CHAPTER


DOI :10.26650/B/LS32LS24.2024.005.006   IUP :10.26650/B/LS32LS24.2024.005.006    Full Text (PDF)

Current Research in Fish Nutrition

Samuel Ofori-mensahMustafa YıldızKenan EnginMurat ArslanÖmer Metin

Fish nutrition is an important area of research that has gained significant attention in recent years due to the increasing demand for fish products and the need for sustainable aquaculture practices. With the growing population and limited resources, it has become crucial to optimize fish nutrition and maximize their growth, health, and quality while minimizing environmental impact. The proper nutrition of fish is essential for their growth, survival, and overall health, as well as the economic success of the aquaculture industry. The study of fish nutrition has evolved from the early identification of nutrient requirements to the current focus on optimizing feeding strategies to improve growth rates, reduce feed costs, and minimize the environmental impact of aquaculture (Hardy et al., 2022). Fish nutrition research has encompassed a range of disciplines, including animal nutrition, biochemistry, physiology, and genetics. These disciplines have been used to investigate the nutritional requirements of various fish species, develop and evaluate diets, and understand the mechanisms underlying nutrient metabolism and utilization in fish.



References

  • Abdel-Latif, H. M. R., Yilmaz, E., Dawood, M. A. O., Ring0, E., Ahmadifar, E., & Yilmaz, S. (2022). Shrimp vibriosis and possible control measures using probiotics, postbiotics, prebiotics, and synbiotics: A review. Aquaculture, 551, Article 737951. google scholar
  • Abo-Norag, M. A., El-Shenawy, A. M., Fadl, S. E., Abdo, W. S., Gad, D. M., Rashed, M. A., & Prince, A. M. (2018). Effect of phytase enzyme on growth performance, serum biochemical alteration, immune response and gene expression in Nile tilapia. Fish and Shellfish Immunology, 80, 97 - 108. google scholar
  • Agaba, M., Tocher, D. R., Dickson, C., Dick, J. R., & Teale, A. J. (2004). A zebrafish cDNA encoding a multi-functional enzyme involved in the elongation of polyunsaturated, monounsaturated and saturated fatty acids. Marine Biotechnology, 6, 251-261. google scholar
  • Agboola, J. O., 0verland, M., Skrede, A., & Hansen, J. 0. (2021). Yeast as major protein-rich ingredient in aquafeeds: a review of the implications for aquaculture production. Reviews in Aquaculture, 13, 949-970. google scholar
  • Ai, Q., Xu, H., Mai, K., Xu, W., Wang, J., & Zhang, W. (2011). Effects of dietary supplementation of Bacillus subtilis and fructooligosaccharide on growth performance, survival, non-specific immune response and disease resistance of juvenile large yellow croaker, Larimichthys crocea. Aquaculture, 317(1-4), 155-161. google scholar
  • Aladetohun, N., & Sogbesan, O. (2013). Utilization of blood meal as a protein ingredient from animal waste product in the diet of Oreochromis niloticus. Int. J. Fish. Aquat., 5, 234-237. google scholar
  • Alfiko, Y., Xie, D., Astuti, R.T., Wong, J., & Wang, L. (2022). Insects as a feed ingredient for fish culture: Status and trends. Aquac. Fish., 7, 166-178. google scholar
  • Aragao, C., Gonçalves, A. T., Costas, B., Azeredo, R., Xavier, M. J., & Engrola, S. (2022). Alternative Proteins for Fish Diets: Implications beyond Growth. Animals, 12, 1211. https://doi.org/10.3390/ani12091211 google scholar
  • Arnesen, P., & Krogdahl, Â. (1993). Crude and pre-extruded products of wheat as nutrient sources in extruded diets for Atlantic salmon (Salmo salar, L) grown in sea water. Aquaculture, 118, 105-17. google scholar
  • Arslan, M., Dabrowski, K., Rinchard, J., & Portella, M.C. (2008). Effects of different dietary lipid sources on the survival, growth and fatty acid composition of South American catfish, Pseudoplatystoma fasciatum, Surubim, juveniles. Journal of the World Aquaculture Society, 39 (1), 51-61. google scholar
  • Arslan, M., Sirkecioglu, N., Bayir, A., Arslan, H., & Aras, M. (2012). The influence of substitution of dietary FO with different vegetable oils on performance and fatty acid composition of brown trout, Salmo trutta. Turkish Journal ofFisheries and Aquatic Sciences, 12 (3), 575 - 583. google scholar
  • Arslan, M., Dabrowski, K., Ferrer, S., Dietrich, M., & Rodriguez, G. (2013). Growth, body chemical composi-tion and trypsin activity of South American catfish, surubim (Pseudoplatystoma sp.) juveniles fed different dietary protein and lipid levels. Aquaculture Research, 44 (5), 760 - 771. google scholar
  • Avella, M. A., Olivotto, I., Silvi, S., Ribecco, C., Cresci, A., Palermo, F., Polzonetti, A. M., & Carnevali, O. (2011). Use of Enterococcus faecium to improve common sole (Solea solea) larviculture. Aquacultu-re, 315(3-4), 384-393. google scholar
  • Bai, N., Gu, M., Zhang, W., Xu, W., & Mai, K. (2014). Effects of p-glucan derivatives on the immunity of white shrimp Litopenaeus vannamei and its resistance against white spot syndrome virus infection. Aquaculture, 426, 66-73. google scholar
  • Baumgârtner, S., James, J., & Ellison, A. (2022). The supplementation of a prebiotic improves the microbial community in the gut and the skin of Atlantic salmon (Salmo salar). Aquaculture Reports, 25, 101204. google scholar
  • Bell, J. G., and Koppe, W. (2011). Lipids in Aquafeeds. In FO replacement and alternative lipid sources in aqu-aculture feeds (pp. 22-59). CRC Press. google scholar
  • Benedito-Palos, L., Ballester-Lozano, G., & Perez-Sanchez, J. (2014). Wide-gene expression analysis of lipid-re-levant genes in nutritionally challenged gilthead sea bream (Sparus aurata). Gene, 547, 34-42. google scholar
  • Benedito-Palos, L., Ballester-Lozano, G., Simo, P., Karalazos, V., Ortiz, Â., Calduch-Giner, J., & Perez-Sanchez, J. (2016). Lasting effects of butyrate and low FM/FO diets on growth performance, blood haematology/ biochemistry and molecular growth-related markers in gilthead sea bream (Sparus aurata). Aquaculture, 454, 8-18. google scholar
