CHAPTER


DOI :10.26650/B/ET07.2023.005.16   IUP :10.26650/B/ET07.2023.005.16    Full Text (PDF)

Bioinks and 3D Bioprinting

Nilgün BozbuğaFerhat TaşPınar Yılgör HuriMustafa Oral Öncül

Bioprinting is the creation of tissue structures similar to micro cellular and macroscopic structural features of human tissue and organs with 3D imaging and 3D modeling processes by 3D printing technique. Bioinks, which are the main components of the 3D bioprinting process, are materials that can be combined with cells, growth factors and bioactive molecules, biomaterials and can be bioprinted during the printing process. There are micro extrusion (syringe) based bioprinters, droplet based bioprinters and laser based bioprinters. Viscosity, hydrophilic, dissolution properties, cytotoxicity, oxygen transport and biocompatibility of bioinks are of great importance. Bioinks are either scaffoldbased or scaffold less. With scaffold-based bioinks, tissue printing is performed by loading encapsulated living cells on to hydrogels, micro carriers or decellularized matrix components to create media in the printing process. Scaffold less bioinks are 3D-bioprinted by mimicking embryonic development with living cells. In the 3D-bioprinting process with bioinks, the mixture is deposited in layers in a fluid state. In the 3D-bioprinting process, first of all, the viability of the cells transformed into neo-tissues must be preserved and sterile printing conditions must be provided for the cell matrix structure. The solidification process (cross linking) of the layers is accomplished by UV light, specific chemicals or heat transmitted through the UV light source. Larger-scale functional tissue production can be made by obtaining cell pellets, tissue spheroids, and tissue strands from the neo-tissues obtained later with certain models. In the post printing process, the cell viability rate, porosity, degradation time of the biomaterial, biocompatibility, printing resolution, surface area and surface properties, morphological structure and durability of the printed material are controlled by computer aided programs. Digital biotechnology product bioinks offer new possibilities in transplantation surgery through 3D-bioprinting, in the design of personalized tissues in severe tissue loss, in cancer research, in drug development with out the need for the use of experimental animals, in pharmacological tests, and in testing drug molecules on standard labeled tissues.


DOI :10.26650/B/ET07.2023.005.16   IUP :10.26650/B/ET07.2023.005.16    Full Text (PDF)

Biyomürekkepler ve Üç Boyutlu Biyobaskı

Nilgün BozbuğaFerhat TaşPınar Yılgör HuriMustafa Oral Öncül

Biyobaskı (bioprinting), insan doku ve organlarının üç boyutlu (3B) görüntüleme ve 3B modelleme işlemleriyle, mikrosellüler ve makroskopik yapısal özelliklerine benzer doku yapılarının 3B basım tekniğiyle oluşturulmasıdır. 3B biyobaskı işleminin ana bileşenlerinden olan biyomürekkepler (bioink), hücreleri, büyüme faktörleri ve biyoaktif molekülleri, biyomalzemeleri birleştirilebilen ve basım işlemi sırasında biyolojik olarak yazdırılabilen malzemelerdir. Mikroekstrüzyon (şırınga) tabanlı biyoyazıcılar, damlacık tabanlı biyoyazıcılar, mikroektrüzyon biyoyazıcılar ve lazer tabanlı biyoyazıcılar mevcuttur. Biyomürekkeplerin viskozitesi, hidrofilisitesi, çözünme özellikleri, sitotoksisitesi, oksijen transportu, biyouyumluluğu büyük önem taşır. Biyomürekkepler iskele tabanlı veya iskelesiz özelliktedirler. İskele tabanlı biyomürekkeplerle, baskı işleminde ortam oluşturmak üzere enkapsüle edilmiş canlı hücreler hidrojellere, mikro taşıyıcılara veya hücresizleştirilmiş matris bileşenlerine yüklenerek doku basımı yapılır. İskelesiz biyomürekkeplerle ise canlı hücrelerle embriyonik gelişim taklit edilerek 3B biyobaskı yapılır. Biyomürekkeplerle 3B biyobaskı işleminde, karışım akışkan durumda katmanlar halinde birikir. 3B biyobaskı sürecinde önce neo dokulara dönüştürülen hücrelerin canlılığının korunması ve hücre matrisi yapısı için steril baskı koşullarının sağlanması gerekir. Katmanların katılaşma işlemi (çapraz bağlanma) UV ışığı, spesifik kimyasallar veya UV ışık kaynağı aracılığıyla iletilen ısı yoluyla gerçekleştirilir. Elde edilen neo dokulardan daha sonra belirli modellemelerle hücre topakları (cellpellets), doku kürecikleri (tissuespheroids), ve doku iplikçikleri (tissuestrands) elde edilerek daha büyük ölçekli işlevsel doku üretimi yapılabilir. Baskı sonrası (post-printing) süreç, basılan malzemenin hücre canlılık oranı, porozitesi, biyomateryalin degrade olma süresi, biyouyumluluğu, baskı çözünürlüğü, yüzey alanı ve yüzey özelliği, morfolojik yapısı ve dayanıklılığı bilgisayar destekli programlarla denetlenir. Dijital biyoteknoloji ürünü biyomürekkepler, 3B biyobaskı yoluyla transplantasyon cerrahisinde, ağır doku kayıplarında kişiye özel dokuların tasarlanmasında, kanser araştırmalarında, ilaç geliştirmede deney hayvanlarının kullanılmasına gerek kalmaksızın farmasötik testlerin yapılmasında, ilaç moleküllerinin standart etiketlenen dokularda test edilmesinde yeni olanaklar sunmaktadır.



