CHAPTER


DOI :10.26650/B/ET07.2023.005.06   IUP :10.26650/B/ET07.2023.005.06    Full Text (PDF)

Immunomic Applications in Medicine

Demet Kıvanç İzgiFatma Savran Oğuz

Immune system is a complex system that includes many organs, special tissues, cells and a network of molecules. External factors such as viruses, bacteria, fungi or parasites may cause infection and disease in the organism in addition, exposure to foreign chemicals can cause toxic effects and pathogenic mutations. The main function of the immune system is to protect the organism from external and internal hazards and to provide the interface between the organism and its environment. The availability of high-throughput genomics, proteomics, and other “omics” methodologies, as well as accessibility to molecular databases, are forcing a significant shift in research and development strategies for biomedicine. The main sources of immunological data are public databases, various ‘omics’ data and published articles. In this context, genomics and proteomics have provided tremendous contribution and encouragement to biological sciences with the new biological data they contain. Currently, systems biology, the systematic study of complex interactions in biological systems, is closely related to the application and development of bioinformatics and biostatistics tools to genomic and proteomic data. Immunology databases provide data storage, extraction and analysis of immunological data. Standard bioinformatics tools such as sequence analysis and structural methods are routinely applied in immunological studies. However, due to the complexity of immune interactions, immunoinformatics methods and traditional research methods are largely limited to increase the efficiency of immunology research. In this context, immunomics can become a new and strong approach primarily applied in vaccine development, target identification and disease diagnosis. Use of immunonomics and T cell mapping in transplantation includes the discovery of self-immunogenic markers based on HLA immunogenicity, their association with graft antigens leading to rejection, and scoring for probability of rejection.


DOI :10.26650/B/ET07.2023.005.06   IUP :10.26650/B/ET07.2023.005.06    Full Text (PDF)

Tıpta İmmünomik Uygulamalar

Demet Kıvanç İzgiFatma Savran Oğuz

Bağışıklık sistemi, pek çok organ, özel dokular, hücreler ve moleküller ağını içeren komplike bir sistemdir. Organizmada virüsler, bakteriler, mantarlar veya parazitler gibi dış etkenler enfeksiyon ve hastalığa neden olabilir, bunun yanı sıra yabancı kimyasallara maruz kalmak toksik etkilere ve patojenik mutasyonlara neden olabilir. Bağışıklık sisteminin ana işlevi organizmayı dış ve iç tehlikelerden korumak ve organizma ile çevresi arasındaki arayüzü sağlamaktır. Günümüzde immünolojik çalışmalar ve dolayısıyla immünololojik veriler büyük bir hızla artış göstermektedir. Moleküler veritabanlarına erişilebilirliğin yanı sıra yüksek verimli genomik, proteomik ve diğer “omik” metodolojilerin mevcudiyeti, biyotıp için araştırma ve geliştirme stratejilerinde önemli bir değişimi zorlamaktadır. İmmünolojik verilerin ana kaynakları, kamuya açık veri tabanları, çeşitli ‘omik’ veriler ve yayınlanmış makalelerdir. Bu bağlamda genomik ve proteomik, içerdikleri yeni biyolojik veriler ile biyolojik bilimlere muazzam bir katkı ve teşvik sağlamıştır. Biyolojik sistemlerdeki karmaşık etkileşimlerin sistematik bir çalışması olan sistem biyolojisi, şu anda biyoinformatik ve biyoistatistik araçlarının genomik ve proteomik verilere uygulanması ve geliştirilmesi ile yakından ilgilidir. İmmünoloji veri tabanları, immünolojik verilerin veri depolamasını, çıkarılmasını ve analizini sağlar. Dizi analizi ve yapısal yöntemler gibi standart biyoinformatik araçlar, immünolojik çalışmalar için rutin olarak uygulanır. Fakat immün etkileşimlerin komplike olması nedeniyle, immünoloji araştırmalarının verimliliğini arttırmak için immünoinformatik yöntemler ve geleneksel araştırma yöntemleri büyük ölçüde sınırlı kalmaktadır. Bu bağlamda immünomikler öncelikle aşı geliştirme, hedef belirleme ve hastalık teşhisinde uygulanan yeni ve güçlü bir yaklaşım haline gelebilmektedir. İmmünomik ve T hücre haritalamasının transplantasyonda kullanımı; HLA immünojenitesine dayalı olarak self immünojenik belirleyicilerin keşfi, bunların rejeksiyona yol açan greft antijenleri ile ilişkilendirilmesi ve rejeksiyon olasılığı için skorlamayı içermektedir.



