  • Chatvijitkul, S., Boyd, C. E., & Davis, D. A. (2018). Nitrogen, Phosphorus, and Carbon Concentrations in Some Common Aquaculture Feeds: FEED CHEMICAL COMPOSITION. Journal of the World Aquaculture So-ciety, 49(3), 477-483. https://doi.org/10.1111/jwas.12443 google scholar
  • Chopin, T. (2011). Progression of the Integrated Multi-Trophic Aquaculture (IMTA) concept and upscaling of IMTA systems towards commercialization. 36. 5-12. google scholar
  • Chopin, T. (2013). Aquaculture, Integrated Multi-trophic (IMTA). In P. Christou, R. Savin, B. A. Costa-Pierce, I. Misztal, & C. B. A. Whitelaw (Eds.), Sustainable Food Production (pp. 184-205). Springer New York. https://doi.org/10.1007/978-1-4614-5797-8_173 google scholar
  • Chopin, T. (2018). Why is Integrated Multi-Trophic Aquaculture (IMTA) developing more easily, and at a larger scale, in China than in the western world?. 21. 18-19. google scholar
  • Chopin, T. & Robinson, S. (2004). Defining the appropriate regulatory and policy framework for the develop-ment of integrated multi-trophic aquaculture practices: introduction to the workshop and positioning of the issues. Bulletin of the Aquaculture Association of Canada, 104 (3): 4-10. google scholar
  • Chopin, T., & Sawhney, M. (2009). Seaweeds and their Mariculture. In Encyclopedia of Ocean Sciences (pp. 317-326). Elsevier. https://doi.org/10.1016/B978-012374473-9.00757-8 google scholar
  • Deepika, C., Ravishankar, G. A., & Rao, A. R. (2022). Potential Products from Macroalgae: An Overview. In A. Ranga Rao & G. A. Ravishankar (Eds.), Sustainable Global Resources Of Seaweeds Volume 1 (pp. 17-44). Springer International Publishing. https://doi.org/10.1007/978-3-030-91955-9_2 google scholar
  • Dolmer, P., Minnhagen, S. (2014), Extraction of nutrients from fish farms by mussel production in the Baltic https://circabc.europa.eu/sd/a/6f2b9b2e-578b-4235-8ee8-14db0d2b5fec/Presentation%205%20per%20dol-mer%20presentation.pdf google scholar
  • Ercan, E. (2009). Sazan Balığı (Cyprinus Carpio L.,) Yetiştiriciliğinde Atık Suların Biyolojik Entegre Sistemle Arıtımının Araştırılması Üzerine Bir Çalışma. [Doctoral Thesis]. Istanbul University. google scholar
  • EUMOFA- European Market Observatory for Fisheries and Aquaculture Product. (2020). Blue Bioeconomy Report. google scholar
  • European Commission. (2021). https://commission.europa.eu/ google scholar
  • Fang, J., Zhang, J., Xiao, T., Huang, D., & Liu, S. (2016). Integrated multi-trophic aquaculture (IMTA) in Sanggou Bay, China. Aquaculture Environment Interactions, 8, 201-205. https://doi.org/10.3354/aei00179 google scholar
  • FAO-Food and Agriculture Organization of the United Nations. (2009). The State of World Fisheries and Aqu-aculture. Rome, Italy. google scholar
  • FAO-Food and Agriculture Organization of the United Nations. (2022). SOFIA Report. google scholar
  • Farabi, S. (2020). Investigation of rainbow trout (Oncorhynchus mykiss) culture in marine floating cages in the Southern Caspian Sea. Journal ofAquaculture & Marine Biology, 9(6), 203-206. https://doi.org/10.15406/ jamb.2020.09.00296 google scholar
  • Fishfarmingexpert (2018). Retrieved February, 20, 2023 from https://www.fishfarmingexpert.com/imta-in-ca-nada-research-or-reality/1221516 google scholar
