CHAPTER


DOI :10.26650/B/ET07.2022.012.05   IUP :10.26650/B/ET07.2022.012.05    Full Text (PDF)

Medical Ontologies

Dilek YarganAziz Fevzi Zambak

Medicine is a complex discipline that bears on manifold disciplines in the life sciences. Therefore, data sources for medical informatics are not limited to health and hospital records, and medical literature; these sources include gene studies, clinical reports, pharmacology studies, and other studies in the life sciences. For this reason, the primary issue of medical informatics is the integration of data, the volume of which is increasing day by day, and which is derived from a wide variety of sources and produced in various formats. Data integration requires a lingua franca, i.e., data standardization, in medical informatics. Moreover, it should be ensured that the data are machinereadable so that the conditions of machine inferencing, which enables scientific discoveries, are met in order to establish data-driven endeavors in medicine. Thus, with the support of various technologies, information retrieval and extraction, knowledge management, and knowledge production can be undertaken in medical and clinical studies. Ontologies used in information systems for decades promise to achieve these five goals of medical informatics: data standardization, data integration, information retrieval and extraction, knowledge management, and scientific knowledge production. Medical ontologies are effective technologies that are widely used in many different applications in biomedical information and knowledge management systems. They are employed to represent biomedical knowledge with reference to reality in computable formats. In order to better understand medical ontologies, it is necessary to understand ontologies as philosophy, ontologies as science, and ontologies as technique. Furthermore, their contribution to the development of medical ontologies should be appreciated: An understanding of ontology as philosophy is necessary for the correct understanding of important categories in medicine and the correct classification of reality related to medicine. Medical ontologies as science, on the other hand, should be up-to-date and benefit from the wisdom of the philosophy of medicine. Enriched theoretically by these two types of ontologies, medical ontologies, which are ontologies as technique used in medical informatics, are obtained at last. 


DOI :10.26650/B/ET07.2022.012.05   IUP :10.26650/B/ET07.2022.012.05    Full Text (PDF)

Medikal Ontolojiler

Dilek YarganAziz Fevzi Zambak

Tıp, yaşam bilimlerindeki birçok bilim dalı ile ilişkide olan karmaşık bir disiplindir. Bu nedenle, tıp bilişiminin veri kaynaklarını sadece sağlık ve hastane kayıtları, tıp alanyazını ile sınırlı değildir; bu kaynaklar gen çalışmalarını, klinik deney raporlarını, farmakoloji çalışmalarını ve yaşam bilimlerindeki daha başka çalışmaları da içerir. Bu nedenle, tıp bilişiminin başat meselesi hacmi her geçen gün artan, çok çeşitli kaynaklardan gelen ve çeşitli biçimlerde üretilen verilerin bütünleştirilmesidir. Veri bütünleştirilmesi ise tıp bilişiminde bir lingua francaya, yani veri standardizasyonuna ihtiyaç duyar. Bunun yanında, çağımızın veri güdümlü bilim yapma biçimini tıp dünyasında kurmak için bilimsel keşifleri mümkün kılacak çıkarımların sağlanabilme koşulu olan verilerin makine okuyabilir olmaları sağlanmalıdır. Bu sayede, çeşitli teknolojilerin desteğiyle enformasyon erişimi ve çıkarımı, bilgi yönetimi ve bilimsel bilgi üretimi makine destekli tıp çalışmalarında görülebilir. Enformasyon sistemlerinde on yıllardır kullanılan ontolojiler tıp bilişiminin bu beş hedefini—veri standardizasyonu, veri bütünleştirme, enformasyon erişimi ve çıkarımı, bilgi yönetimi, bilimsel bilgi üretimi—sağlamayı vadetmektedirler. Medikal ontolojiler, medikal öneme sahip nesnelerin, niteliklerin, süreçlerin ve bunlar arasındaki ilişkilerin gerçekliğe referansı ile biyomedikal bilgiyi makinelerde berimsel yapılarda temsil ederek biyomedikal enformasyon ve bilgi yönetiminde çok sayıda farklı uygulamada yaygın kullanılan etkili teknolojilerdir. Medikal ontolojileri daha iyi anlamak için felsefe olarak ontolojiler, bilim olarak ontolojiler ve teknik olarak ontolojilerin neler olduğu bilinmeli ve medikal ontolojilerin gelişimlerindeki katkılarına dikkat edilmelidir: Felsefe olarak ontolojiler tıpta önemli kategorilerin doğru kavranması ve gerçekliğin doğru sınıflandırılması için bilinmelidir. Bilim olarak ontoloji şeklinde üretilen medikal ontolojiler ise güncelliklerini korumalı ve tıp felsefesinden beslenmelidir. Bu iki çeşit ontoloji ile kuramsal olarak zenginleştikten sonra tıp bilişiminde faydalanılacak teknik olarak ontoloji olan medikal ontolojiler elde edilir. 



