CHAPTER


DOI :10.26650/B/ET07.2022.012.12   IUP :10.26650/B/ET07.2022.012.12    Full Text (PDF)

Use of Haptic Technology in Medicine

Damla TopallıNergiz Ercil Çağıltay

Touch is an important sense of humans from several perspectives; however, its importance for clinical practice is even critical. During medical education programs, to improve the skills of the medical experts on specific tasks by considering the touch feelings need to be provided. To create technology-enhanced medical education programs, nowadays haptic technology is providing several opportunities including the feeling of touch as well. In this chapter, the haptic technologies are summarized and the possible implementations of the haptic technologies for medical purposes are also reviewed from the literature. Current haptic technologies and their use in medical education are summarized. Additionally, the data collected from haptic devices is described by indicating different metrics having meaning for educational purposes. Some data analyses approach by using these metrics are also summarized. This chapter is expected to help educators in the medical field to better implement haptic technologies into their educational environments.


DOI :10.26650/B/ET07.2022.012.12   IUP :10.26650/B/ET07.2022.012.12    Full Text (PDF)

Tıpta Dokunsal Teknoloji Kullanımı

Damla TopallıNergiz Ercil Çağıltay

Dokunma duyusu, birçok açıdan insanın önemli bir duygusudur, ancak klinik uygulamalar söz konusu olduğunda bu önem kritik bir hal alır. Tıp eğitimi programlarında, tıp uzmanlarının belirli görevlerde becerilerinin geliştirilmesi için dokunma hissinin de dikkate alınması gerekmektedir. Teknolojiyle güçlendirilmiş tıp eğitimi programları oluşturmak için günümüzde dokunsal (haptic) teknoloji, dokunma hissi de dâhil olmak üzere çeşitli fırsatlar sunmaktadır. Bu bölümde dokunsal teknolojiler özetlenmiş ve dokunsal teknolojilerin tıbbi amaçlar için olası uygulamaları alanyazın incelenerek sunulmuştur. Güncel dokunsal teknolojiler ve bu teknolojilerin tıp eğitiminde kullanımları özetlenmiştir. Ayrıca dokunsal cihazlardan toplanan veriler, eğitim amaçlı anlam ifade eden farklı metrikler belirtilerek açıklanmıştır. Bu metrikleri kullanan bazı veri analiz yaklaşımları da özetlenmiştir. Bu bölümün tıp alanındaki eğitimcilere dokunsal teknolojileri eğitim ortamlarına daha iyi uyarlayabilmeleri konusunda yardımcı olması beklenmektedir.



References

  • 3D Systems. (2021). https://www.3dsystems.com/haptics-devices/touch/features google scholar
  • Alaraj, A., Luciano, C. J., Bailey, D. P., Elsenousi, A., Roitberg, B. Z., Bernardo, A., Banerjee, P. P., & Charbel, F. T. (2015). Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Operative Neurosurgery, 11 (1), 52-58. google scholar
  • Alhalabi, M. O., Daniulaitis, V., Kawasaki, H., & Hori, T. (2005). Medical training simulation for palpation of subsurface tumor using HIRO. First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference, 623-624. google scholar
  • Allen, B., Nistor, V., Dutson, E., Carman, G., Lewis, C., & Faloutsos, P. (2010). Support vector machines improve the accuracy of evaluation for the performance of laparoscopic training tasks. Surgical Endoscopy, 24(1), 170-178. google scholar
  • Ayoub, A., & Pulijala, Y. (2019). The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery. BMC Oral Health, 19(1), 1-8. google scholar
  • Balaniuk, R., Burbagli, F., & Sailsbury, J. K. (2003). Video: Multi-Point Haptic Interaction for Breast Palpation Exam. google scholar
  • Barsom, E. Z., Graafland, M., & Schijven, M. P. (2016). Systematic review on the effectiveness of augmented reality applications in medical training. Surgical Endoscopy, 30(10), 4174-4183. google scholar
  • Baur, C., Guzzoni, D., & Georg, O. (1998). VIRGY: a virtual reality and force feedback based endoscopic surgery simulator. Medicine Meets Virtual Reality, 110-116. google scholar
