CHAPTER


DOI :10.26650/B/LS32LS24.2024.005.009   IUP :10.26650/B/LS32LS24.2024.005.009    Full Text (PDF)

Live Feeds in Aquaculture

Kamil Mert EryalçınMerve Tınkır

Aquaculture provides high quality food for human consumption, and the sector has been constantly growing over the few decades. The total global production of aquaculture reached 87.5 million tonnes (Mt) in 2020, up around 20% from 71.5 Mt a decade ago (FAO, 2022). This increasing trend is predicted to continue, and FAO estimates overall production reaching over 100 Mt in 2030, with both an increase in the production of freshwater and marine fish. However, sustainable development of the sector will be dependent on many factors, such as availability of quality feed ingredients and success in hatchery operations to produce enough quantitity and quality of larvae and juvenile fish. Looking forward and considering the little variety in aquacultured species, the aquaculture industry is willing to expend and add new cultured species to their production. However, introducing new species and increasing the production efficiency relies on establishing a good production chain through larval rearing to broodstock management in aquaculture species.



References

  • Abdel-Tawwab, M., Abdulrahman, N. M., Baiz, A. I., Nader, P. J., & AlRefaiee, I. H. (2020). The using of Ch-lorella pyrenoidosa and Daphnia magna as feed supplements for common carp, Cyprinus carpio: growth performance, somatic indices, and hemato-biochemical biomarkers. Journal of AppliedAquaculture, 1-15. https://doi.org/10.1080/10454438.2020.1787291 google scholar
  • Abo-Taleb, H. A., El-feky, M. M., Azab, A. M., Mabrouk, M. M., Elokaby, M. A., Ashour, M., Mansour, A. T., Abdelhazer, O. F., Abualnaja, K. M., & Sallam, A. E. (2021). Growth performance, feed utilization, gut integrity, and economic revenue of grey mullet, Mugil cephalus, fed an increasing level of dried zooplankton biomass meal as fishmeal substitutions. Fishes, 6(3), 38. https://doi.org/10.3390/fishes6030038 google scholar
  • Alejos Cabrera, R. M., Gaspar Reyes, W. A., Flores Ramos, L., Ynga Huaman, G. A., Ruiz Soto, A., & Nino Velasquez, A. F. (2022). Effect of time in culture on fatty acid composition of copepods Tisbe sp. and Apo-cyclops sp. Journal of the World Aquaculture Society, 53(2), 475-484. https://doi.org/10.1111/jwas.12827 google scholar
  • Ashforth, D., & Yan, N. D. (2008). The interactive effects of calcium concentration and temperature on the survival and reproduction of Daphnia pulex at high and low food concentrations. Limnology and Oceanog-raphy, 53(2), 420-432. https://doi.org/10.4319/lo.2008.53.2.0420 google scholar
  • Bell, A. W. (1958). The anatomy of the oligochaete Enchytraeus albidus, with a key to the species of the genus Enchytraeus. American Museum novitates; no. 1902. google scholar
  • Bogut, I., Adamek, Z., Pu, Z., Galovi, D., & Bodako, D. (2010). Nutritional value of planktonic cladoceran Daphnia magna for common carp (Cyprinus carpio) fry feeding. Croatian Journal of Fisheries, 68(1), 1-10. https://hrcak.srce.hr/50792 google scholar
  • Borowitzka, M. A. (2013). High-value products from microalgae—their development and commercialisation. Journal of applied phycology, 25, 743-756. https://doi.org/10.1007/s10811-013-9983-9 google scholar
  • Brown, M. R. (2002). Nutritional value and use of microalgae in aquaculture. Avances en Nutricion Acuicola. google scholar
  • Bunke, D. (1998). Ultrastructure of the nephrostome in Enchytraeus albidus (Annelida, Clitellata). Zoomorpho-logy, 118(3), 177-182. https://doi.org/10.1007/s004350050067 google scholar
  • Burgess, A. I., Callan, C. K., Touse, R., & Delos Santos, M. (2020). Increasing survival and growth in larval leopard coral grouper (Plectropomus leopardus) using intensively cultured Parvocalanus crassirostris nauplii. Journal of the World Aquaculture Society, 51(1), 171-182. https://doi.org/10.1111/jwas.12635 google scholar