References

  • Arroyo, S. & Siorpaes, K. (2014). Ontologies and ontology languages. S. Miguel-angel (Ed.), In Handbook of Metadata, Semantics and Ontologies (pp. 141-155). World Scientific. google scholar
  • Baclawski, K. & Niu, T. (2006). Ontologies for bioinformatics. MIT Press. google scholar
  • Bernasconi, A. & Masseroli M. (2019). Biological and Medical Ontologies: Disease Ontology (DO). S. Ranganathan, M. Gribskov, K. Nakai & C. Schonbach (Ed.), In Encyclopedia of bioinformatics and computational biology: ABC of Bioinformatics Vol I (pp. 838-847). Elsevier. google scholar
  • Blanco, E. (2014). Metadata and ontologies for bioinformatics. S. Miguel-angel (Ed.), In Handbook of Metadata, Semantics and Ontologies (pp. 297-314). World Scientific. google scholar
  • Bodenreider O. (2004). The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Research, 32 (Database issue): D267-270. doi: 10.1093/nar/gkh061. PubMed PMID: 14681409; PubMed Central PMCID: PMC308795. google scholar
  • Bodenreider, O. & Burgun, A. (2005). Biomedical ontologies. H. Chen, S. S. Fuller, C. Friedman & W. Hersh (Ed.), In Medical informatics: Knowledge management and data mining in biomedicine (pp. 211-236). Springer: Boston, MA. google scholar
  • Bodenreider, O. & Stevens, R. (2006). Bio-ontologies: current trends and future directions. Briefings in bioinformatics, 7(3), 256-274. google scholar
  • Bürger, T., Simperl, E. & Tempich, C. (2014). Methodologies for the creation of semantic data. S. Miguel-angel (Ed.), In Handbook of Metadata, Semantics and Ontologies (pp. 185-215). World Scientific. google scholar
  • Chen, H., Fuller, S. S., Friedman, C. & Hersh, W. (2005). Knowledge management, data mining, and text mining in medical informatics. H. Chen, S. S. Fuller, C. Friedman & W. Hersh (Ed.), In Medical informatics: Knowledge management and data mining in biomedicine (pp. 3-33). Springer: Boston, MA. google scholar
  • Chute, C. G. (2005). Medical concept representation H. Chen, S. S. Fuller, C. Friedman & W. Hersh (Ed.), In Medical informatics: Knowledge management and data mining in biomedicine (pp. 163-182). Springer: Boston, MA. google scholar
  • Cimino, J. J. & Zhu, X. (2006). The practical impact of ontologies on biomedical informatics. Methods of Information in Medicine, 45(1), 124-135. google scholar
  • Colombo, G., Merico, D. & Gündel, M. (2014). Metadata and ontologies for health. S. Miguel-angel (Ed.), In Handbook ofMetadata, Semantics and Ontologies (pp. 243-278). World Scientific. google scholar
  • Corcho, O., Fernandez-Lopez, M. & Gomez-Pérez, A. (2003). Methodologies, tools and languages for building ontologies. Where is their meeting point?. Data & knowledge engineering, 46(1), 41-64. google scholar
  • Denaxas, S. C. (2017). Integrating bio-ontologies and controlled clinical terminologies: from base pairs to bedside phenotypes. C. Dessimoz & N. Skunca (Ed.), In The Gene Ontology Handbook (pp. 275-287). Humana Press: New York. google scholar
  • Disease Ontology, Retrieved May 5, 2020, from https://disease-ontology.org. google scholar
  • Fonseca, F. & Martin, J. (2007). Learning the differences between ontologies and conceptual schemas through ontology-driven information systems. Journal of the Association for Information Systems, 8(2), 4. doi: 10.17705/1jais.00114. google scholar
