CHAPTER


DOI :10.26650/B/LS32LS24.2024.005.015   IUP :10.26650/B/LS32LS24.2024.005.015    Full Text (PDF)

Research and Innovative Applications for Infectious Disease Control

Terje M. SteinumSüheyla Karataş

Research and innovative strategies/applications for infectious disease control are explored in this chapter. The first of four sections focus on how “functional feeds” can improve infectious disease resilience in farmed fish. Section two take a closer look at bacteriophages as biological control agents of notable bacterial pathogens. In section three, the topic is experimental biotechnology-based applications for finfish aquaculture based on natural or synthetic antimicrobial peptides (AMPs). The fourth and final section gives an introduction to the important role “omics”-studies now play in bacterial fish pathogen research. For simplicity, the chapter focuses on for Türkiye economically important bacterial fish pathogens and research related to European seabass, gilthead seabream and rainbow trout as key species of Mediterranean and European aquaculture.



References

  • Almeida, G.M.F., Mâkelâ, K., Laanto, E., Pulkkinen, J., Vielma, J., Sundberg, L.R., 2019. The fate of bacteriop-hages in recirculating aquaculture systems (RAS)—towards developing phage therapy for RAS. Antibiotics 8. https://doi.org/10.3390/antibiotics8040192 google scholar
  • Âlvarez, C.A., Acosta, F., Montero, D., Guzman, F., Torres, E., Vega, B., Mercado, L., 2016. Synthetic hepcidin from fish: Uptake and protection against Vibrio anguillarum in sea bass (Dicentrarchus labrax). Fish Shel-İfish Immunol. 55, 662-670. https://doi.org/10.1016Zj.fsi.2016.06.035 google scholar
  • Awad, E., Awaad, A.S., Esteban, M.A., 2015. Effects of dihydroquercetin obtained from deodar (Cedrus deoda-ra) on immune status of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 43, 43-50. https:// doi.org/10.1016/j.fsi.2014.12.009 google scholar
  • Bahi, A., Guardiola, F.A., Messina, C., Mahdhi, A., Cerezuela, R., Santulli, A., Bakhrouf, A., Esteban, M.A., 2017. Effects of dietary administration of fenugreek seeds, alone or in combination with probiotics, on growth performance parameters, humoral immune response and gene expression of gilthead seabream (Spa-rus aurata L.). Fish Shellfish Immunol. 60, 50-58. https://doi.org/10.1016/j.fsi.2016.11.039 google scholar
  • Bhat, R.A.H., Khangembam, V.C., Thakuria, D., Pant, V., Tandel, R.S., Tripathi, G., Sarma, D., 2022. Antimicro-bial activity of an artificially designed peptide against fish pathogens. Microbiol. Res. 260, 127039. https:// doi.org/10.1016/j.micres.2022.127039 google scholar
  • Brooker, A.J., Papadopoulou, A., Gutierrez, C., Rey, S., Davie, A., Migaud, H., 2018. Sustainable production and use of cleaner fish for the biological control of sea lice: Recent advances and current challenges. Vet. Rec. 183, 383. https://doi.org/10.1136/vr.104966 google scholar
  • Bulfon, C., Pacorig, V., Sarti, M., Luzzana, U., Galeotti, M., Volpatti, D., 2019. ProtecTM improves innate immu-ne response and specific antibody response against Lactococcus garvieae in rainbow trout (Oncorhynchus mykiss). Vet. Immunol. Immunopathol. 213, 109885. https://doi.org/10.1016/j.vetimm.2019.109885 google scholar
  • Busti, S., Rossi, B., Volpe, E., Ciulli, S., Piva, A., D’Amico, F., Soverini, M., Candela, M., Gatta, P.P., Bonaldo, A., Grilli, E., Parma, L., 2020. Effects of dietary organic acids and nature identical compounds on growth, immune parameters and gut microbiota of European sea bass. Sci. Rep. 10, 1-14. https://doi.org/10.1038/ s41598-020-78441-9 google scholar