References

  • Albanna, M., Binder, K. W., Murphy, S.V., Kim, J., Qasem, S. A. ,Zhao, W., Tan, J., El-Amin, I.B., Dice, D. D. , Marco, J., Green, J., Xu, T., Skardal, A., Holmes, J.H., Jackson, J. D., Atala A., Yoo J.J. (2019). Insitu bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Scientific Report 9: 1856. doi.org/10.1038/s41598-018-38366-w google scholar
  • Almeida, H.A., da Silva Bartolo, PJ. (2017). Mathematical Modeling of 3D Tissue Engineering Constructs. In: Ovsianikov, A., Yoo, J., Mironov, V. (Eds). 3D Printing and Biofabrication, 2017:1-30. google scholar
  • Bozbuğa, N. (2004). Sol Ventrikül Anatomisinin Matematiksel Modellemesi, Doktora Tezi, İstanbul. google scholar
  • Bozbuğa, N. (2020). Sağlıkta İnovasyon Risk Yönetimi. Ed: N. Bozbuğa, C. Yakıncı. Hasta Güvenliği ve Risk Yönetimi. İnönü ÜniversitesiYayınları, Malatya: 437-442. ISBN 978-605-7853-50-9 google scholar
  • Bozbuğa N, Taş F. (2022). Custom-sized aortic valve 3D printing using geometric modeling of aortic root morphology. Sağlık Bilimlerinde İleri Araştırmalar Dergisi (SABİAD) 5(1):1-5. google scholar
  • Camacho, P., Busari, H., Seims, K.B., Tolbert, J.W., Chow, L.W. (2019). Materials as bioinks and bioink design. Güvendiren, M. (Ed). 3D Bioprinting in medicine technologies, bioinks, and applications, Springer, Switzerland, 2019:67-100. google scholar
  • Chen, H., Zhang, N., Li, T., Guo, J., Wang, Z., Yang, M., Gao, L. (2012). Human umbilical cord Wharton’s jelly stemcells: immune property genes assay and effect of transplantation on the immune cells of heart failure patients. Cellular Immunology 276:83-90. google scholar
  • Cheriachan, D. M., DiPaola, M., lannotti, J. P. & Ricchetti, E. T. (2019). 3D Printing in Orthopedics -Upper Extremity Arthroplasty. 3D Printing in Orthopaedic Surgery 151-169. doi: 10.1016/b978-0-323-58118-9.00013-0 google scholar
  • Coyan, G.N., D’Amore, A., Matsumura, Y., Pedersen, D.D., Samul, K., Luketich, S.K., Shanov, V., Katz, W.E., David, T.E., Wagner, W.R., Badhwar, V. (2018). In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve. J Thorac Cardiovasc Surg 157(5):1809-1816. google scholar
  • Damianou, C., Giannakou, M., Yiallouras, C. ve Menikou, G. (2018). The role of three-dimensional printing in magnetic resonance imaging-guided focused ultrasound surgery. Digital Medicine 4(1):22. doi: 10.4103/ digm.digm_48_17 google scholar
  • Ergene, E., Sezlev Bilecen, D., Kaya, B., Yilgor Huri, P., Hasirci, V. (2020). 3D cellular alignment and biomimetic mechanical stimulation enhance human adipose-derived stemcell myogenesis. Biomedical Material 15:055017. google scholar
  • Farin, G. (2002). Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann. Farin, G., Hoschek, J., & Kim, M. S. (Eds) Handbook of computer aided geometric design, Elsevier, 2002. google scholar
  • Goyanes, A., Kobayashi, M., Martinez-Pacheco, R., Gaisford, S. ve Basit, A.W. (2016). Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. International J Pharmaceutics 514(1):290-295. doi:10.1016/j.ijpharm.2016.06.021 google scholar
  • Gu, B.K., Choi, D.J., Park, S.J., Kim, M.S., Kang, C.M., Kim, C.H. (2016). 3-dimensional bioprinting for tissue engineering applications. Biomater Res 20:12. doi:10.1186/s40824-016-0058-2 google scholar
  • Guimaraes, C.F., Gasperini, L., Marques, A.P., et al. (2020). The stiffness of living tissues and it simplications for tissue engineering. Nat Rev Mater 5:351-370. doi:10.1038/s41578-019-0169-1 google scholar