  • Bayona, S., Fernandez-Arroyo, J. M., Martin, I., & Bayona, P. (2008). Assessment study of insight ARTHRO VR® arthroscopy virtual training simulator: face, content, and construct validities. Journal of Robotic Surgery, 2(3), 151-158. google scholar
  • Besnea, F., CISMARU, S. I., TRASCULESCU, A. C., RESCEANU, I. C., Ionescu, M., Hamdan, H., & BIZDO-ACA, N. G. (2021). Integration of a haptic glove in a virtual reality-based environment for medical training and procedures. ACTA TECHNICA NAPOCENSIS-Series: APPLIED MATHEMATICS, MECHANICS, and ENGINEERING, 64(1-S2). google scholar
  • Burdea, G., Patounakis, G., Popescu, V., & Weiss, R. E. (1999). Virtual reality-based training for the diagnosis of prostate cancer. IEEE Transactions on Biomedical Engineering, 46(10), 1253-1260. google scholar
  • Burt, D. E. (1995). Virtual reality in anaesthesia. British Journal of Anaesthesia, 75(4), 472-480. google scholar
  • Buzink, S. N., Koch, A. D., Heemskerk, J., Botden, S., Goossens, R. H. M., De Ridder, H., Schoon, E. J., & Jakimowicz, J. J. (2007). Acquiring basic endoscopy skills by training on the GI Mentor II. Surgical Endoscopy, 21(11), 1996-2003. google scholar
  • Cagiltay, N. E., Ozcelik, E., Isikay, I., Hanalioglu, S., Suslu, A. E., Yucel, T., & Berker, M. (2019). The effect of training, used-hand, and experience on endoscopic surgery skills in an educational computer-based simulation environment (ECE) for endoneurosurgery training. Surgical Innovation, 26(6), 725-737. google scholar
  • Cannon, W. D., Eckhoff, D. G., Garrett Jr, W. E., Hunter, R. E., & Sweeney, H. J. (2006). Report of a group developing a virtual reality simulator for arthroscopic surgery of the knee joint. Clinical Orthopaedics and Related Research®, 442, 21-29. google scholar
  • Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., & Ivkovic, M. (2011). Augmented reality technologies, systems and applications. Multimedia Tools and Applications, 51(1), 341-377. google scholar
  • Cecil, J., Ramanathan, P., Rahneshin, V., Prakash, A., & Pirela-Cruz, M. (2013). Collaborative virtual environments for orthopedic surgery. 2013 IEEE International Conference on Automation Science and Engineering (CASE), 133-137. google scholar
  • Chen, H., Wu, W., Sun, H., & Heng, P. (2007). Dynamic touch-enabled virtual palpation. Computer Animation and Virtual Worlds, 18(4-5), 339-348. google scholar
  • Chen, X., Lin, Y., Wang, C., Shen, G., & Wang, X. (2012). A virtual training system using a force feedback haptic device for oral implantology. In Transactions on Edutainment VIII (pp. 232-240). Springer. google scholar
  • Chen, Y., & He, X. (2013). Haptic simulation of bone drilling based on hybrid 3D part representation. 2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 78-81. google scholar
  • Chmarra, M. K., Grimbergen, C. A., & Dankelman, J. (2007). Systems for tracking minimally invasive surgical instruments. Minimally Invasive Therapy & Allied Technologies, 16(6), 328-340. google scholar
  • Chmarra, M. K., Klein, S., de Winter, J. C. F., Jansen, F.-W., & Dankelman, J. (2010). Objective classification of residents based on their psychomotor laparoscopic skills. Surgical Endoscopy, 24(5), 1031-1039. google scholar
  • Chui, C.-K., Ong, J. S. K., Lian, Z.-Y., Wang, Z., Teo, J., Zhang, J., Yan, C.-H., Ong, S.-H., Wang, S.-C., & Wong, H.-K. (2006). Haptics in computer-mediated simulation: Training in vertebroplasty surgery. Simulation & Gaming, 37(4), 438-451. google scholar
  • Coles, T., John, N. W., Gould, D. A., & Caldwell, D. G. (2009). Haptic palpation for the femoral pulse in virtual interventional radiology. 2009 Second International Conferences on Advances in Computer-Human Interactions, 193-198. google scholar