  • Carboni, S., Vignier, J., Chiantore, M., Tocher, D. R., & Migaud, H. (2012). Effects of dietary microalgae on growth, survival and fatty acid composition of sea urchin Paracentrotus lividus throughout larval develop-ment. Aquaculture, 324, 250-258. https://doi.org/10.1016/j.aquaculture.2011.10.037 google scholar
  • Chakraborty, S., & Mallick, P. H. (2023). Cladocera as a substitute for Artemia as live feed in aquaculture practices: a review. Sustainability, Agri, Food and Environmental Research, 11. https://doi.org/10.7770/ safer-V11N1-art2423 google scholar
  • Chen, J. Y., Zeng, C., Jerry, D. R., Cobcroft, J. M. (2020). Recent advances of marine ornamental fish larviculture: broodstock reproduction, live prey and feeding regimes, and comparison between demersal and pelagic spawners. Reviews in Aquaculture, 12(3), 1518-1541. https://doi.org/10.1111/raq.12394 google scholar
  • Chiu, S. T., Shiu, Y. L., Wu, T. M., Lin, Y. S., & Liu, C. H. (2015). Improvement in non-specific immunity and disease resistance of barramundi, Lates calcarifer (Bloch), by diets containing Daphnia similis meal. Fish & Shellfish Immunology, 44(1), 172-179. https://doi.org/10.1016/j.fsi.2015.02.002 google scholar
  • Chintada, B., Ranjan, R., Rani, B., Megarajan, S., Ghosh, S., Xavier, B., & Achamveettil, G. (2022). Evaluation of suitable microalgal diets for intensive culture of the calanoid copepod Acartia bilobata. Aquaculture Research, 53(17), 6193-6204. https://doi.org/10.1111/are.16092 google scholar
  • Choi, S. Y., Lee, E. H., Soh, H. Y., & Jang, M. C. (2021). Effects of temperature and salinity on egg production, hatching, and mortality rates in Acartia ohtsukai (Copepoda, Calanoida). Frontiers in Marine Science, 8, 704479. https://doi.org/10.3389/fmars.2021.704479 google scholar
  • Choi, S. Y., Jeon, S. C., & Soh, H. Y. (2022). Effects of cold storage and salinity on Acartia sinjiensis (Copepo-da: Calanoida) egg hatching. Aquaculture Research, 53(10), 3568-3574. https://doi.org/10.1111/are.15861 google scholar
  • Cox, A. R., Arnott, S. E., & Riessen, H. P. (2018). Nonlinear effects of aqueous calcium concentration on antipredator response in Daphnia. Hydrobiologia, 820, 79-89. https://doi.org/10.1007/s10750-018-3640-x google scholar
  • Dai, W., Slotsbo, S., & Holmstrup, M. (2021). Thermal optimum for mass production of the live feed or-ganism Enchytraeus albidus. Journal of Thermal Biology, 97, 102865. https://doi.org/10.1016/j.jther-bio.2021.102865 google scholar
  • Das, P., Mandal, S. C., Bhagabati, S. K., Akhtar, M. S., & Singh, S. K. (2012). Important live food organisms and their role in aquaculture. Frontiers in aquaculture, 5(4), 69-86. google scholar
  • da Silva Campos, C. V. F., da Silva Farias, R., da Silva, S. M. B. C., Severi, W., Brito, L. O., & Galvez, A. O. (2020). Production of Daphnia similis Claus, 1876 using wastewater from tilapia cultivation in a biofloc system. Aquaculture international, 28, 403-419. google scholar
  • Dayras, P., Bialais, C., Sadovskaya, I., Lee, M. C., Lee, J. S., & Souissi, S. (2021). Microalgal diet influences the nutritive quality and reproductive investment of the cyclopoid copepod Paracyclopina nana. Frontiers in Marine Science, 8, 697561. https://doi.org/10.3389/fmars.2021.697561 google scholar
  • de Boer, T. E., Roelofs, D., Vooijs, R., Holmstrup, M., & Amorim, M. J. (2018). Population-specifıc transc-riptional differences associated with freeze tolerance in a terrestrial worm. Ecology and Evolution, 8(7), 3774-3786. https://doi.org/10.1002/ece3.3602 google scholar
  • Dineshbabu, G., Goswami, G., Kumar, R., Sinha, A., & Das, D. (2019). Microalgae-nutritious, sustainable aqu-a-and animal feed source. Journal of Functional Foods, 62, 103545. https://doi.org/10.1016/j.jff.2019.103545 google scholar