  • Heidary Rouchi, A., Mahdavi-Mazdeh, M. (2015). Regenerative Medicine in Organ and Tissue Transplantation: Shortly and Practically Achievable? Int J Organ Transplant Med 6(3):93-98. google scholar
  • Henderson, K., Sligar, A.D., Le, V.P., Lee, J., Baker, A.B. (2017). Biomechanical regulation of mesenchymal stemcells for cardiovascular tissue engineering. Adv Healthcare Mater 6:1700556:1-16. google scholar
  • Hospodiuk, M., Dey, M., Sosnoski, D., Ozbolat, I.T. (2017). The Bioink: A comprehensive review on bioprintable materials. Biotechnology Advances 35(2):217-239. google scholar
  • Ishita, M., Gurvinder, K., Amir, S., Aneesah, M., Cato, T. (2020). Laurencin, Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226:119536. doi:10.1016/j.biomateri-als.2019.119536. google scholar
  • Keshavjee, S. Human organ repair centers: Factor fiction? (2020). J Thorac Cardiovasc Surg Open 3(C):164-168. google scholar
  • Klebe, R. (1988). Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Experimental Cell Research 179(2):362-373. google scholar
  • Lau, I., Sun, Z. (2018). Three-dimensional printing in congenital heart disease: A systematic review. J Medical Radiation Sciences 65(3): 226-236. doi:10.1002/jmrs.268. google scholar
  • Lee, C.M., Yang, S.W., Jung, S.C., Kim, B.H. (2017). Oxygen plasma treatment on 3D printed chitosan/gelatin/ hydroxyapatite scaffolds for bone tissue engineering. J Nanoscience Nanotechnology 17(4):2747-2750. google scholar
  • Lei, M., Wang, X. (2016). Biodegradable polymers and stemcells for bioprinting. Molecules 21;539-544. google scholar
  • Leong, K.F., Cheah, C.M., Chua, C.K. (2003). Solid free form fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363-2378. google scholar
  • Mironov, V., Reis, N., Derby, B. (2006). Bioprinting: a beginning. Tissue Engineering 12(4):631-634. google scholar
  • Mironov, V., et al. (2009). Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1(2):220-221. google scholar
  • Mobaraki, M., Ghaffari, M., Yazdanpanah, A., Luo, Y., Mills, D.K. (2020). Bioinks and bioprinting: A focuse dreview. Bioprinting18:e00080. doi.org/10.1016/j.bprint.2020.e00080. google scholar
  • Murphy, S.V., Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology 32(8):773. doi:10.1038/nbt.2958 google scholar
  • Odde, D.J., Renn, M.J. (1999). Laser-guided direct writing for applications in biotechnology. Trends in Biotechnology 17(10):385-389. google scholar
  • Osidak, E.O., Kozhukhov, V.I., Osidak, M.S., Domogatskiy, S. (2020). Collagen as bioink for bioprinting: A comprehensive review. International J Bioprinting 6(3):270. doi:10.18063/ijb.v6i3.270 google scholar
  • Ozbolat IT. (2016). 3D Bioprinting: fundamentals, principles and applications. Academic Press, 2016. google scholar
  • Panwar, A., Tan, L.P. (2016). Currentstatus of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21(6):685. doi:10.3390/molecules21060685 google scholar
  • Petreaca, M., Martins-Green, M. (2020). Thedynamics of cell-extracellular matrix interactions, with implications for tissue engineering, in Principles of Tissue Engineering (Fifth Edition), 2020. google scholar
  • Piras, C.C., Smith, D.K. (2020). Multicomponent polysaccharide alginate-based bioinks. Journal of Materials Chemistry B 36: 8171-8188. google scholar
  • Puluca, N., Lee, S., Doppler, S. et al. (2019). Bioprintingapproachestoengineeringvascularized 3D cardiactissues. CurrCardiolRep 21:90. doi:10.1007/s11886-019-1179-8 google scholar
  • Smith, C.M., Stone, A.L., Parkhill, R.L., Stewart, R.L., Simpkins, M.W., Kachurin, A.M., Warren, W.L., Williams, S.K. (2004). Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Engineering 10(9-10):1566-1576. google scholar