  • Coles, T. R., John, N. W., Gould, D., & Caldwell, D. G. (2011). Integrating haptics with augmented reality in a femoral palpation and needle insertion training simulation. IEEE Transactions on Haptics, 4(3), 199-209. google scholar
  • Coles, T. R., Meglan, D., & John, N. W. (2010). The role of haptics in medical training simulators: A survey of the state of the art. IEEE Transactions on Haptics, 4(1), 51-66. google scholar
  • Correa, C. G., Nunes, F. L. S., Ranzini, E., Nakamura, R., & Tori, R. (2019). Haptic interaction for needle insertion training in medical applications: The state-of-the-art. Medical Engineering & Physics, 63, 6-25. google scholar
  • Cyber Glove System. (2021). http://www.cyberglovesystems.com/cybergrasp google scholar
  • Delorme, S., Laroche, D., DiRaddo, R., & Del Maestro, R. F. (2012). NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Operative Neurosurgery, 71(suppl_1), ons32-ons42. google scholar
  • Desbrun, M., Hovanessian, L., Jordan-Marsh, M., Narayanan, S., & Sukhatme, G. (2004). Haptic simulator for training in clinical breast examination. Nat. Sci. Found., CA, USA, NFS Rep. google scholar
  • Fang, T.-Y., Wang, P.-C., Liu, C.-H., Su, M.-C., & Yeh, S.-C. (2014). Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training. Computer Methods and Programs in Biomedicine, 113(2), 674-681. google scholar
  • Forest, C., Comas, O., Vaysiere, C., Soler, L., & Marescaux, J. (2007). Ultrasound and needle insertion simulators built on real patient-based data. Studies in Health Technology and Informatics, 125, 136-139. google scholar
  • Gaudina, M., Zappi, V., Bellanti, E., & Vercelli, G. (2013). elaparo4d: A step towards a physical training space for virtual video laparoscopic surgery. 2013 Seventh International Conference on Complex, Intelligent, and Software Intensive Systems, 611-616. google scholar
  • Goh, P. S., & Sandars, J. (2020). A vision of the use of technology in medical education after the COVID-19 pandemic. MedEdPublish, 1-8. google scholar
  • Halvorsen, F. H., Elle, O. J., & Fosse, E. (2005). Simulators in surgery. Minimally Invasive Therapy & Allied Technologies, 14(4-5), 214-223. google scholar
  • Haptics House. (2019). https://hapticshouse.com/collections/falcons/products/black-falcon-3d-touch-hapti-c-controller google scholar
  • Haption. (2021). https://www.haption.com/en/products-en.html google scholar
  • Heng, P.-A., Wong, T.-T., Yang, R., Chui, Y.-P., Xie, Y. M., Leung, K.-S., & Leung, P.-C. (2006). Intelligent inferencing and haptic simulation for Chinese acupuncture learning and training. IEEE Transactions on Information Technology in Biomedicine, 10(1), 28-41. google scholar
  • Hofstad, E. F., Väpenstad, C., Chmarra, M. K., Lang0, T., Kuhry, E., & Märvik, R. (2013). A study of psychomotor skills in minimally invasive surgery: what differentiates expert and nonexpert performance. Surgical Endoscopy, 27(3), 854-863. google scholar
  • Hui, Z., & Dang-xiao, W. (2010). Soft tissue simulation with bimanual force feedback. 2010 International Conference on Audio, Language and Image Processing, 903-907. google scholar
  • Iwata, N., Fujiwara, M., Kodera, Y., Tanaka, C., Ohashi, N., Nakayama, G., Koike, M., & Nakao, A. (2011). Construct validity of the LapVR virtual-reality surgical simulator. Surgical Endoscopy, 25(2), 423-428. google scholar
  • Jaskowski, J. M., Sobolewski, J., Wieczorkiewicz, M., Gehrke, M., & Herudzinska, M. (2020). Modern techniques of teaching bovine rectal palpation: opportunities, benefits and disadvantages of new educational devices. Medycyna Weterynaryjna, 76(01). google scholar
  • Khalifa, Y. M., Bogorad, D., Gibson, V., Peifer, J., & Nussbaum, J. (2006). Virtual reality in ophthalmology training. Survey of Ophthalmology, 51(3), 259-273. google scholar
  • Kühnapfel, U., Cakmak, H. K., & Maaß, H. (2000). Endoscopic surgery training using virtual reality and deformable tissue simulation. Computers & Graphics, 24(5), 671-682. google scholar