  • Castro-Osses, D., Carrera-Naipil, C., Gallardo-Escarate, C., Gonçalves, A.T., 2017. Functional diets modulate the acute phase protein response in Oncorhynchus mykiss subjected to chronic stress and challenged with Vibrio anguillarum. Fish Shellfish Immunol. 66, 62-70. https://doi.org/10.1016/j.fsi.2017.05.001 google scholar
  • Castro, R., Coll, J., Blanco, M.D.M., Rodriguez-Bertos, A., Jouneau, L., Fernandez-Garayzabal, J.F., Gibello, A., 2019. Spleen and head kidney differential gene expression patterns in trout infected with Lactococcus garvieae correlate with spleen granulomas. Vet. Res. 50, 1-14. https://doi.org/10.1186/s13567-019-0649-8 google scholar
  • Causey, D.R., Pohl, M.A.N., Stead, D.A., Martin, S.A.M., Secombes, C.J., Macqueen, D.J., 2018. High-throu-ghput proteomic profiling of the fish liver following bacterial infection. BMC Genomics 19, 1-17. https:// doi.org/10.1186/s12864-018-5092-0 google scholar
  • Cervera, L., Gonzalez-Fernandez, C., Cano, D., Esteban, M.Â., Mercado, L., Chaves-Pozo, E., Cuesta, A., 2023. Immunity elicited by AMP-encoding plasmids fails to increase the protection of European sea bass against nodavirus. Fish Shellfish Immunol. 132. https://doi.org/10.1016/j.fsi.2022.108507 google scholar
  • Chee, P.Y., Mang, M., Lau, E.S., Tan, L.T.H., He, Y.W., Lee, W.L., Pusparajah, P., Chan, K.G., Lee, L.H., Goh, B.H., 2019. Epinecidin-1, an Antimicrobial Peptide Derived From Grouper (Epinephelus coioides): Pharma-cological Activities and Applications. Front. Microbiol. 10, 1-23. https://doi.org/10.3389/fmicb.2019.02631 google scholar
  • Chen, Y., Wu, J., Cheng, H., Dai, Y., Wang, Y., Yang, H., Xiong, F., Xu, W., Wei, L., 2020. Anti-infective Effects of a Fish-Derived Antimicrobial Peptide Against Drug-Resistant Bacteria and Its Synergistic Effects With Antibiotic. Front. Microbiol. 11, 1-12. https://doi.org/10.3389/fmicb.2020.602412 google scholar
  • Chettri, J.K., Al-Jubury, A., Hansen, M.B., Lihme, A., Dalsgaard, I., Buchmann, K., Heegaard, P.M.H., 2019. Protective effect of in-feed specific IgM towards Yersinia ruckeri in rainbow trout. Fish Shellfish Immunol. 93, 934-939. https://doi.org/10.1016/j.fsi.2019.08.024 google scholar
  • Chong, C.M., Low, C.F., 2019. Synthetic antibody: Prospects in aquaculture biosecurity. Fish Shellfish Immunol. 86, 361-367. https://doi.org/10.1016/j.fsi.2018.11.060 google scholar
  • Cornet, V., Khuyen, T.D., Mandiki, S.N.M., Betoulle, S., Bossier, P., Reyes-Lopez, F.E., Tort, L., Kestemont, P., 2021. GAS1: A New p-Glucan Immunostimulant Candidate to Increase Rainbow Trout (Oncorhynchus mykiss) Resistance to Bacterial Infections With Aeromonas salmonicida achromogenes. Front. Immunol. 12, 1-16. https://doi.org/10.3389/fimmu.2021.693613 google scholar
  • Declercq, A.M., Tilleman, L., Gansemans, Y., De Witte, C., Haesebrouck, F., Van Nieuwerburgh, F., Smet, A., Decostere, A., 2021. Comparative genomics of Flavobacterium columnare unveils novel insights in virulence and antimicrobial resistance mechanisms. Vet. Res. 52, 1-13. https://doi.org/10.1186/s13567-021-00899-w google scholar
  • Deo, S., Turton, K.L., Kainth, T., Kumar, A., Wieden, H.J., 2022. Strategies for improving antimicrobial peptide production. Biotechnol. Adv. 59, 107968. https://doi.org/10.1016/j.biotechadv.2022.107968 google scholar
