CHAPTER


DOI :10.26650/B/ET07.2022.012.10   IUP :10.26650/B/ET07.2022.012.10    Full Text (PDF)

Cornea Biomechanics: Modeling Deformation Dynamics

Uğur SağlamFerhat TaşErdinç Ulaş Saka

The cornea is shaped through the mechanical balance between the intraocular pressure (IOP) and the corneal self-load, which changes through swelling by imbibing eye fluid. Cornea is a soft tissue that can easily undergo deformations that may result in local collapse, swelling, or axial displacement. The use of mechanical-based methods enabling the determination of the resulting geometries related to the physical processes causing deformation can make radical contributions to modeling studies in many aspects, unlike the studies developed for soft tissue deformation frequently encountered in the literature, that only use geometricbased methods. The fundamental motivation of this study on corneal deformation is to determine the corneal geometry, which was initially considered to have a perfect geometry, and the forces acting on the cornea that create the mechanical equilibrium state, and to perform a mechanical analysis of the processes that cause the formation of geometric deformation and defective corneal geometry. The shell theory is used to explain the deformation of solid bodies and the related torsion, bending and membrane theories form the basis of the model developed in this study for the mechanical analysis of corneal deformation and the determination of its associated geometric changes. This theory permits the methodological knowledge in this field to be used as an effective tool that can be used to determine the deformation dynamics of tissues. It can also be used to create predictions for studies on developing diagnostic and therapeutic techniques, as well as to allow technologies to be carried out.


DOI :10.26650/B/ET07.2022.012.10   IUP :10.26650/B/ET07.2022.012.10    Full Text (PDF)

Kornea Biyomekaniği: Deformasyon Dinamiğinin Modellenmesi

Uğur SağlamFerhat TaşErdinç Ulaş Saka

Kornea, göz içi basınç (GİB) ve göz sıvısının emilimi sonucunda meydana gelen şişme (swelling) ile değişen korneal öz yükün mekanik dengesi sonucunda şekillenen; yerel çökme, şişme ya da eksenel kayma ile sonuçlanabilen deformasyonlara da kolayca uğrayabilen yumuşak bir dokudur. Yumuşak doku deformasyonuna yönelik geliştirilen ve literatürde sıkça karşılaşılan salt geometrik temelli metotların kullanıldığı çalışmaların aksine, deformasyona sebep olan fiziksel süreçler ile ilintili sonuç geometrilerinin belirlenmesini sağlayacak mekanik temelli metotların kullanılmasının modelleme çalışmalarına pek çok bakımdan radikal katkılar sağlayacağı açıktır. Başlangıçta kusursuz geometriye sahip olduğu kabul edilen bir kornea geometrisi ve bu kornea üzerine etki edip mekanik denge durumunu oluşturan kuvvetlerin tespit edilmesi ile geometrik deformasyonun meydana gelmesine ve bozuk kornea geometrisinin oluşmasına sebep olan süreçlerin mekanik analizlerinin yapılması kornea deformasyonuna yönelik yapılan çalışmalarımızın temel motivasyonunu oluşturmaktadır. Katı cisimlerin deformasyonunu açıklamakta kullanılan kabuk teorisi (shell theory) ve ilgili burulma, eğilme ve membran teorileri, kornea deformasyonunun mekanik analizi ve ilintili geometrik değişimlerinin belirlenmesine yönelik geliştirdiğimiz modelin temelini oluşturmakta; bu alandaki metodolojik birikimi dokuların deformasyon dinamiğini belirlemekte kullanılabilecek etkili bir araç haline getirmekte; teşhis ve tedavi amaçlı teknik ve teknolojilerin geliştirilmesine yönelik çalışmaların da yapılabileceğine dair öngörüler oluşturmaktadır.



