CHAPTER


DOI :10.26650/B/ET07.2023.005.05   IUP :10.26650/B/ET07.2023.005.05    Full Text (PDF)

Artificial Intelligence and Machine Learning Applications in Precision Medicine and Genomic Diagnostics

Ashkan AdibiHülya Yazıcı

Nowadays, artificial intelligence and machine learning are used in different fields from engineering to industry, from medical applications to education. Especially in medicine, artificial intelligence and machine learning applications, which were started in the field of radiodiagnostics, found a place in pathology and radiotherapy in a concise time. In addition, it is used as a scale that guides the physician in the determination of risky operations and people in many branches of medicine. It has found widespread use in the rapid scanning of preparations and images, especially in the field of pathology and radiology, and has been put into practice. Artificial intelligence and machine learning applications in the field of genetics started with the human genome project and are now widely used in bioinformatics analysis applications related to all genetic studies and all sequencing technologies. Artificial intelligence and machine learning applications have been developed to blend and process Big data and clinical data derived from these genetic analyses and to use the results obtained in diagnosis, treatment, and follow-up of the disease. The use of artificial intelligence and machine learning in medical applications is becoming more and more common. In this review, applications of artificial intelligence and machine learning in medicine are briefly and simply mentioned.


DOI :10.26650/B/ET07.2023.005.05   IUP :10.26650/B/ET07.2023.005.05    Full Text (PDF)

Hassas Tıp ve Genomik Tanıda Yapay Zekâ Ve Makine Öğrenmesi Uygulamaları

Ashkan AdibiHülya Yazıcı

Günümüzde yapay zeka ve makine öğrenmesi mühendislikten endüstriye, tıp uygulamalarından eğitime kadar farklı alanlarda kullanılmaktadır. Özellikle tıpta öncelikle radyodiyagnostik alanda başlatılan yapay zeka ve makine öğrenmesi uygulamaları, çok kısa zamanda patoloji ve radyoterapi alanlarında da yer bulmuştur. Bundan başka birçok tıp dalında riskli operasyonların ve kişilerin belirlenmesinde hekime yol gösteren ölçekler olarak kullanılmaktadır. Özellikle patoloji ve radyoloji alanında preparatların ve görüntülerin hızlı taranmasında yaygın kullanım alanı bulmuş ve pratiğe girmiş durumdadır. Genetik alanında yapay zeka ve makine öğrenmesi uygulamaları insan genom projesi ile başlamış olup şu anda tüm genetik çalışmalar ile tüm dizileme teknolojilerine ilişkin biyoenformatik analiz uygulamalarında yaygın olarak kullanılmaktadır. Hali hazırda bu genetik analizlerden türetilen Big data ve klinik verilerin harmanlanarak işlenmesi ve buradan çıkarılan sonuçların tanı, tedavi ve hastalığın takibinde kullanılmasına ilişkin yapay zeka ve makine öğrenmesi uygulamaları geliştirilmiş durumdadır. Yapay zeka ve makine öğrenmesinin tıp uygulamalarında kullanım alanı giderek yaygınlaşmaktadır. Bu derlemede yapay zeka ve makine öğrenmesinin tıpta yer bulmuş uygulamalarından kısa ve basitçe bahsedilmiştir.