  • Docando, F., Nunez-Ortiz, N., Serra, C.R., Arense, P., Enes, P., Oliva-Teles, A., D^az-Rosales, P., Tafalla, C., 2022. Mucosal and systemic immune effects of Bacillus subtilis in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 124, 142-155. https://doi.org/10.1016/j.fsi.2022.03.040 google scholar
  • Donati, V.L., Dalsgaard, I., Runtuvuori-Salmela, A., Kunttu, H., J0rgensen, J., Castillo, D., Sundberg, L.R., Middelboe, M., Madsen, L., 2021. Interactions between rainbow trout eyed eggs and Flavobacterium spp. using a bath challenge model: Preliminary evaluation of bacteriophages as pathogen control agents. Micro-organisms 9. https://doi.org/10.3390/microorganisms9050971 google scholar
  • Douxfils, J., Fierro-Castro, C., Mandiki, S.N.M., Emile, W., Tort, L., Kestemont, P., 2017. Dietary p-glucans differentially modulate immune and stress-related gene expression in lymphoid organs from healthy and Ae-romonas hydrophila-infected rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 63, 285-296. https://doi.org/10.1016/j.fsi.2017.02.027 google scholar
  • Elbesthi, R.T.A., Özdemir, K.Y., Taştan, Y., Bilen, S., Sönmez, A.Y., 2020. Effects of ribwort plantain (Planta-go lanceolata) extract on blood parameters, immune response, antioxidant enzyme activities, and growth performance in rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 46, 1295-1307. https://doi. org/10.1007/s10695-020-00790-z google scholar
  • Espinosa, C., Garda Beltran, J.M., Messina, C.M., Esteban, M.Â., 2020. Effect of Jasonia glutinosa on immune and oxidative status of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 100, 58-69. https:// doi.org/10.1016/j.fsi.2020.02.068 google scholar
  • Fernandez, L., Gutierrez, D., Garcia, P., Rodriguez, A., 2019. The Perfect Bacteriophage for Therapeutic. An-tibiotics 1-16. google scholar
  • Firmino, J.P., Galindo-Villegas, J., Reyes-Lopez, F.E., Gisbert, E., 2021. Phytogenic Bioactive Compounds Shape Fish Mucosal Immunity. Front. Immunol. 12. https://doi.org/10.3389/fimmu.2021.695973 google scholar
  • Fjortoft, H.B., Nilsen, F., Besnier, F., Stene, A., Tveten, A.K., Bjorn, P.A., Aspehaug, V.T., Glover, K.A., 2021. Losing the “arms race”: Multiresistant salmon lice are dispersed throughout the North Atlantic Ocean. R. Soc. Open Sci. 8. https://doi.org/10.1098/rsos.210265 google scholar
  • Garcia Beltran, J.M., Espinosa, C., Guardiola, F.A., Esteban, M.A., 2017. Dietary dehydrated lemon peel im-proves the immune but not the antioxidant status of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 64, 426-436. https://doi.org/10.1016Zj.fsi.2017.03.042 google scholar
  • Garcia Beltran, J.M., Silvera, D.G., Ruiz, C.E., Campo, V., Chupani, L., Faggio, C., Esteban, M.A., 2020. Effects of dietary Origanum vulgare on gilthead seabream (Sparus aurata L.) immune and antioxidant status. Fish Shellfish Immunol. 99, 452-461. https://doi.org/10.1016/j.fsi.2020.02.040 google scholar
  • Gent, M.E. Van, Ali, M., Nibbering, P.H., Ktodzi, S.N., 2021. Current Advances in Lipid and Polymeric Anti-microbial Peptide Delivery Systems and Coatings for the Prevention and Treatment of Bacterial Infections. google scholar
  • Gisbert, E., Skalli, A., Campbell, J., Solovyev, M.M., Rodriguez, C., Dias, J., Polo, J., 2015. Spray-dried plasma promotes growth, modulates the activity of antioxidant defenses, and enhances the immune status of gilthead sea bream (Sparus aurata) fingerlings. J. Anim. Sci. 93, 278-286. https://doi.org/10.2527/jas.2014-7491 google scholar