  • Langrana, N. A., Burdea, G., Lange, K., Gomez, D., & Deshpande, S. (1994). Dynamic force feedback in a virtual knee palpation. Artificial Intelligence in Medicine, 6(4), 321-333. google scholar
  • Langrana, N., Burdea, G., Ladeji, J., & Dinsmore, M. (1997). Human performance using virtual reality tumor palpation simulation. Computers & Graphics, 21(4), 451-458. google scholar
  • Lemos, J. D., Hernandez, A. M., & Soto-Romero, G. (2017). An instrumented glove to assess manual dexterity in simulation-based neurosurgical education. Sensors, 17(5), 988. google scholar
  • Li, M., Faragasso, A., Konstantinova, J., Aminzadeh, V., Seneviratne, L. D., Dasgupta, P., & Althoefer, K. (2014). A novel tumor localization method using haptic palpation based on soft tissue probing data. 2014 IEEE International Conference on Robotics and Automation (ICRA), 4188-4193. google scholar
  • Licona, A. R., Liu, F., Pinzon, D., Torabi, A., Boulanger, P., Leleve, A., Moreau, R., Pham, M. T., & Tavakoli, M. (2020). Applications of haptics in medicine. Haptic Interfaces for Accessibility, Health, and Enhanced Quality ofLife, 183-214. google scholar
  • Maass, H., Cakmak, H. K., Kuehnapfel, U. G., Trantakis, C., & Strauss, G. (2005). Providing more possibilities for haptic devices in surgery simulation. International Congress Series, 1281, 725-729. google scholar
  • Mabrey, J. D., Gillogly, S. D., Kasser, J. R., Sweeney, H. J., Zarins, B., Mevis, H., Garrett Jr, W. E., Poss, R., & Cannon, W. D. (2002). Virtual reality simulation of arthroscopy of the knee. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 18(6), 1-7. google scholar
  • McDonough, P. S., Tausch, T. J., Peterson, A. C., & Brand, T. C. (2011). Initial validation of the ProMIS surgical simulator as an objective measure of robotic task performance. Journal ofRobotic Surgery, 5(3), 195-199. google scholar
  • Meshram, S. N., & Sahu, A. M. (2014). Haptic science and technology in surgical simulation, medical training and military application. Int. J. Comput. Sci. Mob. Comput.(IJCSMC), 3(4), 156-165. google scholar
  • Michel, M. S., Knoll, T., Kohrmann, K. U., & Alken, P. (2002). The URO Mentor: development and evaluation of a new computer-based interactive training system for virtual life-like simulation of diagnostic and therapeutic endourological procedures. BJU International, 89(3), 174-177. google scholar
  • Moody, L., Arthur, J., Zivanovic, A., & Waterworth, A. (2003). A part-task approach to haptic knee arthroscopy training. In Medicine Meets Virtual Reality 11 (pp. 216-218). IOS Press. google scholar
  • Mor, A. (1998). Dof Force Feedback Using the 3dof Phantom and a 2dof Device,”. Third PHANTOM Users Group Workhop, 1643. google scholar
  • Moraes, R. M., Souza, D. F. L., Valdek, M. C. O., & Machado, L. S. (2006). A virtual reality based simulator for gynecologic exam training. 2006 7th International Conference on Information Technology Based Higher Education and Training, 786-791. google scholar
  • Norcini, J. J. (2005). Current perspectives in assessment: the assessment of performance at work. Medical Education, 39(9), 880-889. google scholar
  • Norcini, J. J., & McKinley, D. W. (2007). Assessment methods in medical education. Teaching and Teacher Education, 23(3), 239-250. google scholar
  • Ong, J. S.-K., Chui, C.-K., Wang, Z. L., Zhang, J., Teo, J. C.-M., Yan, C. H., Ong, S. H., Teo, C. L., & Teoh, S.-H. (2006). Biomechanical modeling of bone-needle interaction for haptic rendering in needle insertion simulation. 2006 9th International Conference on Control, Automation, Robotics and Vision, 1-6. google scholar