References

  • Boyce, B. L., Grazier, J. M., Jones, R. E., & Nguyen, T. D. (2008). Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials, 29(28), 3896-3904. google scholar
  • Bruce, A. S., & Bohl, G. N. (1992). Topographic modelling system in the assessment of keratoconus. Clinical and Experimental Optometry, 75(4), 149-152. google scholar
  • Cavas-Martinez, F., Bataille, L., Fernandez-Pacheco, D. G., Canavate, F. J., & Alio, J. L. (2017). A new approach to keratoconus detection based on corneal morphogeometric analysis. PLoS One, 12(9), e0184569. google scholar
  • Eisenhart, L. P. (1902). Infinitesimal Deformation of Surfaces. American Journal of Mathematics, 24(2), 173204. google scholar
  • Griffiths, G. W., & Schiesser, W. E. (2016). Analysis of cornea curvature using radial basis functions-Part I: Methodology. Computers in biology and medicine, 77, 274-284. google scholar
  • Karamichos, D., Zareian, R., Guo, X., Hutcheon, A. E., Ruberti, J. W., & Zieske, J. D. (2012). Novel in vitro model for keratoconus disease. Journal of functional biomaterials, 3(4), 760-775. google scholar
  • Komai, Y., & Ushiki, T. (1991). The three-dimensional organization of collagen fibrils in the human cornea and sclera. Investigative ophthalmology & visual science, 32(8), 2244-2258. google scholar
  • Kostyuk, O., Nalovina, O., Mubard, T. M., Regini, J. W., Meek, K. M., Quantock, A. J., ... & Hodson, S. A. (2002). Transparency of the bovine corneal stroma at physiological hydration and its dependence on concentration of the ambient anion. The Journal of physiology, 543(2), 633-642. google scholar
  • Kotecha, A. (2007). What biomechanical properties of the cornea are relevant for the clinician?. Survey of ophthalmology, 52(6), S109-S114. google scholar
  • Levin, L. A., & Albert, D. M. (2010). Ocular Disease: Mechanisms and Management E-Book. Elsevier Health Sciences. google scholar
  • Lipschutz, M. M. (1969). Schaum’s outline of theory and problems of differential geometry. McGraw-Hill. google scholar
  • Loret, B., & Simoes, F. M. (2017). Biomechanical aspects of soft tissues. Crc Press. google scholar
  • Meek, K. M., & Knupp, C. (2015). Corneal structure and transparency. Progress in retinal and eye research, 49, 1-16. google scholar
  • Mow, C. C. (1968). A theoretical model of the cornea for use in studies of tonometry. The bulletin of mathematical biophysics, 30(3), 437-453. google scholar
  • Nguyen, T. D., & Boyce, B. L. (2011). An inverse finite element method for determining the anisotropic properties of the cornea. Biomechanics and modeling in mechanobiology, 10(3), 323-337. google scholar
  • Pandolfi, A., & Manganiello, F. (2006). A model for the human cornea: constitutive formulation and numerical analysis. Biomechanics and modeling in mechanobiology, 5(4), 237-246. google scholar
  • Pinero, D. P., Alio, J. L., Teus, M. A., Barraquer, R. I., & Uceda-Montanes, A. (2010). Modeling the intracorneal ring segment effect in keratoconus using refractive, keratometric, and corneal aberrometric data. Investigative ophthalmology & visual science, 51(11), 5583-5591. google scholar
  • Ptociniczak, L., Griffiths, G. W., & Schiesser, W. E. (2014). ODE/PDE analysis of corneal curvature. Computers in Biology and Medicine, 53, 30-41. google scholar
  • Roy, A. S., & Dupps, W. J. (2011). Patient-specific computational modeling of keratoconus progression and differential responses to collagen cross-linking. Investigative ophthalmology & visual science, 52(12), 9174-9187. google scholar
  • Schwartz, N. J., Mackay, R. S., & Sackman, J. L. (1966). A theoretical and experimental study of the mechanical behavior of the cornea with application to the measurement of intraocular pressure. The bulletin of mathematical biophysics, 28(4), 585-643. google scholar
  • Shin, T. J., Vito, R. P., Johnson, L. W., & McCarey, B. E. (1997). The distribution of strain in the human cornea. Journal of Biomechanics, 30(5), 497-503. google scholar
  • Ugural, A. C. (2009). Stresses in beams, plates, and shells. CRC press. google scholar
  • Ventsel, E., Krauthammer, T., & Carrera, E. J. A. M. R. (2002). Thin plates and shells: theory, analysis, and applications. Appl. Mech. Rev., 55(4), B72-B73. google scholar
  • Zingoni A. (2017). Shell structures in civil and mechanical engineering: Theory and analysis. ICE Publishing. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.