  • Gonçalves, G., Santos, R.A., Coutinho, F., Pedrosa, N., Curado, M., Machado, M., Costas, B., Bonneville, L., Serrano, M., Carvalho, A.P., D^az-Rosales, P., Oliva-Teles, A., Couto, A., Serra, C.R., 2022. Oral vaccination of fish against vibriosis using spore-display technology. Front. Immunol. 13, 1-15. https://doi.org/10.3389/ fimmu.2022.1012301 google scholar
  • Gong, Y., Zhang, X., 2021. RNAi-based antiviral immunity of shrimp. Dev. Comp. Immunol. 115, 103907. https://doi.org/10.1016/j.dci.2020.103907 google scholar
  • Gulla, S., Duodu, S., Nilsen, A., Fossen, I., Colquhoun, D.J., 2016. Aeromonas salmonicida infection levels in pre- and post-stocked cleaner fish assessed by culture and an amended qPCR assay. J. Fish Dis. 39, 867-877. https://doi.org/10.1111/jfd.12420 google scholar
  • Guluarte, C., Reyes-Becerril, M., Gonzalez-Silvera, D., Cuesta, A., Angulo, C., Esteban, M.A., 2019. Probiotic properties and fatty acid composition of the yeast Kluyveromyces lactis M3. In vivo immunomodulatory acti-vities in gilthead seabream (Sparus aurata). Fish Shellfish Immunol. 94, 389-397. https://doi.org/10.1016/j. fsi.2019.09.024 google scholar
  • Joo, H.S., Fu, C.I., Otto, M., 2016. Bacterial strategies of resistance to antimicrobial peptides. Philos. Trans. R. Soc. B Biol. Sci. 371. https://doi.org/10.1098/rstb.2015.0292 google scholar
  • Kalatzis, P.G., Bastias, R., Kokkari, C., Katharios, P., 2016. Isolation and characterization of two lytic bacteriop-hages, pst2 and pgrn1; Phage therapy application for biological control of Vibrio alginolyticus in aquaculture live feeds. PLoS One 11, 1-18. https://doi.org/10.1371/journal.pone.0151101 google scholar
  • Karatas Dügenci, S., Arda, N., Candan, A., 2003. Some medicinal plants as immunostimulant for fish 88, 99-106. https://doi.org/10.1016/S0378-8741(03)00182-X google scholar
  • Keen, E.C., Bliskovsky, V. V, Malagon, F., Baker, J.D., Prince, J.S., Klaus, J.S., Adhya, S.L., 2017. Novel “Su-perspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation. MBio 8, 1-12. google scholar
  • Kim, H.J., Jun, J.W., Giri, S.S., Chi, C., Yun, S., Kim, S.G., Kim, S.W., Kang, J.W., Han, S.J., Kwon, J., Oh, W.T., Park, S.C., 2019. Application of the bacteriophage pVco-14 to prevent Vibrio coralliilyticus infection in Pacific oyster (Crassostrea gigas) larvae. J. Invertebr. Pathol. 167, 107244. https://doi.org/10.1016/j. jip.2019.107244 google scholar
  • Kunttu, H.M.T., Runtuvuori-Salmela, A., Middelboe, M., Clark, J., Sundberg, L.R., 2021. Comparison of deli-very methods in phage therapy against Flavobacterium columnare infections in rainbow trout. Antibiotics 10, 1-19. https://doi.org/10.3390/antibiotics10080914 google scholar
  • Laanto, E., Bamford, J.K.H., Laakso, J., Sundberg, L.R., 2012. Phage-Driven Loss of Virulence in a Fish Pat-hogenic Bacterium. PLoS One 7. https://doi.org/10.1371/journal.pone.0053157 google scholar
  • Laanto, E., Bamford, J.K.H., Ravantti, J.J., Sundberg, L.R., 2015. The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture. Front. Microbiol. 6, 1-9. https://doi.org/10.3389/ fmicb.2015.00829 google scholar
  • Labrie, S.J., Samson, J.E., Moineau, S., 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317-327. https://doi.org/10.1038/nrmicro2315 google scholar