References

  • Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P., Carvalho, S., . . . Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 5, 4006. doi:10.1038/ncomms5006 google scholar
  • Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol, 33(8), 831-838. doi:10.1038/nbt.3300 google scholar
  • Barnard, M. E., Boeke, C. E., & Tamimi, R. M. (2015). Established breast cancer risk factors and risk of intrinsic tumor subtypes. Biochim Biophys Acta, 1856(1), 73-85. doi:10.1016/j.bbcan.2015.06.002 google scholar
  • Boursalie, O., Samavi, R., & Doyle, T. E. (2022). Evaluation methodology for deep learning imputation models. Exp Biol Med (Maywood), 247(22), 1972-1987. doi:10.1177/15353702221121602 google scholar
  • Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., & Floridi, L. (2018). Artificial Intelligence and the ‘Good Society’: the US, EU, and UK approach. Sci Eng Ethics, 24(2), 505-528. doi:10.1007/s11948-017-9901-7 google scholar
  • Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discov Today, 23(6), 1241-1250. doi:10.1016/j.drudis.2018.01.039 google scholar
  • Chen, Z., Chen, J., Collins, R., Guo, Y., Peto, R., Wu, F., . . . China Kadoorie Biobank collaborative, g. (2011). China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int J Epidemiol, 40(6), 1652-1666. doi:10.1093/ije/dyr120 google scholar
  • Cheng, Y., Song, H., Pan, X., Xue, H., Wan, Y., Wang, T., . . . Liang, M. (2018). Urinary Metabolites Associated with Blood Pressure on a Low- or High-Sodium Diet. Theranostics, 8(6), 1468-1480. doi:10.7150/ thno.22018 google scholar
  • Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. N Engl J Med, 372(9), 793-795. doi:10.1056/NEJMp1500523 google scholar
  • Crawford, K., & Calo, R. (2016). There is a blind spot in AI research. Nature, 538(7625), 311-313. do-i:10.1038/538311a google scholar
  • Cruz, J. A., & Wishart, D. S. (2007). Applications of machine learning in cancer prediction and prognosis. Cancer Inform, 2, 59-77. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19458758 google scholar
  • de los Campos, G., Gianola, D., & Allison, D. B. (2010). Predicting genetic predisposition in humans: the promise of whole-genome markers. Nat Rev Genet, 11(12), 880-886. doi:10.1038/nrg2898 google scholar
  • de Los Campos, G., Hickey, J. M., Pong-Wong, R., Daetwyler, H. D., & Calus, M. P. (2013). Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics, 193(2), 327-345. doi:10.1534/genetics.112.143313 google scholar
  • DeSantis, C. E., Miller, K. D., Dale, W., Mohile, S. G., Cohen, H. J., Leach, C. R., . . . Siegel, R. L. (2019). Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J Clin, 69(6), 452-467. doi:10.3322/ caac.21577 google scholar
  • Doyle, O. M., Mehta, M. A., & Brammer, M. J. (2015). The role of machine learning in neuroimaging for drug discovery and development. Psychopharmacology (Berl), 232(21-22), 4179-4189. doi:10.1007/s00213-015-3968-0 google scholar
  • Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks. Nature, 546(7660), 686. doi:10.1038/nature22985 google scholar
  • Finnegan, E. F., & Pasquinelli, A. E. (2013). MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol, 48(1), 51-68. doi:10.3109/10409238.2012.738643 google scholar
  • Forbes, S. A., Beare, D., Boutselakis, H., Bamford, S., Bindal, N., Tate, J., . . . Campbell, P. J. (2017). COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res, 45(D1), D777-D783. doi:10.1093/nar/ gkw1121 google scholar
  • Forneris, N. S., Vitezica, Z. G., Legarra, A., & Perez-Enciso, M. (2017). Influence of epistasis on response to genomic selection using complete sequence data. Genet Sel Evol, 49(1), 66. doi:10.1186/s12711-017-0340-3 google scholar
  • Foster, K. R., Koprowski, R., & Skufca, J. D. (2014). Machine learning, medical diagnosis, and biomedical engineering research - commentary. Biomed Eng Online, 13, 94. doi:10.1186/1475-925X-13-94 google scholar
  • Gianola, D., Okut, H., Weigel, K. A., & Rosa, G. J. (2011). Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genet, 12, 87. doi:10.1186/1471-2156-12-87 google scholar