  • Betancor, M. B., Sprague, M., Montero, D., Usher, S., Sayanova, O., Campbell, P. J., Napier, J. A., Caballero, M. J., Izquierdo, M., & Tocher, D. R. (2016). Replacement of Marine FO with de novo Omega-3 Oils from Transgenic Camelina sativa in Feeds for Gilthead Sea Bream (Sparus aurata L.). Lipids, 51(10), 1171-1191. google scholar
  • Blomqvist, J., Pickova, J., Tilami, S.K., Sampels, S., Mikkelsen, N., Brandenburg, J., Sandgren, M., & Passoth, V. (2018). Oleaginous yeast as a component in fish feed. Sci. Rep., 8, 1-8. google scholar
  • Boyd, C. E. (2015). Feed and Feeding Practices in Aquaculture. Woodhead Publishing, United Kingdom, p 21. google scholar
  • Carter, C. G., & Sajjadi, M. (2011). Low fishmeal diets for Atlantic salmon, Salmo salar L., using soy protein concentrate treated with graded levels of phytase. Aquaculture International, 19, 431 - 444. google scholar
  • Castro, C., Corraze, G., Diogenes, A., Larroquet, L., Panserat, S., and Oliva-Teles, A. (2016). Regulation of glucose and lipid metabolism by dietary carbohydrate and lipid source in gilthead sea bream juveniles. British Journal of Nutrition, 16, 19-34. google scholar
  • Chakraborty, S. B., & Hancz, C. (2011). Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish culture. Rev. Aquacult., 3, 103-119. google scholar
  • Chakraborty, S. B., Horn, P., & Hancz, C. (2014). Application of phytochemicals as growth-promoters and endocrine modulators in fish culture. Rev. Aquacult., 6, 1-19. google scholar
  • Chatzifotis, S., Polemitou, I., Divanach, P., & Antonopoulou, E. (2008). Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a FM/ soy protein concentrate-based diet. Aquaculture, 275 (1-4), 201-208. google scholar
  • Chuang, J.L. (1990). Nutrient requirements, feeding and culturing practices of Penaeus monodon: a review. F. Hoffmann-La Roche Ltd, Basel, 62 pp. google scholar
  • Cowey, C. B., & Sargent, J. R. (1972). Fish nutrition. Marine Biology, 10, 383-492. google scholar
  • Çelik, E. Ş., Ergün, S., & Yılmaz, S. (2018). The effects of dietary probiotic and antibiotic supplementations on health characteristics of rainbow trout. Turkish Journal of AgrCcultuee — Food Science and Technology, 6(9), 1184-1190. google scholar
  • Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S. J., Berenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods, 8(3), 92. google scholar
  • Damir, N. (2023). Investigation of amino acid metabolism of juvenile gilthead sea bream (Sparus Aurata) fed with alternative proteins. PhD Thesis submitted to Istanbul University. google scholar
  • Diler, Ö., Özil, Ö., Bayrak, H., Yiğit, N. Ö., Özmen, Ö., Saygın, M., & Aslankoç, R. (2021). Effect of dietary supplementation of sumac fruit powder (Rhus coriaria L.) on growth performance, serum biochemistry, intestinal morphology and antioxidant capacity of rainbow trout (Oncorhynchus mykiss, Walbaum). Animal Feed Science and Technology, 278, 114993. google scholar
  • Dimitroglou, A., Merrifield, D. L., Spring, P., Sweetman, J., Moate, R., & Davies, S. J. (2010). Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture, 300(1-4), 182-188. google scholar
  • Dumas, A., Raggi, T., Barkhouse, J., Lewis, E., & Weltzien, E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aqua-culture, 492, 24-34. google scholar
  • Emery, J. A., Smullen, R., Keast, R. S. J., & Turchini, G. M. (2016). Viability of tallow inclusion in Atlantic salmon diet, as assessed by an on-farm grow out trial. Aquaculture, 451, 289-297. google scholar
  • Enes, P., Panserat, S., Kaushik, S., Oliva-Teles, A. (2009). Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol. Biochem., 35, 519-539. google scholar
  • Encarnaçâo, P. (2016). Functional feed additives in aquaculture feeds. In Aquafeedformulation (pp. 217-237). Academic Press. google scholar
  • Eroldoğan, T. O., Yılmaz, A. H., Turchini, G. M., Arslan, M., Sirkecioğlu, N. A., Engin, K., Özşahinoğlu, I., and Mumoğullarinda, P. (2013). Fatty acid metabolism in European sea bass (Dicentrarchus labrax): effects of n-6 PUFA and MUFA in FO replaced diets. Fish Physiol Biochem 39, 941-955. google scholar
  • Eroldoğan, T.O., Elsabagh, M., Emre, Y., Turchini, G.M., Yılmaz, H.A., Eraslan, D., Emre, N., Evliyaoğlu, E. (2018). Circadian feeding schedules in gilthead sea bream (Sparus aurata) and European sea bass (Di-centrarchus labrax): A comparative approach towards improving dietary FO utilization and n-3 LC-PUFA metabolism. Aquaculture 495, 806-814. google scholar
  • FEFANA, (2014). Organic Acids in Animal Nutrition. Fefana Publication, Brussels, 97 pp. google scholar
  • Friesen, E., Balfry, S. K., Skura, B. J., Ikonomou, M., & Higgs, D. A. (2013). Evaluation of poultry fat and blends of poultry fat with cold-pressed flaxseed oil as supplemental dietary lipid sources for juvenile sablefish (Anoplopoma fimbria). Aquac. Res., 44(2), 300-316. google scholar
  • Gao, W., Liu, Y.J., Tian, L.X., Mai, K.S., Liang, G.Y., Yang, H.J., Huai, M.Y., & Luo, W.J. (2010). Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and he-patic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella). Aquacult Nutr., 16, 327-33. google scholar
  • Garda-Perez, O., Tapia-Salazar, M., Nieto-Lopez, M., Cavazos, D., Cruz-Suarez, E., & Ricque-Marie, D. (2013). Effectiveness of aluminosilicate-based products for detoxification of aflatoxin contaminated diets for juve-nile Pacific white shrimp, Litopenaeus vannamei. Ciencias Marinas, 39, 1-13. google scholar
  • Gause, B. R., & Trushenski, J. T. (2013). Sparing FO with beef tallow in feeds for rainbow trout: effects of inc-lusion rates and finishing on production performance and tissue fatty acid composition. N. Am. J. Aquac., 75(4), 495-511. google scholar
  • Gelibolu, S., Yanar, Y., Genc, M. A., & Genc, E. (2018a). The effect of mannan-oligosaccharide (MOS) as a feed supplement on growth and some blood parameters of Gilthead Sea Bream (Sparus aurata). Turkish Journal ofFisheries and Aquatic Sciences, 18(6), 817-823. google scholar