  • Lai, Z., Yuan, X., Chen, H., Zhu, Y., Dong, N., Shan, A., 2022. Strategies employed in the design of antimic-robial peptides with enhanced proteolytic stability. Biotechnol. Adv. 59, 107962. https://doi.org/10.1016/j. biotechadv.2022.107962 google scholar
  • Lazzaro, B.P., Zasloff, M., Rolff, J., 2020. Antimicrobial peptides: Application informed by evolution. Science (80-. ). 368. https://doi.org/10.1126/science.aau5480 google scholar
  • Le, C.-F., Fang, C.-M., Sekaran, S.D., 2017. crossm Intracellular Targeting Mechanisms by. Antimicrob. Agents Chemother. 61, 1-16. google scholar
  • Leon, R., Ruiz, M., Valero, Y., Cardenas, C., Guzman, F., Vila, M., Cuesta, A., 2020. Exploring small cationic peptides of different origin as potential antimicrobial agents in aquaculture. Fish Shellfish Immunol. 98, 720-727. https://doi.org/10.1016/j.fsi.2019.11.019 google scholar
  • Machado, M., Engrola, S., Colen, R., Conceiçâo, L.E.C., Dias, J., Costas, B., 2020. Dietary methionine supp-lementation improves the European seabass (Dicentrarchus labrax) immune status following long-term feeding on fishmeal-free diets. Br. J. Nutr. 124, 890-902. https://doi.org/10.1017/S0007114520001877 google scholar
  • Mahdhi, A., Chakroun, I., Espinosa-Ruiz, C., Messina, C.M., Arena, R., Majdoub, H., Santulli, A., Mzoughi, R., Esteban, M.A., 2020. Dietary administration effects of exopolysaccharide from potential probiotic strains on immune and antioxidant status and nutritional value of European sea bass (Dicentrarchus labrax L.). Res. Vet. Sci. 131, 51-58. https://doi.org/10.1016/j.rvsc.2020.04.008 google scholar
  • Makridis, P., Kokou, F., Bournakas, C., Papandroulakis, N., Sarropoulou, E., 2021. Isolation of phaeobacter sp. From larvae of atlantic bonito (Sarda sarda) in a mesocosmos unit, and its use for the rearing of european seabass larvae (Dicentrarchus labrax l.). Microorganisms 9, 1-13. https://doi.org/10.3390/microorganis-ms9010128 google scholar
  • Mohammadian, T., Nasirpour, M., Tabandeh, M.R., Heidary, A.A., Ghanei-Motlagh, R., Hosseini, S.S., 2019. Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish Shellfish Immunol. 86, 269-279. https://doi.org/10.1016/j.fsi.2018.11.052 google scholar
  • Monzon-Atienza, L., Bravo, J., Torrecillas, S., Montero, D., Canales, A.F.G. de, de la Banda, I.G., Galindo-Vil-legas, J., Ramos-Vivas, J., Acosta, F., 2021. Isolation and Characterization of a Bacillus velezensis D-18 Strain, as a Potential Probiotic in European Seabass Aquaculture. Probiotics Antimicrob. Proteins 13, 14041412. https://doi.org/10.1007/s12602-021-09782-8 google scholar
  • Ormsby, M.J., Grahame, E., Burchmore, R., Davies, R.L., 2019. Comparative bioinformatic and proteomic approaches to evaluate the outer membrane proteome of the fish pathogen Yersinia ruckeri. J. Proteomics 199, 135-147. https://doi.org/10.1016/j.jprot.2019.02.014 google scholar
  • Pan, C.-Y., Chen, J.-Y., Cheng, Y.-S., Chen, C.-Y., Ni, I.-H., Sheen, J.-F., Pan, Y.-L., Kuo, C.-M., 2007. Gene expression and localization of the epinecidin-1 antimicrobial peptide in the grouper (Epinephelus coioi-des), and its role in protecting fish against pathogenic infection. DNA Cell Biol. 26, 403-413. https://doi. org/10.1089/dna.2006.0564 google scholar