References

  • Assis, A., Oliveira, E., Donate, P., Giuliatti, S., Nguyen, C., Passos, G. (2014). What is the transcriptome and how it is evaluated? In: Passos G (ed) Transcriptomics in Health and Disease. Cham, Springer International Publishing, 3-48. google scholar
  • Bagnoli, F., Baudner, B., Mishra, R.P., et al. (2011). Designing the next generation of vaccines for global public health. OMICS, 15,545-66. google scholar
  • Baltimore, D. (2001). Our genome unveiled. Nature. 409, 814-818. google scholar
  • Barbour A.G., Jasinskas, A., Kayala, M.A., Davies, D.H., Steere, A.C., Baldi, P., et al. (2008). A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi. Infect Immun, 76 (8), 3374-89. google scholar
  • Cardoso, F.C., Roddick, J.S., Groves, P., Doolan, D.L. (2011). Evaluation of approaches to identify the targets of cellular immunity on a proteome-wide scale. PLoS One, 6 (11),e27666. google scholar
  • Crompton, P.D., Kayala, M.A., Traore, B., Kayentao, K., Ongoiba, A., Weiss, G.E., et al. (2010). A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc Natl Acad Sci U S A, 107 (15), 6958-6963. google scholar
  • Davies, D.H., Molina, D.M., Wrammert, J., Miller, J., Hirst, S., Mu, Y., et al. (2007). Proteome-wide analysis of the serological response to vaccinia and smallpox. Proteomics, 7 (10), 1678-86. google scholar
  • De Groot, A.S. (2006). Immunomics: discovering new targets for vaccines and therapeutics. Drug Discov Today, 11 (5-6), 203-9. google scholar
  • Doolan, D.L. (2011). Plasmodium immunomics. Int J Parasitol., 41(1),3-20. google scholar
  • Doolan, D.L., Mu, Y., Unal, B., Sundaresh, S., Hirst, S., Valdez, C., et al. (2008). Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics, 8 (22), 4680-4694. google scholar
  • Doolan, D.L., Aguiar, J.C., Weiss, W.R., Sette, A., Felgner, P.L., Regis, D.P., et al. (2003). Utilization of genomic sequence information to develop malaria vaccines. J Exp Biol, 206 (Pt 21), 3789-3802. google scholar
  • Guan, H., Kiss-Toth, E. (2008). Advanced technologies for studies on protein interactomes. Adv Biochem Eng Biotechnol.110,1-24. google scholar
  • Hall, D.A., Ptacek, J., Snyder, M. (2007). Protein microarray technology. Mech Ageing Dev. 128 (1), 161-167. google scholar
  • Hegde, N. R., Gauthami, S., Sampath Kumar, H. M., & Bayry, J. (2018). The use of databases, data mining and immunoinformatics in vaccinology: where are we?. Expert opinion on drug discovery, 13(2), 117-130. google scholar
  • Henics, T., Winkler, B., Pfeifer, U., Gill, S.R., Buschle, M., von Gabain, A., et al. (2003). Small-fragment genomic libraries for the display of putative epitopes from clinically significant pathogens. Biotechniques. 35 (1),196-202. google scholar
  • Jing, L., Davies, D.H., Chong, T.M., Chun, S., McClurkan, C.L., Huang, J., et al. (2008). An extremely diverse CD4 response to vaccinia virus in humans is revealed by proteome-wide T cell profiling. J Virol, 82 (14), 7120-34. google scholar
  • Kaiser, K., Matuschewski, K., Camargo, N., Ross, J., Kappe, S.H. (2004). Differential transcriptome profiling identifies Plasmodium genes encoding pre-erythrocytic stage-specific proteins. Mol Microbiol, 51 (5), 122132. google scholar