  • Taş, F., Bozbuğa, N. (2021). Bilgisayar Destekli Anatomik Modelleme. Ed: N. Bozbuğa, S. Gülseçen. Tıp Bilişimi. İstanbul, İstanbul Üniversitesi Yayınevi, İstanbul, 2021: 487-512. E-ISBN 978-605-07-0773-1 google scholar
  • Taş, F. (2022). Sağlıkta Matematik Modelleme ve Üç Boyutlu Yazıcılar. Ed: N. Bozbuğa, C. Yakıncı. Teletıp & Klinik Yapay Zekâ. İnönü Üniversitesi Yayınları, Malatya, 2022: 67-72. ISBN 978-605-7853-89-9 google scholar
  • Temple, J.P., Hutton, D.L., Hung, B.P., Yilgor Huri, P., Cook, C.A., Kondragunta, R., Jia, X., Grayson, W.L. (2014). Engineering anatomically-shaped vascularized bone grafts with HASCS and 3D-printed PCL scaffolds. J Biomed Mater Res A 102A:4317-4325. google scholar
  • Ugail H. (2011). Partial differential equations for geometric design. Springer Scienc e& Business Media, 2011. google scholar
  • Uğurlucan M, Beyaz MO, Öztaş MD, Özturk A, Şahinoğlu K, Alpagut U, Bozbuğa N. (2019). The geometrical modeling of aortic root complex. Heart Views 2019(1):6-10. google scholar
  • Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A. (2018). 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater 70:48-56. doi:10.1016/j.actbio.2018.02.007. google scholar
  • Williams, S.K., Hoying, J.B. (2015). Bioinks for bioprinting. Turksen, K. (Ed). Bioprinting in regenerative medicine, Springer, Switzerland, 2015:1-31. google scholar
  • Yadid, M., Oved, H., Silberman, E. et al. (2022). Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol 19;83-99. doi:10.1038/s41569-021-00603-7 google scholar
  • Yang, X., Lu, Z., Wu, H., Li, W., Zheng, L., Zhao, J. (2018). Collagen-alginate as bioinkforthree-dimensional (3D) cell printing based cartilage tissue engineering. Material Science and Engineering 83:195-201. google scholar
  • Yilgor, P., Sousa, R.A., Reis, R.L., Hasirci, N., Hasirci, V. (2008). 3D plotted PCL scaffolds for stemcell based bone tissue engineering. Macromol Symp 269:92-99. google scholar
  • Yilgor, P., Tuzlakoglu, K., Reis, R.L., Hasirci, N., Hasirci, V. (2009). Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30:3551-3559. google scholar
  • Yilgor, P., Hasirci, N., Hasirci, V. (2010). Sequential BMP-2/BMP-7 delivery from polyester nanocapsules. J Biomed Mater Res; 93A:528-536. google scholar
  • Yilgor, P., Sousa, R.A., Reis, R.L., Hasirci, N., Hasirci, V. (2010). Effect of scaffold architecture and BMP-2/ BMP-7 delivery on in vitro bone regeneration. J Mater Sci Mater Med 21:2999-3008. google scholar
  • Yilgor, P., Yilmaz, G., Onal, M.B., Solmaz, I., Gundogdu, S., Keskil, S., Sousa, R.A., Reis, R.L., Hasirci, N., Hasirci, V. (2013). An in vivostudy on effect of scaffold geometry and growth factor release on the healing of bone defects. J Tissue Eng Regen Med 7:687-696. google scholar
  • Yilgor Huri, P., Ozilgen, A.B., Hutton, D.L., Grayson, W.L. (2014). Scaffoldpore size modulates in vitro osteogenesis of human adipose-derived stem/stromalcells. Biomed Mater 9(4):045003. doi: 10.1088/17486014/9/4/045003 google scholar
  • Zhang, L.G., Fisher, J.P., Leong K. (2015). 3D Bioprinting and nanotechnology in tissue. Engineering and Regenerative Medicine, Elsevier, 2015. google scholar
  • Zhang, B., Luo, Y., Ma, L., Gao, L., Li, Y., Xue, Q., Cui, Z. (2018). 3D bioprinting: an emerging technology full of opportunities and challenges. Bio-Design and Manufacturing 1-12. doi:10.1007/s42242-018-0004-3 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.