  • Pelusio, N.F., Rossi, B., Parma, L., Volpe, E., Ciulli, S., Piva, A., D’Amico, F., Scicchitano, D., Candela, M., Gatta, P.P., Bonaldo, A., Grilli, E., 2020. Effects of increasing dietary level of organic acids and nature-i-dentical compounds on growth, intestinal cytokine gene expression and gut microbiota of rainbow trout (Oncorhynchus mykiss) reared at normal and high temperature. Fish Shellfish Immunol. 107, 324-335. https://doi.org/10.1016/j.fsi.2020.10.021 google scholar
  • Qi, W., Vaughan, L., Katharios, P., Schlapbach, R., Seth-Smith, H.M.B., 2016. Host-associated genomic features of the novel uncultured intracellular pathogen Ca. Ichthyocystis revealed by direct sequencing of epitheli-ocysts. Genome Biol. Evol. 8, 1672-1689. https://doi.org/10.1093/gbe/evw111 google scholar
  • Qian, X., Ba, Y., Zhuang, Q., Zhong, G., 2014. RNA-seq technology and its application in fish transcriptomics. Omi. A J. Integr. Biol. 18, 98-110. https://doi.org/10.1089/omi.2013.0110 google scholar
  • Ranasinghe, C., Trivedi, S., Wijesundara, D.K., Jackson, R.J., 2014. IL-4 and IL-13 receptors: Roles in immu-nity and powerful vaccine adjuvants. Cytokine Growth Factor Rev. 25, 437-442. https://doi.org/10.1016/j. cytogfr.2014.07.010 google scholar
  • Richards, G.P., Watson, M.A., Madison, D., Soffer, N., Needleman, D.S., Soroka, D.S., Uknalis, J., Baranzoni, G.M., Church, K.M., Polson, S.W., Elston, R., Langdon, C., Sulakvelidze, A., 2021. Bacteriophages against Vibrio coralliilyticus and Vibrio tubiashii: Isolation, Characterization, and Remediation of Larval Oyster Mortalities. Appl. Environ. Microbiol. 87, 1-17. https://doi.org/10.1128/AEM.00008-21 google scholar
  • Sarropoulou, E., Sepulcre, P., Poisa-Beiro, L., Mulero, V., Meseguer, J., Figueras, A., Novoa, B., Terzoglou, V., Reinhardt, R., Magoulas, A., Kotoulas, G., 2009. Profiling of infection specific mRNA transcripts of the European seabass Dicentrarchus labrax. BMC Genomics 10, 1-18. https://doi.org/10.1186/1471-2164-10-157 google scholar
  • Scholz, F., Ruane, N.M., Morrissey, T., Marcos-Lopez, M., Mitchell, S., O’Connor, I., Mirimin, L., MacCarthy, E., Rodger, H.D., 2018. Piscine myocarditis virus detected in corkwing wrasse (Symphodus melops) and ballan wrasse (Labrus bergylta). J. Fish Dis. 41, 147-152. https://doi.org/10.1111/jfd.12661 google scholar
  • Schulz, P., Pajdak-Czaus, J., Robak, S., Dastych, J., Siwicki, A.K., 2019. Bacteriophage-based cocktail modulates selected immunological parameters and post-challenge survival of rainbow trout (Oncorhynchus mykiss). J. Fish Dis. 42, 1151-1160. https://doi.org/10.1111/jfd.13026 google scholar
  • Shaalan, M., El-Mahdy, M., Theiner, S., Dinhopl, N., El-Matbouli, M., Saleh, M., 2018. Silver nanoparticles: Their role as antibacterial agent against Aeromonas salmonicida subsp. salmonicida in rainbow trout (On-corhynchus mykiss). Res. Vet. Sci. 119, 196-204. https://doi.org/10.1016/j.rvsc.2018.06.019 google scholar
  • Shahi, N., Mallik, S.K., 2020. Emerging bacterial fish pathogen Lactococcus garvieae RTCLI04, isolated from rainbow trout (Oncorhynchus mykiss): Genomic features and comparative genomics. Microb. Pathog. 147, 104368. https://doi.org/10.1016/j.micpath.2020.104368 google scholar
  • Simo-Mirabet, P., Piazzon, M.C., Calduch-Giner, J.A., Ortiz, Â., Puyalto, M., Sitja-Bobadilla, A., Perez-Sanchez, J., 2017. Sodium salt medium-chain fatty acids and Bacillus-based probiotic strategies to improve growth and intestinal health of gilthead sea bream (Sparus aurata). PeerJ 2017, 1-27. https://doi.org/10.7717/ peerj.4001 google scholar