  • Gao, G., Gao, L., Fu, Q., Li, X., & Xu, J. (2022). Coculture of the Pacific white shrimp Litopenaeus vannamei and the macroalga Ulva linza enhances their growth rates and functional properties. Journal of Cleaner Production, 349, 131407. https://doi.org/10.1016/j.jclepro.2022.131407 google scholar
  • George, E. M., & Parrish, C. C. (2013). Output of organic material from land-based juvenile Atlantic cod (Ga-dus morhua) tanks. Aquaculture International, 21(1), 157-176. https://doi.org/10.1007/s10499-012-9542-4 google scholar
  • Golley, F. B. (1960). Energy Dynamics of a Food Chain of an Old-Field Community. Ecological Monographs, 30(2), 187-206. https://doi.org/10.2307/1948551 google scholar
  • Gosling, E. (2008). Bivalve molluscs: biology, ecology and culture. John Wiley & Sons. google scholar
  • Grosso, L., Rampacci, M., Pensa, D., Fianchini, A., Batır, E., Aydın, İ., Ciriminna, L., Felix, P. M., Pombo, A., Lovatelli, A., Vizzini, S., Scardi, M., & Rakaj, A. (2023). Evaluating sea cucumbers as extractive species for benthic bioremediation in mussel farms. Scientific Reports, 13(1), 1457. https://doi.org/10.1038/s41598-023-28733-7 google scholar
  • Hanif, M. (2023). Tatlısu Ürünleri Yetiştiriciliğinde Entegre Multıtrofik Akuakültür (IMTA) Sisteminde Su Kalitesinin Etkisi. [Doctoral Thesis]. Istanbul University. google scholar
  • Hossain, A., Senff, P., & Glaser, M. (2022). Lessons for Coastal Applications of IMTA as a Way towards Sus-tainable Development: A Review. Applied Sciences, 12(23), 11920. https://doi.org/10.3390/app122311920 google scholar
  • Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A., Praeger, C., Vucko, M. J., Zeng, C., Zenger, K. & Strugnell, J. M. (2019). The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets, One Earth, 1:3, 316-329, https://doi.org/10.1016/j.oneear.2019.10.018. google scholar
  • Hurd, C. L., Harrison, P. J., Bischof, K., & Lobban, C. S. (2014). Seaweed ecology and physiology. Cambridge University Press. google scholar
  • IMPAQT. (2023). Retrieved February, 5, 2023 from https://impaqtproject.eu/ google scholar
  • Interreg Europe.(2023). Retrieved January 28, 2023 from https://www.interregeurope.eu/policy-learning-plat-form/ google scholar
  • Kleitou, P., Kletou, D., & David, J. (2018). Is Europe ready for integrated multi-trophic aquaculture? A survey on the perspectives of European farmers and scientists with IMTA experience. Aquaculture, 490, 136-148. https://doi.org/10.1016/j.aquaculture.2018.02.035 google scholar
  • Knowler, D., Chopin, T., Martmez-Espmeira, R., Neori, A., Nobre, A., Noce, A., & Reid, G. (2020). The econo-mics of Integrated Multi-Trophic Aquaculture: where are we now and where do we need to go?. Reviews in Aquaculture, 12(3), 1579-1594. google scholar
  • Ktari, L. (2017). Pharmacological Potential of Ulva Species: A Valuable Resource. Journal of Analytical & Pharmaceutical Research, 6(1). https://doi.org/10.15406/japlr.2017.06.00165 google scholar
  • Kurtay, E. (2020). Balık Çiftliğine Entegre Edilen Midyelerde (Mytilus galloprovincialis, Lamarck 1819) Büyüme Ve Yaşama Performansı. [Doctoral Thesis]. Ege University. google scholar
  • Lama, T. D., Burman, D., Mandal, U. K., Sarangi, S. K., & Sen, H. S. (Eds.). (2022). Transforming coastal zone for sustainable food and income security: Proceedings of the International Symposium of ISCAR on Coastal Agriculture, March 16-19, 2021. Springer. google scholar