  • Dobermann, D., Swift, J. A., & Field, L. M. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293-308. https://doi.org/10.1111/nbu.12291 google scholar
  • Ebert, D. (2022). Daphnia as a versatile model system in ecology and evolution. EvoDevo, 13(1), 16. https://doi. org/10.1186/s13227-022-00199-0 google scholar
  • Ebert, D. (2005). Ecology, epidemiology, and evolution of parasitism in Daphnia. National Library of Medicine. google scholar
  • El-Sherbiny, M. M., & Al-Aidaroos, A. (2021). Preliminary Observations of the Effect of Temperature and Food Concentration on the Egg Production Rate and Hatching Success of Acartia amboinensis from the Central Red Sea. Zoological Studies, 60. https://doi.org/10.6620/ZS.2021.60-58 google scholar
  • El-Tohamy, W., Qin, J., Abdel-Aziz, N., El-Ghobashy, A., & Dorgham, M. (2021). Suitable algal species and density for the culture of copepod Gladioferens imparipes as a potential live food for fish larvae. Aquacul-ture International, 29, 105-125. https://doi.org/10.1007/s10499-020-00614-0 google scholar
  • Erseus, C., Klinth, M. J., Rota, E., De Wit, P., Gustafsson, D. R., & Martinsson, S. (2019). The popular model annelid Enchytraeus albidus is only one species in a complex of seashore white worms (Clitellata, Ench-ytraeidae). Organisms Diversity & Evolution, 19, 105-133. https://doi.org/10.1007/s13127-019-00402-6 google scholar
  • Eryalçın, K. M., Roo, J., Saleh, R., Atalah, E., Bentez, T., Betancor, M., Hernandez Cruz, M. C., & Izquierdo, M. (2013). Fish oil replacement by different microalgal products in microdiets for early weaning of gilthead sea bre-am (Sparus aurata, L.). Aquaculture Research, 44(5), 819-828. https://doi.org/10.1111/j.1365-2109.2012.03237.x google scholar
  • Eryalçın, K. M., Ganuza, E., Atalah, E., & Hernandez Cruz, M. C. (2015). Nannochloropsis gaditana and Cr-ypthecodinium cohnii, two microalgae as alternative sources of essential fatty acids in early weaning for gilthead seabream. Hidrobiologica, 25(2), 193-202. google scholar
  • Eryalçın, K. M. (2018). Effects of Different Commercial Feeds and Enrichments on Biochemical Composition and Fatty Acid Profile of Rotifer (Brachionus plicatilis, Müller 1786) and Artemia franciscana. Turkish Journal of Fisheries and Aquatic Sciences, 18(1), 81-90. https://doi.org/10.4194/1303-2712-v18_1_09 google scholar
  • Eryalçın, K.M. (2019). Nutritional value and production performance of the rotifer Brachionus plicatilis Müller, 1786 cultured with different feeds at commercial scale. Aquaculture International, 27(3), 875-890. https:// doi.org/10.1007/s10499-019-00375-5 google scholar
  • Eskandari A (2014) Hydrobiology of biotopes and ecological, cytogenetical, molecular and morphomet-rical analyaysis of Artemia populations in coastal and inland saline ecosystems in Turkey. Dissertation, Hacettepe University. google scholar
  • Fairchild, E. A., Bergman, A. M., & Jesse, T. (2017). Production and nutritional composition of white worms Enchytraeus albidus fed different low-cost feeds. Aquaculture, 481, 16-24. https://doi.org/10.1016/j.aqua-culture.2017.08.019 google scholar
  • FAO, 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/ 10.4060/cc0461en google scholar
  • Fedonenko, O., Marenkov, O., Sharamok, T., Kolesnik, N., Grygorenko, T., & Symon, M. (2017). Basics of aquaculture and hydrobiotechnology. World Scientific News, 88(1), 1-57. google scholar
  • Ganuza, E., Bemtez-Santana, T., Atalah, E., Vega-Orellana, O., Ganga, R., & Izquierdo, M. S. (2008). Cryptheco-dinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Spa-rus aurata) microdiets. Aquaculture, 277(1-2), 109-116. https://doi.org/10.1016/j.aquaculture.2008.02.005 google scholar