  • Gelibolu, S., Yanar, Y., Genç, M. A., & Genç, E. (2018b). Effect of mannan-oligosaccharide supplementation on body growth, fatty acid profile and organ morphology of gilthead seabream, Sparus aurata. Pakistan J. Zool. 50(1) 229-240. google scholar
  • Glencross, B. D. (2009). Exploring the nutritional demand for essential fatty acids by aquaculture species. Reviews in Aquaculture, 1, 71-124. google scholar
  • Glencross, B. D., Huyben, D., & Schrama, J. W. (2020). The application of single-cell ingredients in aquaculture feeds—A review. Fishes, 5, 22. google scholar
  • Gonçalves, R.A., Naehrer K., Santos, G.A. (2018). Occurrence of mycotoxins in commercial aquafeeds in Asia and Europe: a real risk to aquaculture? Reviews inAquaculture, 10, 263- 280. google scholar
  • Gültepe, N., Salnur, S., Hos^su, B., & Hisar, O. (2011). Dietary supplementation with Mannanoligosaccharides (MOS) from Bio-Mos enhances growth parameters and digestive capacity of gilthead sea bream (Sparus aurata). Aquaculture Nutrition, 17 (5), 482-487 google scholar
  • Gültepe, N., Hisar, O., Salnur, S., Hos,su, B., Tanrikul, T. T., & Aydın, S. (2012). Preliminary assessment of dietary mannanoligosaccharides on growth performance and health status of gilthead seabream Sparus auratus. Journal of Aquatic Animal Health, 24(1), 37-42. google scholar
  • Gümüş, E., & İkiz, R. (2009). Effect of dietary levels of lipid and carbohydrate on growth performance, chemical contents and digestibility in rainbow trout, Oncorhynchus mykiss Walbaum, 1792. Pak Vet J., 29, 59-63. google scholar
  • Hamilton, H. A., Newton, R., Auchterlonie, N. A., & Muller, D. B. (2020). Systems approach to quantify the global omega-3 fatty acid cycle. Nat. Food, 1, 59e62. google scholar
  • Hardy, R.W. (2000). New developments in aquatic feed ingredients and potential of enzyme supplements. In Avances en Nutricion Acuıcokı VMemorias del Simposium Internacional de Nutricion Acmcola (pp. 216226). Merida, Yucatan, Mexico. google scholar
  • Hardy, R. W., & Brezas, A. (2022). Diet formulation and manufacture. In Fish Nutrition (4th ed., pp. 643-708). Academic Press google scholar
  • Hardy R. W., Kaushik S. J., Mai K., & Bai S.C. (2022). Fish nutrition—History and perspectives. In Fish Nut-rition (4th ed., pp. 1-16). Academic Press google scholar
  • Hassan, A. M., Kenawy, A. M., Abbas, W. T., & Abdel-Wahhab, M. A. (2010). Prevention of cytogenetic, histo-chemical and biochemical alterations in Oreochromis niloticus by dietary supplement of sorbent materials, Ecotoxicology and environmental safety, 73(8), 1890-1895. google scholar
  • Hastings, N., Agaba, M., Tocher, D. R., Zheng, X., Dickson, C. A., Dick, J. R., & Teale, A. J. (2004). Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the produ-ction of eicosapentaenoic and docosahexaenoic acids from alpha-linolenic acid in Atlantic salmon (Salmo salar). Marine Biotechnology, 6, 463-474. google scholar
  • Hekmatpour, F., Kochanian, P., Marammazi, J.G., Zakeri, M., Mousavi, S.M. (2019). Changes in serum bio-chemical parameters and digestive enzyme activity of juvenile sobaity sea bream (Sparidentex hasta) in response to partial replacement of dietary FM with poultry by-product meal. Fish Physiology, Biochemistry, 45, 599-611. google scholar
  • Hemre, G.-I., Mommsen, T.P., Krogdahl, A. (2002). Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquacult. Nutr., 8, 175-194. google scholar
  • Hixson, S.M., Parrish, C.C., Anderson, D.M. (2014a). Changes in tissue lipid and fatty acid composition of farmed rainbow trout in response to dietary camelina oil as a replacement of FO. Lipids 49, 97-111. google scholar
  • Hixson, S.M., Parrish, C.C., Anderson, D.M. (2014b). Full substitution of FO with camelina (Camelina sativa) oil, with partial substitution of FM with camelina meal, in diets for farmed Atlantic salmon (Salmo salar) and its effect on tissue lipids and sensory quality. Food Chem. 157, 51-61. google scholar
  • Hixson, S.M., Parrish, C.C., Anderson, D.M. (2014c). Use of camelina oil to replace FO in diets for farmed salmonids and Atlantic cod. Aquaculture 431: 44-52. google scholar
  • Houston, S. J. S., Karalazos, V., Tinsley, J., Betancor, M. B., Martin, S. A. M., Tocher, D. R., & Monroig, O. (2017). The compositional and metabolic responses of gilthead seabream (Sparus aurata) to a gradient of dietary FO and associated n-3 long-chain PUFA content. British Journal of Nutrition, 118, 1010-1022. google scholar
  • Hussain, S., Afzal, M., Salim, M., Javid, A., Khichi, T., Hussain, M., Raza, S. (2011). Apparent digestibility of FM, blood meal and meat meal for Labeo rohita fingerlings. J. Anim. Plant Sci., 21, 807-811. google scholar
  • Ibeas, C., Izquierdo, M. and Lorenzo, A. (1994). Effect of different levels of n-3 highly unsaturated fatty acid levels on growth and fatty acid composition of juvenile gilthead seabream (Sparus aurata). Aquaculture, 127, 177-188. google scholar
  • Ibeas, C., Cejas, J. R., Fores, R., Badia, P., Gomez, T., Lorenzo, A., and Hernandez, A. (1997). Influence of the eicosapentaenoic to docosahexaenoic acid ratio (EPADHA) of dietary lipids on growth and fatty acid composition of gilthead seabream (Sparus aurata) juveniles. Aquaculture, 150, 91-102. google scholar
  • Jin, M., Yuan, Y., Lu, Y., Hongna, M., Sun, P., Li, Y., Qiu, H., Ding, L., & Zhou, Q. (2017). Regulation of growth, tissue fatty acid composition, biochemical parameters and lipid related genes expression by different dietary lipid sources in juvenile black seabream, Acanthopagrus schlegelii. Aquaculture, 479, 25-37. https://doi. org/10.1016/j.aquaculture.2017.05.017 google scholar
  • Jin, M., Xiong, J., Zhou, Q. C., Yuan, Y., Wang, X. X., & Sun, P. (2018). Dietary yeast hydrolysate and brewer’s yeast supplementation could enhance growth performance, innate immunity capacity and ammonia nitrogen stress resistance ability of Pacific white shrimp (Litopenaeus vannamei). Fish & shellfish immunology, 82, 121-129. google scholar