  • Li, J., Lusher, A. L., Rotchell, J. M., Deudero, S., Turra, A., Brâte, I. L. N., Sun, C., Shahadat Hossain, M., Li, Q., Kolandhasamy, P., & Shi, H. (2019). Using mussel as a global bioindicator of coastal microplastic pollution. Environmental Pollution, 244, 522-533. https://doi.org/10.1016/j.envpol.2018.10.032 google scholar
  • Lindahl, O., Hart, R., Hernroth, B., Kollberg, S., Loo, L.-O., Olrog, L., Rehnstam-Holm, A.-S., Svensson, J., Svensson, S., & Syversen, U. (2005). Improving Marine Water Quality by Mussel Farming: A Profitable Solution for Swedish Society. AMBIO: A Journal of the Human Environment, 34(2), 131-138. https://doi. org/10.1579/0044-7447-34.2.131 google scholar
  • Loeffler, Herr. (2023). Shutterstock. https://medium.com/ecajournal/the-european-green-deal-and-its-clima-te-ambitions-eca-audits-providing-input-for-action-c873f15b48e3 google scholar
  • Lopez, G. R., Levinton, J. S., & Baird, D. (2022). Particulate Organic Detritus and Detritus Feeders in Coastal Food Webs. In Reference Module in Earth Systems and Environmental Sciences (p. B9780323907989000000). Elsevier. https://doi.org/10.1016/B978-0-323-90798-9.00001-9 google scholar
  • Lourenço-Lopes, C., Fraga-Corral, M., Jimenez-Lopez, C., Pereira, A. G., Garcia-Oliveira, P., Carpena, M., Prie-to, M. A., & Simal-Gandara, J. (2020). Metabolites from Macroalgae and Its Applications in the Cosmetic Industry: A Circular Economy Approach. Resources, 9(9), 101. https://doi.org/10.3390/resources9090101 google scholar
  • M0hlenberg F., Holtegârd, L.E. & Hansen, F.T. (2008). Milj0neutral udvidelse af havbrugsproduktion - Unders0-gelse af rentable muligheder for dyrkning og host af muslinger som kompensation for tab af n^ringsstoffer fra havbrug. 48 sider. Dansk Akvakultur, rapport, October 2010 (In Danish) google scholar
  • Mohsen, M., & Yang, H. (2021). Sea cucumbers mariculture. In Sea Cucumbers (ss. 127-156). Elsevier. https:// doi.org/10.1016/B978-0-12-824377-0.00009-8 google scholar
  • Moreira, D., & Pires, J. C. M. (2016). Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresource Technology, 215, 371-379. https://doi.org/10.1016/j.biortech.2016.03.060 google scholar
  • Neori, A., Shpigel, M., Guttman, L. & Israel, A. (2017). The development of polyculture and integrated multi-trophic aquaculture (IMTA) in Israel: a review. Israeli Journal of Aquaculture - Bamidgeh, 69: IJA_69.2017.1385. google scholar
  • Newell, R. I. E. (2004). Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. Journal of Shellfish Research, 23(1), 51+. google scholar
  • Oliveira, J., Cunha, A., Castilho, F., Romalde, J. L., & Pereira, M. J. (2011). Microbial contamination and puri-fication of bivalve shellfish: Crucial aspects in monitoring and future perspectives - A mini-review. Food Control, 22(6), 805-816. https://doi.org/10.1016/j.foodcont.2010.11.032 google scholar
  • 0verland, M., Mydland, L. T., & Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture, 99(1), 13-24. https://doi.org/10.1002/jsfa.9143 google scholar
  • Papageorgiou, N., Dimitriou, P. D., Chatzivasileiou, D., Tsapakis, M., & Karakassis, I. (2023). Can IMTA pro-vide added ecosystem value services in the fish farms of Greece? Frontiers in Marine Science, 9, 1083099. https://doi.org/10.3389/fmars.2022.1083099 google scholar