  • Garrido-Cardenas, J. A., Manzano-Agugliaro, F., Acien-Fernandez, F. G., & Molina-Grima, E. (2018). Microal-gae research worldwide. Algal Research, 35, 50-60. https://doi.org/10.1016/j.algal.2018.08.005 google scholar
  • Guinot, D., Monroig, O., Navarro, J. C., Varo, I., Amat, F., Hontoria, F. (2013). Enrichment of Artemia metana-uplii in phospholipids and essential fatty acids as a diet for common octopus (Octopus vulgaris) paralarvae. Aquaculture Nutrition, 19(5), 837-844. https://doi.org/10.1111/anu.12048 google scholar
  • Hamre, K. (2016). Nutrient profiles of rotifers (Brachionus sp.) and rotifer diets from four different marine fish hatcheries. Aquaculture, 450, 136-142. https://doi.org/10.1016/j.aquaculture.2015.07.016 google scholar
  • Herawati, V. E., Hutabarat, J., & Karna Radjasa, O. (2020). Growth performance of tilapia (Oreochromis niloti-cus Linnaeus, 1758) larvae with feeding Tubifex tubifex (Müller, 1774) from different fermentation of ani-mal manures. Iranian Journal of Fisheries Sciences, 19(4), 2039-2052. http://jifro.ir/article-1-3364-en.html google scholar
  • Holmstrup, M., Hovvang, M. H., & Slotsbo, S. (2020). Salinity of the growth medium is important for production potential and nutritional value of white worms (Enchytraeus albidus Henle). Aquaculture Research, 51(7), 2885-2892. https://doi.org/10.1111/are.14627 google scholar
  • Holmstrup, M. E., Gadeberg, S. F., Engell-S0rensen, K., Slotsbo, S., & Holmstrup, M. (2022). A new strategy in rearing of European flounder: using live Enchytraeus albidus to enhance juvenile growth. Journal of Insects as Food and Feed, 8(11), 1333-1341. https://doi.org/10.3920/JIFF2021.0106 google scholar
  • Hossain, A., Mollah, M. F. A., & Hasan, M. (2012). Ratio optimisation of media ingredients for mass culture of tubificid worms (Oligochaeta, Tubificidae) in Bangladesh. Asian Fisheries Science, 25, 357-368. google scholar
  • Hönemann, L., & Nentwig, W. (2009). Are survival and reproduction of Enchytraeus albidus (Annelida: Ench-ytraeidae) at risk by feeding on Bt-maize litter? European Journal of Soil Biology, 45(4), 351-355. https:// doi.org/10.1016/j.ejsobi.2009.03.001 google scholar
  • Hu, J., Nagarajan, D., Zhang, Q., Chang, J. S., & Lee, D. J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology advances, 36(1), 54-67. https://doi.org/10.1016/j.biotec-hadv.2017.09.009 google scholar
  • Ikhsan, C., Safitri, S. D., Khaerunnisa, S., Purwanti, D., & Lestari, R. (2021). The utilization of water hya-cinth (Eichhornia crassipes) for the development of sludge worm (Tubifex sp.) cultivation. In Journal of Physics:Conference Series (Vol. 1725, No. 1, p. 012066). IOP Publishing. https://doi.org/10.1088/1742-6596/1725/1/012066 google scholar
  • Jamieson, B. G., & Ferraguti, M. (2006). Non-leech clitellata. Reproductive biology and phylogeny of Anneli-da, 4, 235-392. google scholar
  • Jewel, A. S., Al Masud, A., Amin, R., Haque, A., & Sultana, N. (2016). Comparative growth of Tubificid worms in culture media supplemented with different nutrients. International Journal of Fisheries and Aquatic Studies, 4(6), 83-87. google scholar
  • Kaster, J. L. (1980). The reproductive biology of Tubifex tubifex Muller (Annelida: Tubificidae). American Midland Naturalist, 364-366. https://doi.org/10.2307/2424877 google scholar
  • Kolesnyk, N., Simon, M., Marenkov, O., Nesterenko, O., & Tushnytska, N. (2019). Oligochaetes (Oligochaeta): dero furcata, sludge worm, Enchytraeus albidus and grindal worms as valuable food objects in fish far-ming. Ribogospodarska nauka Ukraini, (1), 28-47. https://doi.org/10.15407/fsu2019.01.028 google scholar
  • Kolkovski, S., Tandler, A., & Izquierdo, M. S. (1997). Effects of live food and dietary digestive enzymes on the efficiency of microdiets for seabass (Dicentrarchus labrax) larvae. Aquaculture, 148(4), 313-322. https:// doi.org/10.1016/S0044-8486(96)01366-X google scholar