  • Jobling, M. (2016). Fish nutrition research: past, present and future. Aquaculture International 24:767-786. google scholar
  • Jones, S. W., Karpol, A., Friedman, S., Maru, B. T., & Tracy, B. P. (2020). Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr. Opin. Biotechnol. 61, 189-197. google scholar
  • Kaiza, V. E. (2020). Investigation of growth and flesh quality of juvenile rainbow trout (Oncorhynchus mykiss) fed with different performance promoters. [Master’s thesis, Istanbul University]. https://tez.yok.gov.tr/Ulu-salTezMerkezi/tezDetay.jsp?id=DbWMRL1qdH9SX_bvQd0cJA&no=cZrxqbt53UoRqsyoE5mK-A google scholar
  • Kalogeropoulos, N., Alexis, M. & Henderson, R.J. (1992). Effect of dietary soybean and cod-liver oil levels on growth and body composition of gilthead bream (Sparus aurata). Aquaculture, 104, 293-308. google scholar
  • Kamalam, B.S., Medale, F., Kaushik, S., Polakof, S., Skiba-Cassy, S., Panserat, S. (2012). Regulation of meta-bolism by dietary carbohydrates in two lines of rainbow trout divergently selected for muscle fat content. J Exp Biol., 215, 2567-78. google scholar
  • Kamalam, B.S., Panserat, S., Aguirre, P., Geurden, I., Fontagne-Dicharry, S., & Medale, F. (2013). Selection for high muscle fat in rainbow trout induces potentially higher chylomicron synthesis and PUFA biosynthesis in the intestine. Comp Biochem Physiol Part A: Mol Integr Physiol., 164, 417-27. google scholar
  • Karapanagiotidis, I.T., Psofakis, P., Mente, E., Malandrakis, E., & Goomazou, E. (2019). Effects of fishmeal replacement by poultry by-product meal on growth performance, proximate composition, digestive enzyme activity, haemato-logical parameters and gene expression of gilthead seabream (Sparus aurata). Aquaculture Nutrition, 25, 3-14. google scholar
  • Kaushik, S. J., Panserat, S., & Schrama, J. W. (2022). Carbohydrates. In: Hardy R.W., & Kaushik S.J. (Eds.) Fish Nutrition. 4th ed. Academic Press; Cambridge, MA, USA. pp. 555-592 google scholar
  • Köse Reis, İ., Yıldız, M., & Çakiris, A. (2023). Effects of different vegetable oils on the fatty acid metabolism based on whole body fatty acid balance method and gene expression of rainbow trout (Oncorhynchus mykiss). Tur-kish Journal of Fisheries and Aquatic Sciences, 23(4), TRJFAS20667. https://doi.org/10.4194/TRJFAS20667 google scholar
  • Kumar, V., Debtanu, B., Kundan, K., Vikash, K., Mandal, S. C., & Clercq, E. D. (2012). Anti-nutritional factors in plant feedstuffs used in aquafeeds. World aquaculture, 43(3), 64-68. google scholar
  • Lall, S. P. (2022). The Minerals. In Fish Nutrition (4th ed., pp. 469-554). Academic Press. google scholar
  • Li, X. F., Jiang, Y. Y., Liu, W. B., & Ge, X. P. (2012). Protein-sparing effect of dietary lipid in practical diets for blunt snout bream (Megalobrama amblycephala) fingerlings: effects on digestive and metabolic responses. Fish Physiol Biochem., 38, 529-41. google scholar
  • Li, X.F., Liu, W.B., Lu, K.L., Xu, W.N., & Wang, Y. (2012). Dietary carbohydrate/lipid ratios affect stress, oxida-tive status and non-specific immune responses of fingerling blunt snout bream, Megalobrama amblycephala. Fish Shellfish Immunol. 33, 16-23. google scholar
  • Li, X.F., Lu KL, Lu, K.L., Liu, W.B., Jiang, G.Z., & Xu, W.N. (2014). Effects of dietary lipid and carbohydrate and their interaction on growth performance and body composition of juvenile blunt snout bream, Mega-lobrama amblycephala. Isr JAquacultBamidgeh. 66, 931-8. google scholar
  • Li, Y., Liu, H., Dai, X., Li, J., & Ding, F. (2018). Effects of dietary inulin and mannan oligosaccharide on im-mune related genes expression and disease resistance of Pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 76, 78-92. google scholar
  • Li, H., Xu, W., Jin, J., Zhu, X., Yang, Y., Han, D., Liu, H., and Xie, S. (2019). Effects of Dietary Carbohydrate and Lipid Concentrations on Growth Performance, Feed Utilization, Glucose, and Lipid Metabolism in Two Strains of Gibel Carp. Front. Vet. Sci. 6, 165. https://doi.org/10.3389/fvets.2019.00165. google scholar
  • Li, Z., Tran, N. T., Ji, P., Sun, Z., Wen, X., & Li, S. (2019). Effects of prebiotic mixtures on growth performan-ce, intestinal microbiota and immune response in juvenile chu’s croaker, Nibea coibor. Fish & Shellfish Immunology, 89, 564-573. google scholar
  • Li, Y., Yuan, W., Zhang, Y., Liu, H., & Dai, X. (2021). Single or combined effects of dietary arabinoxylan-oligo-saccharide and inulin on growth performance, gut microbiota, and immune response in Pacific white shrimp Litopenaeus vannamei. Journal of Oceanology and Limnology, 39(2), 741-754. google scholar
  • Liebert, F., Mohamed, K., & Lückstadt, C. (2010). Effects of diformates on growth and feed utilization of all male Nile Tilapia fingerlings (Oreochromis niloticus) reared in tank culture. In XIV International Sympo-sium on Fish Nutrition and Feeding, Qingdao, China, Bookof Abstracts, 190 pp. google scholar
  • Liland, N.S., Araujo, P., Xu, X.X., Lock, E.-J., Radhakrishnan, G., Prabhu, A.J.P., & Belghit, I. (2021). A me-ta-analysis on the nutritional value of insects in aquafeeds. J. Insects Food Feed. 7, 743-759. google scholar
  • Lu, K. L., Xu, W. N., Li, X. F., Liu, W. B., Wang, L. N., & Zhang, C. N. (2013). Hepatic triacylglycerol secre-tion, lipid transport and tissue lipid uptake in blunt snout bream (Megalobrama amblycephala) fed high-fat diet. Aquaculture, 408, 160-168. google scholar
  • Lunger, A. N., McLean, E., Gaylord, T. G., Kuhn, D., Craig, & S. R. (2007). Taurine supplementation to alterna-tive dietary proteins used in FM replacement enhances growth of juvenile cobia (Rachycentron canadum). Aquaculture, 271 (1-4), 401-410. google scholar
  • Maas, R. M., Verdegem, M. C., Dersjant-Li, Y., & Schrama, J. W. (2018). The effect of phytase, xylanase and their combination on growth performance and nutrient utilization in Nile tilapia. Aquaculture, 487, 7-14. google scholar