  • Park, M., Shin, S. K., Do, Y. H., Yarish, C., & Kim, J. K. (2018). Application of open water integrated mul-ti-trophic aquaculture to intensive monoculture: A review of the current status and challenges in Korea. Aquaculture, 497, 174-183. https://doi.org/10.1016Zj.aquaculture.2018.07.051 google scholar
  • Pereira, R., & Yarish, C. (2008). Mass Production of Marine Macroalgae. In Encyclopedia of Ecology (pp. 2236-2247). Elsevier. https://doi.org/10.1016/B978-008045405-4.00066-5 google scholar
  • Piper, L., de Cosmo, L. M., Sestino, A., Giangrande, A., Stabili, L., Longo, C., & Guido, G. (2021). Perceived social welfare as a driver of green products consumption: Evidences from an integrated multi-trophic aqua-culture production. Current Research in Environmental Sustainability, 3, 100081. https://doi.org/10.1016/j. crsust.2021.100081 google scholar
  • Qiu, X., Carter, C. G., Hilder, P. E., & Hadley, S. (2022). A dynamic nutrient mass balance model for optimizing waste treatment in RAS and associated IMTA system. Aquaculture, 555, 738216. https://doi.org/10.1016/j. aquaculture.2022.738216 google scholar
  • Ren, J. S., Stenton-Dozey, J., Plew, D. R., Fang, J., & Gall, M. (2012). An ecosystem model for optimising production in integrated multitrophic aquaculture systems. Ecological Modelling, 246, 34-46. https://doi. org/10.1016/j.ecolmodel.2012.07.020 google scholar
  • Ridler, N., Wowchuk, M., Robinson, B., Barrington, K., Chopin, T., Robinson, S., Page, F., Reid, G., Szemer-da, M., Sewuster, J., & Boyne-Travis, S. (2007). INTEGRATED MULTI - TROPHIC AQUACULTURE (IMTA): A POTENTIAL STRATEGIC CHOICE FOR FARMERS. Aquaculture Economics & Management, 11(1), 99-110. https://doi.org/10.1080/13657300701202767 google scholar
  • Robinson, S. (2020). Fisheries and Oceans, Canada June, 2020. (Personal Communication) google scholar
  • Rosa, J., Lemos, M. F. L., Crespo, D., Nunes, M., Freitas, A., Ramos, F., Pardal, M. Â., & Leston, S. (2020). Integrated multitrophic aquaculture systems - Potential risks for food safety. Trends in Food Science & Technology, 96, 79-90. https://doi.org/10.1016/j.tifs.2019.12.008 google scholar
  • Samocha, T. M., Fricker, J., Ali, A. M., Shpigel, M., & Neori, A. (2015). Growth and nutrient uptake of the mac-roalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture, 446, 263-271. https://doi.org/10.1016/j.aquaculture.2015.05.008 google scholar
  • Setâlâ, O., Fleming-Lehtinen, V., & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the plank-tonic food web. Environmental Pollution, 185, 77-83. https://doi.org/10.1016/j.envpol.2013.10.013 google scholar
  • Soto, D., Aguilar-Manjarrez, J., Brugere, C., Angel, D., Bailey, C., Black, K., Edwards, P., Costa-Pierce, B., Cho-pin, T., Deudero, S., Freeman, S., Hambrey, J., Hishamunda, N., Knowler, D., Silvert, W., Marba, N., Mathe, S., Norambuena, R., Simard, F., Tett, P., Troell, M. & Wainberg, A. (2008). Applying an ecosystem-based approach to aquaculture: principles, scales and some management measures. In D. Soto, J. Aguilar-Man-jarrez and N. Hishamunda (eds). Building an ecosystem approach to aquaculture. FAO/Universitat de les Illes Balears Expert Workshop. 7-11 May 2007, Palma de Mallorca, Spain. FAO Fisheries and Aquaculture Proceedings. No. 14. Rome, FAO. pp. 15-35. google scholar