  • Oropesa, I., Sanchez-Gonzalez, P., Chmarra, M. K., Lamata, P., Perez-Rodriguez, R., Jansen, F. W., Dankelman, J., & Gomez, E. J. (2014). Supervised classification of psychomotor competence in minimally invasive surgery based on instruments motion analysis. Surgical Endoscopy, 28(2), 657-670. google scholar
  • Pantelidis, P., Chorti, A., Papagiouvanni, I., Paparoidamis, G., Drosos, C., Panagiotakopoulos, T., Lales, G., & Sideris, M. (2018). Virtual and augmented reality in medical education. Medical and Surgical Education-Past, Present and Future, 77-97. google scholar
  • Pepley, D., Yovanoff, M., Mirkin, K., Miller, S., Han, D., & Moore, J. (2016). A virtual reality haptic robotic simulator for central venous catheterization training. Journal ofMedical Devices, 10(3). google scholar
  • Persson, P. B., Cooper, M. D., Tibell, L. A. E., Ainsworth, S., Ynnerman, A., & Jonsson, B.-H. (2007). Designing and evaluating a haptic system for biomolecular education. 2007 IEEE Virtual Reality Conference, 171-178. google scholar
  • Pham, T., Roland, L., Benson, K. A., Webster, R. W., Gallagher, A. G., & Haluck, R. S. (2005). Smart tutor: a pilot study of a novel adaptive simulation environment. Studies in Health Technology and Informatics, 111, 385-389. google scholar
  • Punak, S., Kurenov, S., & Cance, W. (2011). Virtual interrupted suturing exercise with the Endo stitch suturing device. International Symposium on Visual Computing, 55-63. google scholar
  • Ra, J. B., Kwon, S. M., Kim, J. K., Yi, J., Kim, K. H., Park, H., Kyung, K.-U., Kwon, D.-S., Kang, H. S., & Kwon, S. T. (2002). Spine needle biopsy simulator using visual and force feedback. Computer Aided Surgery, 7(6), 353-363. google scholar
  • Rahman, H. A., Hua, T. P., Yap, R., Yeong, C. F., & Su, E. L. M. (2012). One degree-of-freedom haptic device. Procedia Engineering, 41, 326-332. google scholar
  • Reiley, C. E., Lin, H. C., Yuh, D. D., & Hager, G. D. (2011). Review of methods for objective surgical skill evaluation. Surgical Endoscopy, 25(2), 356-366. google scholar
  • Samora, J. B., Bashook, P., Jones, A., Milbrandt, T., Mazzocca, A. D., & Quinn, R. H. (2014). Orthopaedic graduate medical education: a changing paradigm. JBJS Reviews, 2(11). google scholar
  • Sanchez-Margallo, F. M., Perez-Duarte, F. J., Sanchez-Margallo, J. A., Lucas-Hernandez, M., Matos-Azevedo, A. M., & Diaz-Guemes, I. (2014). Application of a motion capture data glove for hand and wrist ergonomic analysis during laparoscopy. Minimally Invasive Therapy & Allied Technologies, 23(6), 350-356. google scholar
  • Satava, R. M., & Jones, S. B. (1998). Current and future applications of virtual reality for medicine. Proceedings of the IEEE, 86(3), 484-489. google scholar
  • Sheik-Ali, S., Edgcombe, H., & Paton, C. (2019). Next-Generation virtual and augmented reality in surgical education: a narrative review. Surgical Technology International, 33. google scholar
  • Shenrian, K. P., Ward, J. W., Wills, D. P. M., Sherman, V. J., & Mohsen, A. (2001). Surgical trainee assessment using a VE knee arthroscopy training system (VE-KATS): experimental results. In Medicine Meets Virtual Reality 2001 (pp. 465-470). IOS Press. google scholar
  • Sinz, E. (2005). Simulation-based education for cardiac, thoracic, and vascular anesthesiology. Seminars in Cardiothoracic and Vascular Anesthesia, 9(4), 291-307. google scholar
  • Smith, S., Wan, A., Taffinder, N., Read, S., Emery, R., & Darzi, A. (1999). Early experience and validation work with procedicus va-The prosolvia virtual reality shoulder arthroscopy trainer. Studies in Health Technology and Informatics, 337-343. google scholar
  • Stalfors, J., Kling-Petersen, T., Rydmark, M., & Westin, T. (2001). Haptic palpation of head and neck cancer patients-Implications for education and telemedicine. In Medicine Meets Virtual Reality 2001 (pp. 471-474). IOS Press. google scholar
  • Surgical Science Ab. (2008). LapSim Validation Studies. google scholar