  • Gaudet, P. (2018). The Gene Ontology. S. Ranganathan, K. Nakai & C. Schonbach (Ed.), In Encyclopedia of bioinformatics and computational biology: ABC of Bioinformatics Vol II (pp. 1-7). Elsevier. doi:10.1016/ B978-0-12-809633-8.20500-1. google scholar
  • Gibson, A. & Stevens, R. (2009). Introduction to Ontologies. M. Popescu & D. Xu (Ed.), In Data mining in biomedicine using ontologies (pp. 1-21). Artech House. google scholar
  • Guzzi, P. H. (2018). Ontology in Bioinformatics. S. Ranganathan, K. Nakai & C. Schonbach (Ed.), In Encyclopedia of bioinformatics and computational biology: ABC of Bioinformatics Vol I (pp. 809-812). Elsevier. doi:10.1016/B978-0-12-809633-8.20490-1. google scholar
  • Haring, E. van der. OpenGALEN Mission Statement. Retrieved June 1, 2020, from http://www.opengalen.org. google scholar
  • Hastings, J. (2017). Primer on ontologies. C. Dessimoz & N. Skunca (Ed.), In The Gene Ontology Handbook (pp. 3-13). Humana Press: New York. google scholar
  • Herre, H. (2010). The Ontology of Medical Terminological Systems: Towards the Next Generation of Medical Ontologies. R. Poli, M. Healy & A. Kameas (Ed.), In Theory and applications of ontology: Computer applications (pp. 373-391). Springer, Dordrecht. google scholar
  • Hersh, W. R. (1996). Information retrieval: a health and biomedical perspective. Springer Science & Business Media. google scholar
  • Hersh, W. R. (2005). Information retrieval and digital libraries. H. Chen, S. S. Fuller, C. Friedman & W. Hersh (Ed.), In Medical informatics: Knowledge management and data mining in biomedicine (pp. 238-275). Springer: Boston, MA. google scholar
  • Kelso, J., Hoehndorf, R. & Prüfer, K. (2010). Ontologies in biology. R. Poli, M. Healy & A. Kameas (Ed.), In Theory and applications of ontology: Computer applications (pp. 347-371). Springer, Dordrecht. google scholar
  • Kumar, A., & Smith, B. (2004). Enhancing GO for the sake of clinical bioinformatics. Retrieved from http:// ontology.buffalo.edu/bio/ISMB/ISMB2004_Bio-ontology.pdf. google scholar
  • Masseroli, M. (2018a). Biological and medical ontologies: Introduction. S. Ranganathan, K. Nakai & C. Schonbach (Ed.), In Encyclopedia of bioinformatics and computational biology: ABC of Bioinformatics Vol I (pp. 813-822). Elsevier. doi:10.1016/B978-0-12-809633-8.20395-6. google scholar
  • Masseroli, M. (2018b). Biological and medical ontologies: GO and GOA. S. Ranganathan, K. Nakai & C. Schonbach (Ed.), In Encyclopedia of bioinformatics and computational biology: ABC of Bioinformatics Vol I (pp. 823-832). Elsevier. doi:10.1016/B978-0-12-809633-8.20491-3. google scholar
  • McCray, A. T. (2003). An upper-level ontology for the biomedical domain. Comparative and Functional Genomics, 4(1), 80-84. google scholar
  • Menelas Project Top-Level Ontology. NCBO BioPortal. (2018). Retrieved June 1, 2020, from https://bioportal. bioontology.org/ontologies/TOP-MENELAS. google scholar
  • MeSH on Demand, “Behcet Syndrome”, Retrieved April 13, 2020, from https://meshb.nlm.nih.gov/MeSHon-Demand. google scholar
  • Montani, S. & Bellazzi, R. (2002). Supporting decisions in medical applications: The knowledge management perspective. International journal of medical informatics, 68(1-3), 79-90. google scholar
  • Nédellec, C., Nazarenko, A. & Bossy, R. (2009). Information extraction. S. Staab & R. Studer (Ed.), In Handbook on ontologies (pp. 663-685). Springer: Berlin, Heidelberg. google scholar
  • Peleg, M., Yeh, I. & Altman, R. B. (2002). Modelling biological processes using workflow and petri net models. Bioinformatics, 18(6), 825-837. google scholar