  • Kolkovski, S. (2001). Digestive enzymes in fish larvae and juveniles—implications and applications to formu-lated diets. Aquaculture, 200(1-2), 181-201. https://doi.org/10.1016/S0044-8486(01)00700-1 google scholar
  • Lavens, P., & Sorgeloos, P. (1996). Manual on the production and use of live food for aquaculture (No. 361). Food and Agriculture Organization (FAO). google scholar
  • Lim, L. C., Soh, A., Dhert, P., Sorgeloos, P. (2001). Production and application of on-grown Artemia in freshwater ornamental fish farm. Aquaculture Economics & Management, 5, 211-228. https://doi.org/10.1080/13657300109380288 google scholar
  • Litvinenko, L. I., Litvinenko, A. I., Boiko, E. G., & Kutsanov, K. (2015). Artemia cyst production in Russia. Chi-nese Journal of Oceanology and Limnology, 33, 1436-1450. https://doi.org/10.1007/s00343-015-4381-6 google scholar
  • Lucan-Bouche, M. L., Biagianti-Risbourg, S., Arsac, F., & Vernet, G. (1999). An original decontamination pro-cess developed by the aquatic oligochaete Tubifex tubifex exposed to copper and lead. Aquatic toxicology, 45(1), 9-17. https://doi.org/10.1016/S0166-445X(98)00091-5 google scholar
  • Lundy, M. E., & Parrella, M. P. (2015). Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PloS one, 10(4), e0118785. https://doi. org/10.1371/journal.pone.0118785 google scholar
  • Madkour, K., Dawood, M. A., & Sewilam, H. (2022). The use of artemia for aquaculture industry: An updated overview. Annals of Animal Science. https://doi.org/10.2478/aoas-2022-0041 google scholar
  • Maldonado-Montiel, T. D., Rodrıguez-Canche, L. G., & Olvera-Novoa, M. A. (2003). Evaluation of Artemia biomass production in San Crisanto, Yucatan, Mexico, with the use of poultry manure as organic fertilizer. Aquaculture, 219(1-4), 573-584. google scholar
  • Mansour, A. T., Ashour, M., Alprol, A. E., & Alsaqufi, A. S. (2022). Aquatic plants and aquatic animals in the context of sustainability: Cultivation techniques, integration, and blue revolution. Sustainability, 14(6), 3257. https://doi.org/10.3390/su14063257 google scholar
  • Maraldo, K., & Holmstrup, M. (2009). Recovery of enchytraeid populations after severe drought events. Applied Soil Ecology, 42(3), 227-235. https://doi.org/10.1016/j.apsoil.2009.04.004 google scholar
  • Marian, M. P., & Pandian, T. J. (1984). Culture and harvesting techniques for Tubifex tubifex. Aquaculture, 42(3-4), 303-315. https://doi.org/10.1016/0044-8486(84)90109-1 google scholar
  • Mollah, M. F. A., Mamun, M. S. A., Sarowar, M. N., & Roy, A. (2009). Effects of stocking density on the growth and breeding performance of broodfish and larval growth and survival of shol, Channa striatus (Bloch). Journal of the Bangladesh Agricultural University, 7(2), 427-432. https://doi.org/10.3329/jbau. v7i2.4756 google scholar
  • Mona, M. H., El-Gamal, M. M., Razek, F. A., & Eldeen, M. N. (2017). Utilization of Daphnia longispina as supplementary food for rearing Marsupenaeus japonicus post larvae. Journal of the Marine Biological Association of India, 59(2), 74. https://doi.org/10.6024/jmbai.2017.59.2.1942-09 google scholar
  • Morales-Sânchez, D., Martinez-Rodriguez, O. A., & Martinez, A. (2017). Heterotrophic cultivation of micro-algae: production of metabolites of commercial interest. Journal of Chemical Technology & Biotechno-logy, 92(5), 925-936. https://doi.org/10.1002/jctb.5115 google scholar
  • Nelson, M. M., Mooney, B. D., Nichols, P. D., Phleger, C. E., Smith, G. G., Hart, P., Rita, A. J. (2002). The effect of diet on the biochemical composition of juvenile Artemia: potential formulations for rock lobster aquaculture. Journal of the World Aquaculture Society, 33(2),146-157. https://doi.Org/10.1111/j.1749-7345.2002.tb00489.x google scholar