  • Stalin, N., Srinivasan, P., 2017. Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India. Vet. Microbiol. 207, 83-96. https://doi.org/10.1016/j.vetmic.2017.06.006 google scholar
  • Sundaray, J.K., Dixit, S., Rather, A., Rasal, K.D., Sahoo, L., 2022. Aquaculture omics: An update on the current status of research and data analysis. Mar. Genomics 64, 100967. https://doi.org/10.1016/j.mar-gen.2022.100967 google scholar
  • Taylor-Brown, A., Pillonel, T., Bridle, A., Qi, W., Bachmann, N.L., Miller, T.L., Greub, G., Nowak, B., Set-h-Smith, H.M.B., Vaughan, L., Polkinghorne, A., 2017. Culture-independent genomics of a novel chlamydial pathogen of fish provides new insight into host-specific adaptations utilized by these intracellular bacteria. Environ. Microbiol. 19, 1899-1913. https://doi.org/10.1111/1462-2920.13694 google scholar
  • Terzi, E., Kucukkosker, B., Bilen, S., Kenanoglu, O.N., Corum, O., Özbek, M., Parug, S.S., 2021. A novel herbal immunostimulant for rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. Fish Shellfish Immunol. 110, 55-66. https://doi.org/10.1016/j.fsi.2020.12.019 google scholar
  • Ting, C.H., Pan, C.Y., Chen, Y.C., Lin, Y.C., Chen, T.Y., Rajanbabu, V., Chen, J.Y., 2019. Impact of Tilapia hepcidin 2-3 dietary supplementation on the gut microbiota profile and immunomodulation in the grouper (Epinephelus lanceolatus). Sci. Rep. 9, 1-17. https://doi.org/10.1038/s41598-019-55509-9 google scholar
  • Turgay, E., Steinum, T.M., Colquhoun, D., Karataş, S., 2019. Environmental biofilm communities associated with early-stage common dentex (Dentex dentex) culture. J. Appl. Microbiol. 126, 1032-1043. https://doi. org/10.1111/jam.14205 google scholar
  • Turgay, E., Steinum, T.M., Eryalçln, K.M., Yardlmcl, R.E., Karataş, S., 2020. The influence of diet on the mic-robiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture. FEMS Microbiol. Lett. 367, 1-9. https://doi.org/10.1093/femsle/fnaa020 google scholar
  • Wang, C., Hong, T., Cui, P., Wang, J., Xia, J., 2021. Antimicrobial peptides towards clinical application : Delivery and formulation. Adv. Drug Deliv. Rev. 175, 113818. https://doi.org/10.1016/j.addr.2021.05.028 google scholar
  • Wang, D., Sun, S., Li, S., Lu, T., Shi, D., 2021. Transcriptome profiling of immune response to Yersinia ruc-keri in spleen of rainbow trout (Oncorhynchus mykiss). BMC Genomics 22, 1-11. https://doi.org/10.1186/ s12864-021-07611-4 google scholar
  • Woods, C., Woolley, L., Partridge, G., Chen, M., Haney, E.F., Hancock, R.E.W., Buller, N., Currie, A., 2022. Assessing the Activity of Antimicrobial Peptides Against Common Marine Bacteria Located in Rotifer (Brachionus plicatilis) Cultures. Probiotics Antimicrob. Proteins 14, 620-629. https://doi.org/10.1007/ s12602-022-09928-2 google scholar
  • Yu, G., Baeder, D.Y., Regoes, R.R., Rolff, J., 2018. Predicting drug resistance evolution: Insights from anti-microbial peptides and antibiotics. Proc. R. Soc. B Biol. Sci. 285. https://doi.org/10.1098/rspb.2017.2687 google scholar
  • Yu, G., Baeder, D.Y., Regoes, R.R., Rolff, J., 2016. Combination effects of antimicrobial peptides. Antimicrob. Agents Chemother. 60, 1717-1724. https://doi.org/10.1128/AAC.02434-15 google scholar
  • Zorriehzahra, M.J., Delshad, S.T., Adel, M., Tiwari, R., Karthik, K., Dhama, K., Lazado, C.C., 2016. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet. Q. 36, 228-241. https://doi.org/10.1080/01652176.2016.1172132 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.