  • Madeira, M.S., Cardoso, C., Lopes, P.A., Coelho, D., Afonso, C., Bandarra, N.M., & Prates, J. A. (2017). Mic-roalgae as feed ingredients for livestock production and meat quality: a review. Livest. Sci., 205, 111-121. google scholar
  • Mai, K., Waagbo, R., Zhou, X.Q., Ai, Q.H., & Feng, L. (2022). Vitamins. In Fish Nutrition. (4th ed., pp. 57-180). Academic Press. google scholar
  • Mai, K., Hue, M., He, G., Xie, S.Q., & Kaushik, S.J. (2022). Protein and amino acids. In Fish Nutrition (4th ed., pp. 181-302). Academic Press. google scholar
  • Meena, D. K., Das, P., Kumar, S., Mandal, S. K., Prusty, A. K., Singh, S. K., Akhtar, M. J., Behera, B. R., Kumar, K., Pal, A., & Mukherjee, S. (2012). Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish Physiology and Biochemistry, 39(3), 431-457. https://doi.org/10.1007/s10695-012-9710-5 google scholar
  • Merrifield, D. L., & Carnevali, O. (2014). Probiotic modulation of the gut microbiota of fish. Aquaculture nut-rition: Gut health, probiotics and prebiotics, 185-222. google scholar
  • Merrifield, D. L., Dimitroglou, A., Foey, A. D., Davies, S. J., Baker, R., B0gwald, J., Castex, M., & Ring0, E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquacul-ture, 302(1-2), 1-18. https://doi.org/10.1016/j.aquaculture.2010.02.007 google scholar
  • Miao, S., Nie, Q., Miao, H., Zhang, W., & Mai, K. (2016). Effects of dietary carbohydrate to lipid ratio on the growth performance and feed utilization of juvenile turbot (Scophthalmus maximus). J Ocean Univ China, 15, 660-6. google scholar
  • Miller, M. R., Nichols, P. D., & Carter, C. G. (2011). New Alternative n-3 Long-Chain Polyunsaturated Fat-ty Acid-Rich Oil Sources. In FO Replacement and Alternative Lipid Sources in Aquaculture Feeds (pp. 325-349). CRC Press. google scholar
  • Morais, S., Pratoomyot, J., Taggart, J. B., Bron, J. E., Guy, D. R., Bell, J.G., & Tocher D. R. (2011). Genotype specific responses in Atlantic salmon (Salmo salar) subject to dietary FO replacement by vegetable oil: a liver transcriptomic analysis. BMC Genomics, 12, 255. doi: 10.1186/1471-2164-12-255. google scholar
  • Morais, S., Edvardsen, R., Tocher, D., & Bell, G. (2012a). Transcriptomic analyses of intestinal gene expression of juvenile Atlantic cod (Gadus morhua) fed diets with Camelina oil as replacement for FO. Comp Biochem Physiol B, 161,283-293 google scholar
  • Morais, S., Silva, T., Cordeiro, O., Rodrigues, P., Guy, D. R., Bron, J. E., Taggart, J. B., Bell, J. G., & Tocher, D. R. (2012b). Effects of genotype and dietary FO replacement with vegetable oil on the intestinal transcrip-tome and proteome of Atlantic salmon (Salmo salar). BMC Genomics, 13, 448. doi: 10.1186/1471-2164-13-448. google scholar
  • Morales, G. A., Denstadli, V., Collins, S. A., Mydland, L. T., Moyano, F. J., & 0verland, M. (2016). Phytase and sodium diformate supplementation in a plant-based diet improves protein and mineral utilization in rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition 22, 1301 - 1311. google scholar
  • Morken, T., Kraugerud, O. F., Barrows, F. T., S0rensen, M., Storebakken, T., & 0verland, M. (2011). Sodium diformate and extrusion temperature affect nutrient digestibility and physical quality of diets with FM and barley protein concentrate for rainbow trout (Oncorhynchus mykiss). Aquaculture, 317(1-4), 138-145. google scholar
  • Mountzouris, K. C. (2022). Prebiotics: Types. Encyclopedia of dairy sciences (3rd ed., pp. 352-358). Academic Press. google scholar
  • Nates, S.F. (2016). Introduction. In Aquafeed formulation (pp. xiii-xxii). Academic Press google scholar
  • Nie, X., Chen, S., Zhang, X., Dai, B., & Qian, L. (2017). Effects of neutral phytase on growth performance and phosphorous utilization in crucian carp (Carassius auratus). Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 18 (10), 886-896. google scholar
  • Nogales-Merida, S., Tomas-Vidal, A., Cerda, M.J., & Martmez-Llorens, S. (2011). Growth performance, histo-logical alterations and fatty acid profile in muscle and liver of sharp snout sea bream (Diplodus puntazzo) with partial replacement of FO by pork fat. Aquac. Int., 19(5), 917-929. google scholar
  • Nogales-Merida, S., Gobbi, P.; Jozefıak, D., Mazurkiewicz, J., Dudek, K., Rawski, M., Kieronczyk, B., & Joze-fiak, A. (2019). Insect meals in fish nutrition. Rev. Aquac., 11, 1080-1103. google scholar
  • NRC (2011). Nutrient requirements of fish and shrimp. Animal Nutrition Series National Research Council of the National Academies. The National Academies Press, Washington, DC. google scholar
  • Nwanna, L. C., & Olusola, S. E. (2014). Effect of supplemental phytase on phosphorous digestibility and mineral composition in Nile tilapia (Oreochromis niloticus). International Journal of Aquaculture, 4(15), 89 - 95. google scholar
  • Ofori-Mensah, S., Yıldız, M., Arslan, M. & Eldem, V. (2020a). FO replacement with different vegetable oils in gilthead seabream, Sparus aurata diets: Effects on fatty acid metabolism based on whole-body fatty acid balance method and genes expression. Aquaculture, 529, 735609. https://doi.org/10.1016/j.aquacul-ture.2020.735609 google scholar
  • Ofori-Mensah, S., Yıldız, M., Arslan, M., Eldem, V. & Gelibolu, S. (2020b). Substitution of FO with camelina or chia oils in gilthead sea bream (Sparus aurata, L.) diets: Effect on growth performance, fatty acid com-position, hematology and gene expression. Aquaculture Nutrition, 26, 1943-1957. google scholar
  • Ofori-Mensah, S., Yıldız, M., Arslan, M., Ünal Şengör, G. F., Kahraman, T., Gelibolu, S. & Kaplan, Ç. (2022a). Replacement of FO by ALA-Rich Vegetable Oils in Diets of Gilthead Sea Bream: Effect on Final Ea-ting Quality. European Journal of Lipid Science and Technology, 2100251, 1-9. https://doi.org/10.1002/ ejlt.202100251 google scholar