  • Gonzalez-Camacho, J. M., Crossa, J., Perez-Rodriguez, P., Ornella, L., & Gianola, D. (2016). Genome-enabled prediction using probabilistic neural network classifiers. BMC Genomics, 17, 208. doi:10.1186/s12864-016-2553-1 google scholar
  • Gonzalez-Camacho, J. M., de Los Campos, G., Perez, P., Gianola, D., Cairns, J. E., Mahuku, G., . . . Crossa, J. (2012). Genome-enabled prediction of genetic values using radial basis function neural networks. Theor Appl Genet, 125(4), 759-771. doi:10.1007/s00122-012-1868-9 google scholar
  • Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., . . . Webster, D. R. (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316(22), 2402-2410. doi:10.1001/jama.2016.17216 google scholar
  • Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-Inspired Artificial Intelligence. Neuron, 95(2), 245-258. doi:10.1016/j.neuron.2017.06.011 google scholar
  • Heart, T., & Kalderon, E. (2013). Older adults: are they ready to adopt health-related ICT? Int J Med Inform, 82(11), e209-231. doi:10.1016/j.ijmedinf.2011.03.002 google scholar
  • Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J. F., Darbandi, S. F., Knowles, D., Li, Y. I., . . . Farh, K. K. (2019). Predicting Splicing from Primary Sequence with Deep Learning. Cell, 176(3), 535-548 e524. doi:10.1016/j.cell.2018.12.015 google scholar
  • Kelley, D. R., Snoek, J., & Rinn, J. L. (2016). Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res, 26(7), 990-999. doi:10.1101/gr.200535.115 google scholar
  • Kim, H., Grueneberg, A., Vazquez, A. I., Hsu, S., & de Los Campos, G. (2017). Will Big Data Close the Missing Heritability Gap? Genetics, 207(3), 1135-1145. doi:10.1534/genetics.117.300271 google scholar
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/natu-re14539 google scholar
  • Lee, J. A., Nguyen, H., Park, J., Tran, L., Nguyen, T., & Huynh, Y. (2017). Usages of Computers and Smartphones to Develop Dementia Care Education Program for Asian American Family Caregivers. Healthc Inform Res, 23(4), 338-342. doi:10.4258/hir.2017.23.4.338 google scholar
  • Lee, S. C., & Abdel-Wahab, O. (2016). Therapeutic targeting of splicing in cancer. Nat Med, 22(9), 976-986. doi:10.1038/nm.4165 google scholar
  • Lee, S. H., Wray, N. R., Goddard, M. E., & Visscher, P. M. (2011). Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet, 88(3), 294-305. doi:10.1016/j.ajhg.2011.02.002 google scholar
  • Leitsalu, L., Alavere, H., Tammesoo, M. L., Leego, E., & Metspalu, A. (2015). Linking a population biobank with national health registries-the estonian experience. J Pers Med, 5(2), 96-106. doi:10.3390/jpm5020096 google scholar
  • Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., . . . Exome Aggregation, C. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536(7616), 285-291. doi:10.1038/nature19057 google scholar
  • Li, Y., & Zhang, T. (2017). Deep neural mapping support vector machines. Neural Netw, 93, 185-194. do-i:10.1016/j.neunet.2017.05.010 google scholar
  • Lin, H., Chen, W., Anandakrishnan, R., & Plewczynski, D. (2015). Application of machine learning method in genomics and proteomics. ScientificWorldJournal, 2015, 914780. doi:10.1155/2015/914780 google scholar
  • Lukasik, S., Tobis, S., Wieczorowska-Tobis, K., & Suwalska, A. (2018). Could Robots Help Older People with Age-Related Nutritional Problems? Opinions of Potential Users. Int J Environ Res Public Health, 15(11). doi:10.3390/ijerph15112535 google scholar
  • Maher, B. (2008). Personal genomes: The case of the missing heritability. Nature, 456(7218), 18-21. do-i:10.1038/456018a google scholar
  • Meuwissen, T., Hayes, B., & Goddard, M. (2013). Accelerating improvement of livestock with genomic selection. Annu Rev Anim Biosci, 1, 221-237. doi:10.1146/annurev-animal-031412-103705 google scholar
  • Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829. doi:10.1093/genetics/157.4.1819 google scholar
  • Mubarak, Q. U., Akram, M. U., Shaukat, A., Hussain, F., Khawaja, S. G., & Butt, W. H. (2018). Analysis of PCG signals using quality assessment and homomorphic filters for localization and classification of heart sounds. Comput Methods Programs Biomed, 164, 143-157. doi:10.1016/j.cmpb.2018.07.006 google scholar