  • Neori, A. (2011). “Green water” microalgae: the leading sector in world aquaculture. Journal of Applied Phyco-logy, 23, 143-149. https://doi.org/10.1007/s10811-010-9531-9 google scholar
  • Nielsen, B. L. H., Greve, H. V. S., Rayner, T. A., & Hansen, B. W. (2020). Biochemical adaptation by the tropical copepods Apocyclops royi and Pseudodiaptomus annandalei to a PUFA-poor brackish water habitat. Marine Ecology Progress Series, 655, 77-89. https://doi.org/10.3354/meps13536 google scholar
  • Perez-Garcia, O., Escalante, F. M., De-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of mic-roalgae: metabolism and potential products. Water research, 45(1), 11-36. https://doi.org/10.1016/j.wat-res.2010.08.037 google scholar
  • Phillips, G. R., & Buhler, D. R. (1979). Influences of dieldrin on the growth and body composition of fingerling rainbow trout (Salmo gairdneri) fed Oregon Moist Pellets or Tubificid worms (Tubifex sp.). Journal of the Fisheries Board of Canada, 36(1), 77-80. https://doi.org/10.1139/f79-010 google scholar
  • Premalatha, M., Abbasi, T., Abbasi, T., & Abbasi, S. (2011). Energy-efficient food production to reduce global war-ming and ecodegradation: The use of edible insects. Renewable and Sustainable Energy Reviews, 15(9), 43574360. https://doi.org/10.1016/j.rser.2011.07.115 google scholar
  • Puello-Cruz, A. C., Mezo-Villalobos, S., Gonzâlez-Rodriguez, B., & Voltolina, D. (2009). Culture of the calanoid copepod Pseudodiaptomus euryhalinus (Johnson 1939) with different microalgal diets. Aquaculture, 290(3-4), 317-319. https://doi.org/10.1016/j.aquaculture.2009.02.016 google scholar
  • Ra, J. S., Lee, B. C., Chang, N. I., & Kim, S. D. (2008). Comparative whole effluent toxicity assessment of wastewater treatment plant effluents using Daphnia magna. Bulletin of Environmental Contamination and Toxicology, 80, 196-200. https://doi.org/10.1007/s00128-007-9344-y google scholar
  • Ranjan, R., Megarajan, S., Xavier, B., Bhaskaran Pillai, S., Bathina, C., Avadhanula, R. K., ... & Gopalakrish-nan, A. (2022). Enhanced larval survival in orange-spotted grouper (Epinephelus coioides) using optimized feeding regime. Aquaculture Research, 53(9), 3430-3440. https://doi.org/10.1111/are.15850 google scholar
  • Rasdi, N. W., & Qin, J. G. (2016). Improvement of copepod nutritional quality as live food for aquaculture: a review. Aquaculture Research, 47(1), 1-20. https://doi.org/10.1111/are.12471 google scholar
  • Rasdi, N. W., & Qin, J. G. (2018). Impact of food type on growth, survival and reproduction of the cyclopoid copepod Cyclopina kasignete as a potential live food in aquaculture. Aquaculture International, 26, 12811295. https://doi.org/10.1007/s10499-018-0283-x google scholar
  • Reynoldson, T. B., Thompson, S. P., & Bamsey, J. L. (1991). A sediment bioassay using the tubificid oligochaete worm Tubifex tubifex. Environmental Toxicology and Chemistry: An International Journal, 10(8), 10611072. https://doi.org/10.1002/etc.5620100811 google scholar
  • Roy, S. S., & Pal, R. (2015). Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics. In Proceedings of the Zoological Society (Vol. 68, pp. 1-8). Springer India. https://doi. org/10.1007/s12595-013-0089-9 google scholar
  • Rumbos, C. I., & Athanassiou, C. G. (2021). The superworm, Zophobas morio (Coleoptera: Tenebrionidae): a ‘sleeping giant’in nutrient sources. Journal of Insect Science, 21(2), 13. doi: 10.1093/jisesa/ieab014. google scholar
  • Rumpold, B. A., & Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11. https://doi.org/10.1016/j. ifset.2012.11.005 google scholar
  • Sarkisian, B. L., Lemus, J. T., Apeitos, A., Blaylock, R. B., & Saillant, E. A. (2019). An intensive, large-scale batch culture system to produce the calanoid copepod, Acartia tonsa. Aquaculture, 501, 272-278. https:// doi.org/10.1016/j.aquaculture.2018.11.042 google scholar