  • Ofori-Mensah, S., Yıldız, M., Eldem, V., Ürkü, Ç., & Kaplan, Ç. (2022b). Effect of dietary inclusion of camelina or chia oil on fatty acid digestibility, histology, blood biochemistry and molecular biomarkers in juvenile gilthead sea bream (Sparus aurata, L.). Turkish Journal of Fisheries and Aquatic Sciences, 22(11), TRJ-FAS20857. https://doi.org/10.4194/TRJFAS20857 google scholar
  • Olsen, R.E., Waagb0, R., Melle, W., Ring0, E., & Lall, S.P. (2011). Alternative marine sources. In FO Replace-ment and Alternative Lipid Sources in Aquaculture Feeds. CRC Press, Florida, USA. google scholar
  • Özlüer-Hunt, A., Özkan-Yılmaz, F., Berköz, M., Engin, K., Gündüz, S. G., & Yalın, S. (2016). Effects of dietary nucleotide yeast on immune responses and antioxidant enzyme activities of rainbow trout juveniles (On-corhynchus mykiss). The Israeli Journal of Aquaculture-Bamidgeh, 68. google scholar
  • Özlüer-Hunt, A., Çetinkaya, M., Yılmaz, F. Ö., Yıldırım, M., Berkoz, M., & Yalın, S. (2019). Effect of dietary supp-lementation of inulin on growth performance, digestion enzyme activities and antioxidant status of rainbow trout (Oncorhynchus mykiss). Turkish Journal of Agriculture-Food Science and Technology, 7(9), 1344-1353. google scholar
  • Ozturk, R.C., Yandi, I., Terzi, Y., & Altinok, I. (2023). Growth, Health and Fillet Quality of Rainbow Trout (Oncorhynchus mykiss) Fed Directly with Black Soldier Fly (Hermetia illucens) Prepupae. Turkish Journal of Fisheries and Aquatic Sciences, 23(5), TRJFAS21683. https://doi.org/10.4194/TRJFAS21683. google scholar
  • Polakof, S., Panserat, S., Soengas, J. L., & Moon, T. W. (2012). Glucose metabolism in fish: a review. J Comp Physiol B., 182, 1015-45. google scholar
  • Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B., & Sasal, P. (2014). Use of plant extracts in fish aqua-culture as an alternative to chemotherapy: current status and future perspectives. Aquaculture, 433, 50-61. google scholar
  • Ring0, E., Olsen, R. E., Gifstad, T.0., Dalmo, R. A., Amlund, H., Hemre, G.-I., & Bakke, A. M. (2010). Prebi-otics in aquaculture: A review. Aquaculture Nutrition, 16 (2), 117-136. google scholar
  • Rohani, M. F., Islam, S. M., Hossain, M. K., Ferdous, Z., Siddik, M. A., Nuruzzaman, M., Padeniya, U., Brown, C., & Shahjahan, M. (2021). Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish & Shellfish Immunology, 120, 569-589. google scholar
  • Rombenso, A., Araujo, B., Li, E. (2022). Recent Advances in Fish Nutrition: Insights on the Nutritional Impli-cations of Modern Formulations. Animals, 12, 1705. https://doi.org/10.3390/ani12131705 google scholar
  • Ronald W. Hardy & Andreas Brezas. (2021). Diet formulation and manufacture. In: Hardy R.W., Kaushik S.J., editors. Fish Nutrition. 4th ed. Academic Press; Cambridge, MA, USA. pp. 643-708. google scholar
  • Rumsey, G. L., Winfree, R. A., & Hughes, S. G. (1992). Nutritional values of dietary nucleic acids and purine bases to rainbow trout. Aquaculture, 108, 97-1 google scholar
  • Saez-Royuela, M., Casado, M., Celada, J. D., Carral, J. M., Gonzalez-Rodriguez, A. (2015). Effect of dietary lipid level on survival, growth performance and body composition of juvenile tench (Tinca tinca L.) fed practical diets. Aquaculture, 439, 14-9. google scholar
  • Şahan, A., & Duman, S. (2010). Influence of p-1,3/1,6 glucan applications on some non-specific cellular immune response and haematologic parameters of healthy Nile tilapia (Oreochromis niloticus L., 1758). Turkish Journal of Veterinary and Animal Sciences, 34(1), 75-81. google scholar
  • Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., & Rastall, R. A. (2019). Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews Gastroenterology & Hepatology, 16(10), 605-616. google scholar
  • Santinha, P. J. M., Medale, F., Corraze, G. and Gomes, E. F. S. (1999). Effects of the dietary protein: lipid ratio on growth and nutrient utilization in gilthead seabream (Sparus aurata L.). Aquaculture Nutrition, 5, 147-156. google scholar
  • Sarker, M. S. A., Satoh, S., Kamata, K., Haga, Y., & Yamamoto, Y. (2012). Partial replacement of FM with plant protein sources using organic acids to practical diets for juvenile yellowtail, Seriola quinqueradiata. Aquac. Nutr., 18 (1), 81-89. google scholar
  • Sargent, J. R., Henderson, R. J. & Tocher, D. R. (1989). The lipids. In Fish Nutrition (2nd ed., pp.153-218). Academic Press. google scholar
  • Sargent, J. R., McEvoy, L. A. & Bell, J. G. (1997). Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155, 117-127. google scholar
  • Sargent, J., Bell G., McEvoy, L., Tocher D., Estevez A. (1999). Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177, 191-199. google scholar
  • Sargent, J.R., Tocher, D.R., & Bell, J.G. (2002). The lipids. In Fish Nutrition (3rd ed., pp. 181-257). Academic Press. google scholar
  • Selim, K. M., El-hofy, H., & Khalil, R. H. (2014). The efficacy of three mycotoxin adsorbents to alleviate afla-toxin B 1-induced toxicity in Oreochromis niloticus. Aquaculture International, 22, 523-540. google scholar
  • Shah, M.R., Lutzu, G.A., Alam, A., Sarker, P., Kabir Chowdhury, M.A., Parsaeimehr, A., Liang, Y., & Daroch, M. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol., 30, 197-213. google scholar
  • Shepherd, C. J., & Jackson, A. J. (2013). Global fishmeal and fish-oil supply: inputs, outputs and markets. J. Fish Biol. 83, 1046-1066. google scholar
  • Shiau, S-Y., Suen, G-S. (1994). The dietary requirement of juvenile grass shrimp (Penaeus monodon) for niacin. Aquaculture 125, 139-145. google scholar
  • Shiau, S.Y. (1997). Utilization of carbohydrates in warmwater fish - with reference to tilapia, Oreochromis niloticus x O. aureus. Aquaculture, 151, 79-96. google scholar
  • Shoaei, R., Akrami, R., Ghobadi, S., & Razeghi Mansour, M. (2015). Effect of dietary of prebiotic mannan oligosaccharide and p-1, 3 glucan on growth performance, survival, body composition and serum lysozyme activity in Rainbow trout (Oncorhynchus mykiss) fingerling. Journal of Marine Biology, 7(2), 45-56. google scholar