  • Ohnstad, H. O., Borgen, E., Falk, R. S., Lien, T. G., Aaserud, M., Sveli, M. A. T., . . . Naume, B. (2017). Prognostic value of PAM50 and risk of recurrence score in patients with early-stage breast cancer with long-term follow-up. Breast Cancer Res, 19(1), 120. doi:10.1186/s13058-017-0911-9 google scholar
  • Okut, H., Gianola, D., Rosa, G. J., & Weigel, K. A. (2011). Prediction of body mass index in mice using dense molecular markers and a regularized neural network. Genet Res (Camb), 93(3), 189-201. doi:10.1017/ S0016672310000662 google scholar
  • Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol, 2(1), a001008. doi:10.1101/cshperspect.a001008 google scholar
  • Poplin, R., Varadarajan, A. V., Blumer, K., Liu, Y., McConnell, M. V., Corrado, G. S., . . . Webster, D. R. (2018). Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng, 2(3), 158-164. doi:10.1038/s41551-018-0195-0 google scholar
  • Ridgway, J. P., Lee, A., Devlin, S., Kerman, J., & Mayampurath, A. (2021). Machine Learning and Clinical Informatics for Improving HIV Care Continuum Outcomes. Curr HIV/AIDS Rep, 18(3), 229-236. doi:10.1007/ s11904-021-00552-3 google scholar
  • Shimizu, H., & Nakayama, K. I. (2019). A 23 gene-based molecular prognostic score precisely predicts overall survival of breast cancer patients. EBioMedicine, 46, 150-159. doi:10.1016/j.ebiom.2019.07.046 google scholar
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA Cancer J Clin, 68(1), 7-30. doi:10.3322/caac.21442 google scholar
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA Cancer J Clin, 69(1), 7-34. doi:10.3322/caac.21551 google scholar
  • Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., . . . Collins, R. (2015). UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med, 12(3), e1001779. doi:10.1371/journal.pmed.1001779 google scholar
  • Takahashi, Y., Ueki, M., Yamada, M., Tamiya, G., Motoike, I. N., Saigusa, D., . . . Tomita, H. (2020). Improved metabolomic data-based prediction of depressive symptoms using nonlinear machine learning with feature selection. Transl Psychiatry, 10(1), 157. doi:10.1038/s41398-020-0831-9 google scholar
  • Takata, R., Takahashi, A., Fujita, M., Momozawa, Y., Saunders, E. J., Yamada, H., . . . Nakagawa, H. (2019). 12 new susceptibility loci for prostate cancer identified by genome-wide association study in Japanese population. Nat Commun, 10(1), 4422. doi:10.1038/s41467-019-12267-6 google scholar
  • Wei, Q., Lu, Z., Chen, K., & Ma, Y. (2010). Channel selection for optimizing feature extraction in an electrocorticogram-based brain-computer interface. J Clin Neurophysiol, 27(5), 321-327. doi:10.1097/WNP. 0b013e3181f52f2d google scholar
  • Williams, A. M., Liu, Y., Regner, K. R., Jotterand, F., Liu, P., & Liang, M. (2018). Artificial intelligence, physiological genomics, and precision medicine. Physiol Genomics, 50(4), 237-243. doi:10.1152/physiolge-nomics.00119.2017 google scholar
  • Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., . . . Visscher, P. M. (2010). Common SNPs explain a large proportion of the heritability for human height. Nat Genet, 42(7), 565-569. doi:10.1038/ng.608 google scholar
  • Yazici, H., Odemis, D. A., Aksu, D., Erdogan, O. S., Tuncer, S. B., Avsar, M., . . . Aydin, M. A. (2020). New Approach for Risk Estimation Algorithms of BRCA1/2 Negativeness Detection with Modelling Supervised Machine Learning Techniques. Dis Markers, 2020, 8594090. doi:10.1155/2020/8594090 google scholar
  • Zehir, A., Benayed, R., Shah, R. H., Syed, A., Middha, S., Kim, H. R., . . . Berger, M. F. (2017). Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med, 23(6), 703-713. doi:10.1038/nm.4333 google scholar
  • Zhou, J., Theesfeld, C. L., Yao, K., Chen, K. M., Wong, A. K., & Troyanskaya, O. G. (2018). Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat Genet, 50(8), 1171-1179. doi:10.1038/s41588-018-0160-6 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.