  • Saygı, Y. (2004). Characterization of parthenogenetic Artemia populations from Camaltı (Izmir, Turkey) and Kalloni (Lesbos, Greece): survival, growth, maturation, biometrics, fatty acid profiles and hatching charac-teristics. Hydrobiologia, 527, 227-239. https://doi.org/10.1023/B:HYDR.0000043304.84579.d7 google scholar
  • Shah, M. R., Lutzu, G. A., Alam, A., Sarker, P., Kabir Chowdhury, M. A., Parsaeimehr, A., Liang, Y., Daroch, M. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of applied phycology, 30, 197-213. https://doi.org/10.1007/s10811-017-1234-z google scholar
  • Schmelz, R. M. (2003). Taxonomy of Fridericia (Oligochaeta, Enchytraeidae). Revision of species with morp-hological and biochemical methods. Goecke & Evers. google scholar
  • Shi, C., Dong, S., Wang, F., Gao, Q., & Tian, X. (2013). Effects of four fresh microalgae in diet on growth and energy budget of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture, 416, 296-301. https://doi.org/10.1016/j.aquaculture.2013.09.050 google scholar
  • Snimshhikova, L. N. & Linevich, A. A. (1987). Oligohety severnogo Bajkala. Nauka. 103. google scholar
  • Sorgeloos, P., Bossuyt, E., Lavina, E., Baeza-Mesa, M., & Persoone, G. (1977). Decapsulation of Artemia cysts: a simple technique for the improvement of the use of brine shrimp in aquaculture. Aquaculture, 12(4), 311315. https://doi.org/10.1016/0044-8486(77)90209-5 google scholar
  • Sorgeloos, P., Dhert, P., & Candreva, P. (2001). Use of the brine shrimp, Artemia spp., in marine fish larvicultu-re. Aquaculture, 200(1-2), 147-159. https://doi.org/10.1016/S0044-8486(01)00698-6 google scholar
  • Sorgeloos, P., & Roubach, R. (2021). Past, present and future scenarios for SDG-aligned brine shrimp Artemia aquaculture. FAO Aquaculture Newsletter, (63), 56-57. google scholar
  • Springett, J. A. (1964). A method for culturing Enchytraeidae. Oikos, 175-177. https://doi.org/10.2307/3564754 google scholar
  • Spurgeon, D. J. (2010). Trace Metal Exposure and Effects on Soil-Dwelling Species and Their Communities. Trace Elements in Soils, 155-174. google scholar
  • Stephenson, J. (1930). The Oligochaeta. Oxford, UK: Clarendon Press. 978 p. google scholar
  • Stollewerk, A. (2010). The water flea Daphnia-a’new’model system for ecology and evolution? Journal of biology, 9(2), 1-4. https://doi.org/10.1186/jbiol212 google scholar
  • Suantika, G., Muhammad, H., Azizah, F. F. N., Rachminiwati, N., Situmorang, M. L., Astuti, D. I., & Aditiawati, P. (2016). The use of Cyanobacteria Arthrospira platensis and Cladoceran Daphnia magna as complemen-tary protein and lipid sources in transitional diet for Common Carp (Cyprinus carpio L.) Nursery. Natural Resources, 7(07), 423. https://doi.org/10.4236/nr.2016.77037 google scholar
  • Şahin, S. K., & Yıldız, S. (2011). Species distribution of oligochaetes related to environmental parameters in Lake Sapanca (Marmara Region, Turkey). Turkish Journal of Fisheries and Aquatic Sciences, 11(3). https:// doi.org/10.4194/1303-2712-v11_3_04. google scholar
  • Toi, H. T., Boeckx, P., Sorgeloos, P., Bossier, P., & Van Stappen, G. (2013). Bacteria contribute to Artemia nut-rition in algae-limited conditions: A laboratory study. Aquaculture, 388, 1-7. google scholar
  • Torres, G. A., Merino, G. E., Prieto-Guevara, M. J., Portillo, J. E. A., Gamboa, J. H., Imues, M. A., & Chapman, F. A. (2021). Spawning of calanoid copepod Acartia tonsa at low temperature and high salinity improves hatch success for cold-stored egg production. Aquaculture, 530, 735725. https://doi.org/10.1016/j.aquacul-ture.2020.735725 google scholar
  • Tsounis, G., Orejas, C., Reynaud, S., Gili, J. M., Allemand, D., Ferrier-Pages, C. (2010). Prey-capture rates in four Mediterranean cold water corals. Marine Ecology Progress Series, 398, 149-155. https://doi.org/10.3354/ meps08312 google scholar