  • Popescu, M., Havens, T., Keller, J. & Bezdek, J. (2009). Clustering with Ontologies. M. Popescu & D. Xu (Ed.), In Data mining in biomedicine using ontologies (pp. 45-62). Artech House. google scholar
  • Racunas, S. A., Shah, N. H., Albert, I. & Fedoroff, N. V. (2004). HyBrow: a prototype system for computer-aided hypothesis evaluation. Bioinformatics, 20 (Suppl_1), i257-i264. google scholar
  • Rector, A. L., Rogers, J. E., Zanstra, P. E. & Haring, E. van der (2003). OpenGALEN: Open source medical terminology and tools. In AMIA Annual Symposium Proceedings (p. 982). American Medical Informatics Association. google scholar
  • Rosse, C. & Mejino, J. L. V. (2003). A reference ontology for biomedical informatics: The Foundational Model of Anatomy. Journal of Biomedical Informatics, 36(6), 478-500. google scholar
  • Sadegh-Zadeh, K. (2012). Handbook of analytic philosophy of medicine, Philosophy and Medicine Series, Vol. 113, Springer: Dordrecht, Heidelberg, London, New York. google scholar
  • Schriml, L. M., Mitraka, E., Munro, J., Tauber, B., Schor, M., Nickle, L., .. Greene, C. (2018). Human Disease Ontology 2018 update: Classification, content and workflow expansion. Nucleic Acids Research, 47(D1), D955-D962. google scholar
  • Schulze-Kremer, S. (2002). Ontologies for molecular biology and bioinformatics. In silico biology, 2(3), 179193. google scholar
  • Shah, N. & Musen, M. (2009). Ontologies for formal representation of biological systems. S. Staab & R. Studer (Ed.), In Handbook on ontologies (pp. 445-461). Springer: Berlin, Heidelberg. google scholar
  • Shrager, J., Waldinger, R., Stickel, M. & Massar, J. P. (2007). Deductive biocomputing. PloS one, 2(4). google scholar
  • Stanescu, L., Burdescu, D. D., Brezovan, M. & Mihai, C. G. (2011). Creating new medical ontologies for image annotation: a case study. Springer Science & Business Media. google scholar
  • Stevens, R. & Lord, P. (2009). Application of ontologies in bioinformatics. S. Staab & R. Studer (Ed.), In Handbook on ontologies (pp. 735-756). Springer: Berlin, Heidelberg. google scholar
  • Tartir, S., Arpinar, I. B. & Sheth, A. P. (2010). Ontological evaluation and validation. R. Poli, M. Healy & A. Kameas (Ed.), In Theory and applications of ontology: Computer applications (pp. 115-130). Springer, Dordrecht. google scholar
  • Vrandecic, D. (2009). Ontology evaluation. S. Staab & R. Studer (Ed.), In Handbook on ontologies (pp.293-313). Springer: Berlin, Heidelberg. google scholar
  • Yargan, D. (2019). Formel Ontolojiler ve Betimleyici Mantıklar [Formal Ontologies and Descriptive Logics]. Felsefe Arkivi- Archives of Philosophy, 51: 271-281. https://doi.org/10.26650/arcp2019-5119. google scholar
  • Yargan, D. (2020). Üst Düzey Ontoloji İnşasındaki Felsefi Yaklaşımlar [Philosophical Aspects of Building Upper-Level Ontologies]. Kilikya Journal of Philosophy, (1), 32-50. google scholar
  • Yoo, I. & Phillips, W. (2009). Ontology Applications in Text Mining. M. Popescu & D. Xu (Ed.), In Data mining in biomedicine using ontologies (pp. 219-247). Artech House. google scholar
  • Zweigenbaum, P. M. (1995). Coding and information retrieval from natural language patient discharge summaries. M.J. Ladeira, M.F. Laires & H.I. Christensen (Ed.), In Health in the New Communication Age (pp. 82-89). IOS Press, Amsterdam. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.