  • Şirin, C. (2012). Vona Koyu’nda (Perşembe-Ordu) Deniz Balıkları-Midye (Mytilus galloprovincialis Lamark, 1819) Kültürünün Entegrasyonu Ve Etkileri. [Doctoral Thesis]. Ordu University. google scholar
  • Teoli, D., Sanvictores, T., An., J. (2022) SWOT Analysis. In: StatPearls [Internet]. Treasure Island (FL): StatPe-arls Publishing; 2023 Jan-. PMID: 30725987. google scholar
  • Fishsite. (2021). Retrieved February, 13, 2023 from https://thefishsite.com/articles/lessons-from-china-the-fu-ture-of-imta google scholar
  • Troell, M. (2009). Integrated marine and brackishwater aquaculture in tropical regions: research, implementation and prospects. Integrated mariculture: a global review. FAO Fisheries and Aquaculture Technical Paper, 529, 47-131. google scholar
  • Tsakiridis, A., O’Donoghue, C., Hynes, S., & Kilcline, K. (2020). A comparison of environmental and economic sustainability across seafood and livestock product value chains. Marine Policy, 117, 103968. https://doi.org/10.1016/j.marpol.2020.103968 google scholar
  • TUIK-Turkey Statistical Institute. (2023). Retrieved February, 9, 2023 from https://data.tuik.gov.tr/Bulten/In-dex?p=Su-Urunleri-2021-45745 google scholar
  • United Nations. (2023) Retrieved March, 12, 2023 from. https://www.un.org/sustainabledevelopment/ blog/2016/04/parisagreementsingatures/ google scholar
  • Wang, X., Andresen, K., Handâ, A., Jensen, B., Reitan, K., & Olsen, Y. (2013). Chemical composition and release rate of waste discharge from an Atlantic salmon farm with an evaluation of IMTA feasibility. Aquaculture Environment Interactions, 4(2), 147-162. https://doi.org/10.3354/aei00079 google scholar
  • Wartenberg, R., Feng, L., Wu, J. J., Mak, Y. L., Chan, L. L., Telfer, T. C., & Lam, P. K. S. (2017). The impacts of suspended mariculture on coastal zones in China and the scope for Integrated Multi-Trophic Aquacultu-re. Ecosystem Health and Sustainability, 3(6), 1340268. https://doi.org/10.1080/20964129.2017.1340268 google scholar
  • Yıldız, H., Acarlı, S., Berber, S., Vural, P.Gündüz, P. (2013). Çanakkale Boğazı’nda Entegre Multitrofik Akva-kültür Sistemlerde Akdeniz Midyesi (Mytilus galloprovincialis Lamarck, 1819) Yetiştiriciliği Üzerine Bir Ön Çalışma, Alinteri, 25 (B) - 38-44 google scholar
  • Zhang, J., Hansen, P. K., Fang, J., Wang, W., & Jiang, Z. (2009). Assessment of the local environmental impact of intensive marine shellfish and seaweed farming—application of the MOM system in the Sanggou Bay, China. Aquaculture, 287(3-4), 304-310. google scholar
  • Zhang, J., Wu, W., Ren, J., & Lin, F. (2016). A model for the growth of mariculture kelp Saccharina japonica in Sanggou Bay, China. Aquaculture Environment Interactions, 8, 273-283. https://doi.org/10.3354/aei00171 google scholar
  • Zhang, J., Ge, C., Fang, J., & Tang, Q. (2018). Multi-Trophic Mariculture Practices in Coastal Waters. Aquacul-ture in China: success stories and modern trends, 541-554. google scholar
  • Zhang, J., Zhang, S., Kitazawa, D., Zhou, J., Park, S., Gao, S., & Shen, Y. (2019). Bio mitigation based on integrated multi trophic aquaculture in temperate coastal waters: Practice, assessment, and challenges. Latin American Journal of Aquatic Research, 47(2), 212-223. https://doi.org/10.3856/vol47-issue2-fulltext-1 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.