  • Tenzer, Y., & Davies, B. (2008). Investigation into the effectiveness of vibrotactile feedback to improve the haptic realism of an arthroscopy training simulator. Studies in Health Technology and Informatics, 132, 517-522. google scholar
  • ThingLab. (2020). https://thinglab.com.au/geomagic-haptic-devices/ google scholar
  • Tokuyasu, T., Kitamura, T., Sakaguchi, G., & Komeda, M. (2003). Development of training system for left ventricular plastic surgery. IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, 2003., 60-61. google scholar
  • Topalli, D., & Cagiltay, N. E. (2019). Classification of Intermediate and Novice Surgeons’ Skill Assessment Through Performance Metrics. Surgical Innovation, 26(5). https://doi.org/10.1177/1553350619853112 google scholar
  • Topalli, Damla, & Cagiltay, N. E. (2018). Eye-hand coordination patterns of intermediate and novice surgeons in a simulation-based endoscopic surgery training environment. Journal of Eye Movement Research, 11(6). google scholar
  • Triantafyllou, K., Lazaridis, L. D., & Dimitriadis, G. D. (2014). Virtual reality simulators for gastrointestinal endoscopy training. World Journal of Gastrointestinal Endoscopy, 6(1), 6. google scholar
  • Tse, B., Harwin, W., Barrow, A., Quinn, B., & Cox, M. (2010). Design and development of a haptic dental training system-haptel. International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, 101-108. google scholar
  • Uemura, M., Tomikawa, M., Kumashiro, R., Miao, T., Souzaki, R., Ieiri, S., Ohuchida, K., Lefor, A. T., & Hashizume, M. (2014). Analysis of hand motion differentiates expert and novice surgeons. Journal of Surgical Research, 188(1), 8-13. google scholar
  • Ullrich, S., & Kuhlen, T. (2012). Haptic palpation for medical simulation in virtual environments. IEEE Transactions on Visualization and Computer Graphics, 18(4), 617-625. google scholar
  • Ullrich, S., Mendoza, J., Ntouba, A., Rossaint, R., & Kuhlen, T. (2008). Haptic pulse simulation for virtual palpation. In Bildverarbeitung für die Medizin 2008 (pp. 187-191). Springer. google scholar
  • Van Sickle, K. R., Ritter, E. M., Baghai, M., Goldenberg, A. E., Huang, I.-P., Gallagher, A. G., & Smith, C. D. (2008). Prospective, randomized, double-blind trial of curriculum-based training for intracorporeal suturing and knot tying. Journal of the American College of Surgeons, 207(4), 560-568. google scholar
  • Verdaasdonk, E. G. G., Dankelman, J., Lange, J. F., & Stassen, L. P. S. (2008). Transfer validity of laparoscopic knot-tying training on a VR simulator to a realistic environment: a randomized controlled trial. Surgical Endoscopy, 22(7), 1636-1642. google scholar
  • Wang, D., Zhang, Y., Hou, J., Wang, Y., Lv, P., Chen, Y., & Zhao, H. (2011). iDental: a haptic-based dental simulator and its preliminary user evaluation. IEEE Transactions on Haptics, 5(4), 332-343. google scholar
  • Watson, R. A. (2014). Use of a machine learning algorithm to classify expertise: Analysis of hand motion patterns during a simulated surgical task. Academic Medicine, 89(8), 1163-1167. google scholar
  • Williams, I. R. L., Howell, J. N., & Conatser, J. R. R. (2007). Digital human modeling for palpatory medical training with haptic feedback. Human Factors and Ergonomics, 20(11), 2008. google scholar
  • Williams, R. L., Srivastava, M., Howell, J. N., Conatser Jr, R. R., Eland, D. C., Burns, J. M., & Chila, A. G. (2004). The virtual haptic back for palpatory training. Proceedings of the 6th International Conference on Multimodal Interfaces, 191-197. google scholar
  • Zorcolo, A., Gobbetti, E., Pili, P., & Tuveri, M. (1999). Catheter insertion simulation with combined visual and haptic feedback. Proceedings of The First PHANToM Users Research Symposium May 21-22, 1999 Deutsches Krebsforschungszentrum Heidelberg, Germany. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.