  • Smith, D. M., Hunter, B. J., Allan, G. L., Roberts, D. C. K., Booth, M. A., & Glencross, B. D. (2004). Essential fatty acids in the diet of silver perch (Bidyanus bidyanus): effect of linolenic and linoleic acid on growth and survival. Aquaculture, 236(1-4), 377-390. google scholar
  • Stickney, R.R., & Hardy, R.W. (1989). Lipid requirements of some warm water species. Aquaculture, 79, 145-156. google scholar
  • Stone, D. A. J. (2003). Dietary carbohydrate utilization by fish. Rev. Fish. Sci., 11, 337-369. google scholar
  • Suzer, C., Çoban, D., Kamaci, H. O., Saka, Ş., Firat, K., Otgucuoğlu, Ö., & Küçüksari, H. (2008). Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture, 280(1-4), 140-145. google scholar
  • Tacon, A. G. J., & Metian, M. (2008). Global overview on the use of FM and FO in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-58. google scholar
  • Takagi, S., Murata, H., Goto, T., Ichiki, T., Endo, M., Hatate, H., Yoshida, T., Sakai, T., Yamashita, H., & Ukawa, M. (2006). Efficacy of taurine supplementation for preventing green liver syndrome and improving growth performance in yearling red sea bream Pagrus major fed low-fishmeal diet. Fish. Sci., 72 (6), 1191-1199. google scholar
  • Takagi, S., Murata, H., Goto, T., Endo,M., Yamashita, H., & Ukawa,M. (2008). Taurine is an essential nutrient for yellowtail Seriola quinqueradiata fed non-FM diets based on soy protein concentrate. Aquaculture, 280 (1-4), 198-205. google scholar
  • Takeuchi, T. & Watanabe, T. (1977). Requirement of carp for essential fatty acids. Bull. Jpn. Soc. Sci. Fish., 43, 541-551. google scholar
  • Thanuthong, T., Francis, D. S., Senadheera, S. P. S. D., Paul, L. J., & Turchini, G. M. (2011). LC-PUFA biosy-nthesis in rainbow trout is substrate limited: use of the whole body fatty acid balance method and different 18:3n-3/18:2n-6 ratios. Lipids, 46. google scholar
  • Tibbetts, S.M., Mann, J., & Dumas, A. (2017). Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture, 481, 25-39. google scholar
  • Tibbetts, S. M., Scaife, M. A., & Armenta, R. E. (2020). Apparent digestibility of proximate nutrients, energy and fatty acids in nutritionally-balanced diets with partial or complete replacement of dietary FO with microbial oil from a novel Schizochytrium sp. (T18) by juvenile Atlantic salmon (Salmo salar L.). Aquaculture, 520, 735003. google scholar
  • Tocher, D. R., Zheng, X., Schlechtriem, C., Hastings, N., Dick, J. R., & Teale, A. J. (2006). Highly unsaturated fatty acid synthesis in marine fish: cloning, functional characterisation, and nutritional regulation of fatty acyl A6 desaturase of Atlantic cod (Gadus morhua L.). Lipids, 41, 1003-1016. google scholar
  • Tocher, D. R., David S. Francis, D. S., & Coupland, K. (2011). n-3 Polyunsaturated Fatty Acid-Rich Vegetable Oils and Blends. In FO replacement and alternative lipid sources in aquaculture feeds (pp. 209-244). CRC Press. google scholar
  • Tocher, D. R., Betancor, M. B., Sprague, M., Olsen, R.E., & Napier, J. A. (2019). Omega-3 long-chain polyun-saturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients, 11. google scholar
  • Torrecillas, S., Makol, A., Caballero, M. J., Montero, D., Gines, R., Sweetman, J., & Izquierdo, M. (2011). Improved feed utilization, intestinal mucus production and immune parameters in sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Aquaculture nutrition, 17(2), 223-233. google scholar
  • Torstensen, B. E., & Tocher, D. R. (2011). The Effects of FO replacement on lipid metabolism of fish. In FO Replacement andAlternative Lipid Sources in Aquaculture Feeds (pp ). CRC Press. google scholar
  • Torno, C., Staats, S., Michl, S. C., de Pascual-Teresa, S., Izquierdo, M., Rimbach, G., & Schulz, C. (2018). Fatty acid composition and fatty acid associated gene-expression in gilthead sea bream (Sparus aurata) are affected by low-FO diets, dietary resveratrol, and holding temperature. Marine Drugs, 16, 379. https://doi. org/10.3390/md16100379. google scholar
  • Tran, N. T., & Li, S. (2022). Potential role of prebiotics and probiotics in conferring health benefits in economi-cally important crabs. Fish and Shellfish Immunology Reports, 3, Article 100041. google scholar
  • Tran, H. Q., Nguyen, T. T., Prokesova, M., Gebauer, T., van Doan, H., & Stejskal, V (2022). Systematic review and meta-analysis of production performance of aquaculture species fed dietary insect meals. Rev. Aquac., 14, 1637-1655 google scholar
  • Trushenski, J.T, Blaufuss, P., Mulligan, B., & Laporte, J. (2011). Growth performance and tissue fatty acid composition of rainbow trout reared on feeds containing FO or equal blends of FO and traditional or novel alternative lipids. N. Am. J. Aquac., 73(2), 194-203. google scholar
  • Turchini, G. M., Torstensen, B. E., & Ng, W. K. (2009). FO replacement in finfish nutrition. Reviews in aqua-culture, 1(1), 10-57. google scholar
  • Turchini, G. M., Trushenski, J. T., & Glencross, B. D. (2019). Thoughts for the future of aquaculture nutrition: realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aqua-feeds. North American Journal of Aquaculture, 81(1), 13-39. google scholar
  • Turchini, G.M., Francis, D.S., Du, Z.-Y., Olsen, R.E., Ringo, E., & Tocher, D.R. (2022). The lipids. In Fish Nutrition (4th ed., pp. 303-468). Academic Press. google scholar
  • Türkoğlu, M., Baran, A., Sulukan, E. et al. (2022). The potential effect mechanism of high-fat and high-carbo-hydrate diet-induced obesity on anxiety and offspring of zebrafish. Eat Weight Disord 27, 163-177. https:// doi.org/10.1007/s40519-021-01140-5 google scholar
  • Valente, L.M.P., Cabrita, A.R.J., Maia, M.R.G., Valente, I.M., Engrola, S., Fonseca, A.J.M., Ribeiro, D.M., Lor-delo, M., Martins, C.F., Cunha, L.F., et al. (2021). Microalgae as Feed Ingredients for Livestock Production and Aquaculture. In Microalgae (pp. 239-312). Elsevier. google scholar