  • Turcihan, G., Turgay, E., Yardımcı, R. E., & Eryalçın, K. M. (2021). The effect of feeding with different microal-gae on survival, growth, and fatty acid composition of Artemia franciscana metanauplii and on predominant bacterial species of the rearing water. Aquaculture International, 29(5), 2223-2241. https://doi.org/10.1007/ s10499-021-00745-y google scholar
  • Turcihan, G., Isinibilir, M., Zeybek, Y. G., & Eryalçın, K. M. (2022). Effect of different feeds on reproduction performance, nutritional components and fatty acid composition of cladocer water flea (Daphnia mag-na). Aquaculture Research, 53(6), 2420-2430. https://doi.org/10.1111/are.15759 google scholar
  • Van Haaren, T., & Soors, J. (2013). Aquatic Oligochaeta of the Netherlands and Belgium: Identification Key to the Oligochaetes. BRILL. google scholar
  • Van Huis, A., Itterbeeck, J. V., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: future prospects for food and feed security. FAO Forestry paper, (171). http://www.fao.org/doc-rep/018/i3253e/i3253e.pdf. google scholar
  • Veldkamp, T., Van Duinkerken, G., van Huis, A., Lakemond, C. M. M., Ottevanger, E., Bosch, G., & Van Boekel, T. (2012). Insects as a sustainable feed ingredient in pig and poultry diets: a feasibility study= Insecten als duurzame diervoedergrondstof in varkens-en pluimveevoeders: een haalbaarheidsstudie (No. 638). Wage-ningen UR Livestock Research. google scholar
  • Verdonschot, P. F. (1989). The role of oligochaetes in the management of waters. In Aquatic Oligochaete Biology: Proceedings of the 4th International Symposium on Aquatic Oligochaete Biology (pp. 213-227). Springer Netherlands. google scholar
  • Vite-Garcia N, Simoes N, Arjona O, Mascaro M, Palacios E (2014) Growth and survival of Hippocampus erectus (Perry, 1810) juveniles fed on Artemia with different HUFA levels. Latin American Journal of Aquatic Research 42(1), 150-159. https://doi.org/10.3856/vol42-issue1-fulltext-12 google scholar
  • Yanar, M., Yanar, Y., & Genç, A. M. (2003). Tubifex Tubifex (Annelidae) in Besin Kompozisyonu. EU Journal of Fisheries & Aquatic Sciences, 20(1-2), 103-110. google scholar
  • Yıldız, D., Yalçın, G., Jovanovic, B., Boukal, D. S., Vebrova, L., Riha, D., Stankovic, J., Savic-Zdrakovic, D., Metin, M., Akyürek, Y. N., Balkanlı, D., Filiz, N., Milosevic, D., Feuchtmayr, H., Richardson, J. A., Bekli-oğlu, M. (2022). Effects of a microplastic mixture differ across trophic levels and taxa in a freshwater food web: In situ mesocosm experiment. Science of the Total Environment, 836, 155407. https://doi.org/10.1016/j. scitotenv.2022.155407 google scholar
  • Yoshimatsu T, Hossain M.A. (2014) Recent advances in the high-density rotifer culture in Japan. Aquaculture International, 22, 1587-1603. https://doi.org/10.1007/s10499-014-9767-5 google scholar
  • Yu, X., Chen, L., & Zhang, W. (2015). Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Frontiers in microbiology, 6, 56. https://doi.org/10.3389/fmicb.2015.00056 google scholar
  • Walsh, M. L. (2012). White worms Enchytraeus albidus as a live feed and in formulated aquafeeds. World Aquaculture, 43(3), 44-46. google scholar
  • Walsh, M. L., Fairchild, E. A., Rennels, N., & Howell, W. H. (2015). The effects of live and artificial diets on feeding performance of winter flounder, Pseudopleuronectes americanus, in the Hatchery. Journal of the World Aquaculture Society, 46(1), 61-68. https://doi.org/10.1111/jwas.12171 google scholar
  • Zhukova, N. V., Imbs, A. B., & Yi, L. F. (1998). Diet-induced changes in lipid and fatty acid composition of Artemia salina. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 120(3), 499-506. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.