  • Vergara, J. M., & Jauncey, K. (1993). Studies on the use of dietary energy by gilthead sea bream (Sparus aurata L.) juveniles. In: Fish Nutrition in Practice. Les Colloques (Vol. 61, pp. 453-458). INRA, France. google scholar
  • Vergara, J. M., Fernandez-Palacios, H., Robaina, L., et al. (1996). The effects of varying dietary protein level on the growth, feed efficiency, protein utilization and body composition of gilthead sea bream fry. Fisheries Science, 62, 620-623. google scholar
  • Vergara, J. M., Lopez-Calero, G., Robaina, L., et al. (1999). Growth, feed utilization and body lipid content of gilthead seabream (Sparus aurata) fed increasing lipid levels and FMs of different quality. Aquaculture, 179, 35-44 google scholar
  • Watanabe, T. (1982). Lipid nutrition in fish. Comp. Biochem. Physiol., 73B, 3-15. google scholar
  • Welker, T. L., Lim, C., Yildirim-Aksoy, M., & Klesius, P.H. (2012). Effect of short-term feeding duration of diets containing commercial whole-cell yeast or yeast subcomponents on immune function and disease resistance in channel catfish, Ictalurus punctatus. J. Anim. Physiol. Anim. Nutr., 96 (2), 159-171. google scholar
  • Weththasinghe, P., Hansen, J.0., Mydland, L.T., & 0verland, M. (2022). A systematic meta-analysis based review on black soldier fly (Hermetia illucens) as a novel protein source for salmonids. Rev. Aquac., 14, 938-956. google scholar
  • Wilson, R.P., & Halver, J.E. (1986). Protein and amino acid requirements of fishes. Annu. Rev. Nutr., 6, 225-244. google scholar
  • Wilson, R.P. (1994).Utilization of dietary carbohydrate by fish. Aquaculture, 124, 67-80. google scholar
  • Y ang, J., Wang, T., Lin, G., Li, M., Zhu, R., Yiannikouris, A., Zhang, Y., & Mai, K. (2020). The assessment of diet contaminated with aflatoxin B1 in juvenile turbot (Scophthalmus maximus) and the evaluation of the efficacy of mitigation of a yeast cell wall extract. Toxins, 12 (9), 10.3390/toxins12090597 google scholar
  • Y arnold, J., Karan, H., Oey, M., & Hankamer, B. (2019). Microalgal aquafeeds as part of a circular bioeconomy. Trends Plant Sci., 24, 959-970. google scholar
  • Y iğit, N.O., & Ölmez, M. (2011). Effects of cellulase addition to canola meal in tilapia (Oreochromis niloti-cus L.) diets. Aquaculture Nutrition, 17 (2), e494-e500. google scholar
  • Y iğit, N.O., Koca, S.B., Didinen, B.I., & Diler, İ. (2018). Effect of protease and phytase supplementation on growth performance and nutrient digestibility of rainbow trout (Oncorhynchus mykiss, Walbaum) fed soy-bean meal-based diets. Journal of Applied Animal Research, 46 (1), 29-32. google scholar
  • Y ıldız, M., Eroldoğan, T.O., Ofori-Mensah, S., Engin, K., & Baltacı, M.A. (2018). The Effects of FO Replace-ment by Vegetable Oils on Growth Performance and Fatty Acid Profile of Rainbow Trout: Re-Feeding with Finishing Diet Improved Body HUFA Contents. Aquaculture, 488, 123-133. google scholar
  • Y ılmaz, S., Ergün, S., & Çelik, E. Ş. (2016). Effect of dietary spice supplementations on welfare status of sea bass, Dicentrarchus labrax L. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 86, 229-237. google scholar
  • Y ilmaz, S. (2019). Effects of dietary blackberry syrup supplement on growth performance, antioxidant, and immunological responses, and resistance of Nile tilapia, Oreochromis niloticus to Plesiomonas shigelloi-des. Fish & shellfish immunology, 84, 1125-1133 google scholar
  • Y ılmaz, S., Yilmaz, E., Dawood, M. A., Ring0, E., Ahmadifar, E., & Abdel-Latif, H. M. R. (2022). Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: A review. Aquaculture, 547, Article 737514. google scholar
  • Y ılmaz, S., Şanver Çelik, E., Ergün, S., Ahmadifar, E., & Abdel-Latif, H. M. R. (2023). Effects of dietary walnut (Juglans regia) leaves extract on immunity, gene expression responses, and disease resistance in Oreochro-mis niloticus. Fish and Shellfish Immunology, 135, 108656. google scholar
  • Y trestoyl, T., Aas, T. S., & Âsgârd, T. (2015). Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture, 448, 365-374. google scholar
  • Yu, R., Cao, H., Huang, Y., Peng, M., Kajbaf, K., Kumar, V., Tao, Z., Yang, G., Wen, C. (2020). The effects of partial replacement of fishmeal protein by hydrolysed feather meal protein in the diet with high inclusion of plant protein on growth performance, fillet quality and physiological parameters of Pengze crucian carp (Carassius auratus var. Pengze). Aquac. Res. 51, 636-647. google scholar
  • Yürüten Özdemir, K. & Yıldız, M. (2019). Effects of Dietary FM Replacement by Red Lentil Meal on Growth and Amino Acid Composition of Rainbow Trout (Oncorhynchus mykiss). Alinteri Journal of Agriculture Sciences, 34(2): 194-203. doi:10.28955/alinterizbd.666012. google scholar
  • Zainuddin, H., & Aslamyah, S. (2014). Effect of dietary carbohydrate levels and feeding frequencies on growth and carbohydrate digestibility by white shrimp Litopenaeus vannamei under laboratory conditions. J. Aqu-acult. Res. Dev., 5 (6), 1000274. google scholar
  • Zhang, P., Yang, F., Hu, J., Han, D., Liu, H., Jin, J., Yang, Y., Yi J., Zhu, X., & Xie, S. (2020). Optimal form of yeast cell wall promotes growth, immunity and disease resistance in gibel carp (Carassius auratus gibelio). Aquaculture Reports, 18, 100465. google scholar
  • Zheng, X., Seiliez, I., Hastings, N., Tocher, D. R., Panserat, S., Dickson, C. A., Bergot, P., & Teale, A. J. (2004). Characterization and comparison of fatty acyl D6 desaturase cDNAs from freshwater and marine teleost fish species. Comparative Biochemistry andPhysiology B, 139, 269-279. google scholar
  • Zhou, C., Xianping, G., Bo, L., Jun, X., Ruli, C., & Mingchun, R. (2015). Effect of high dietary carbohydrate on the growth performance, blood chemistry, hepatic enzyme activities and growth hormone gene expression of Wuchang bream (Megalobrama amblycephala) at two temperatures. Asian-Australas. J Anim Sci., 28 (2). google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.