  • Kan, M., Shumyatcher, M., Himes, B.E. (2017). Using omics approaches to understand pulmonary diseases. Respir. Res.18, 149. google scholar
  • Kavallaris, M., & Marshall, G. M. (2005). Proteomics and disease: opportunities and challenges. The Medical journal of Australia, 182(11), 575-79. google scholar
  • Koelle, D.M. (2003). Expression cloning for the discovery of viral antigens and epitopes recognized by T cells. Methods, 29 (3), 213-26. google scholar
  • Kylsik, J. (2001). Concept of immunomics: A new frontier in the battle for gene function? Acta Biotheor., 49(3),191-202. google scholar
  • Larsson, O., Nadon, R. (2008). Gene expression — time to change point of view? Biotechnol Genet Eng Rev, 25, 77-92. google scholar
  • Liu, R., Enstrom, A.M., Lam, K.S. (2003). Combinatorial peptide library methods for immunobiology research. Exp Hematol, 31 (1), 11-30. google scholar
  • Lockhart, D.J., Winzeler, E.A. (2000). Genomics, gene expression and DNA arrays. Nature. 405, 827-836. google scholar
  • Lopez, J.E., Beare, P.A., Heinzen, R.A., Norimine, J., Lahmers, K.K., Palmer, G.H., et al. (2008). High-throughput identification of T-lymphocyte antigens from Anaplasma marginale expressed using in vitro transcription and translation. J Immunol Methods, 332 (1-2), 129-41). google scholar
  • McKusick, V.A., Ruddle, F.H. (1987). A new discipline, a new name, a new journal. Genomics. 1(1), 1-2. google scholar
  • McKusick, V.A. (1997). Perspective: genomics: structural and functional studies of genomes. Genomics. 45(2), 244-249. google scholar
  • Medini, D., Donati, C., Tettelin, H., Masignani, V., Rappuoli, R. (2005). The microbial pan-genome. Curr Opin Genet Dev, 15 (6), 589-94. google scholar
  • Muzzi, A., Masignani, V., Rappuoli, R. (2007). The pan-genome: towards a knowledge-based discovery of novel targets for vaccines and antibacterials. Drug Discov Today, 12 (11-12), 429-39. google scholar
  • Oli, A. N., Obialor, W. O., Ifeanyichukwu, M. O., Odimegwu, D. C., Okoyeh, J. N., Emechebe, G. O., Adejumo, S. A., & Ibeanu, G. C. (2020). Immunoinformatics and Vaccine Development: An Overview. ImmunoTargets and therapy, 9, 13-30. google scholar
  • Pajon, R., Yero, D., Niebla, O. Climent, Y., Sardinas, G., Garcia, D., et al. (2009). Identification of new meningococcal serogroup B surface antigens through a systematic analysis of neisserial genomes. Vaccine, 28 (2), 532-41. google scholar
  • Peters, B., Nielsen, M., Sette, A. (2020). T Cell Epitope Predictions. Annu Rev Immunol. 26;38,123-145. google scholar
  • Pietu, G., Alibert, O., Guichard, V., Lamy, B., Bois, F., Leroy, E., Mariage-Sampson, R., Houlgatte, R., Soula-rue, P., Auffray, C. (1996). Novel gene transcripts preferentially expressed in human muscles revealed by quantitative hybridization of a high density cDNA array. Genome Res. 6, 492-503. google scholar
  • Rappuoli, R. (2000). Reverse vaccinology. Curr Opin Microbiol, 3 (5), 445-50. google scholar
  • Reese, P.P., Hall, I.E., Weng, F.L., Schroppel, B., Doshi, M.D., Hasz, R.D., Thiessen-Philbrook, H., Ficek, J., Rao, V., Murray, P., Lin, H., Parikh, C.R. (2016). Associations between Deceased-Donor Urine Injury Biomarkers and Kidney Transplant Outcomes. J Am Soc Nephrol. 27,1534-43. google scholar
  • Relman, D.A. (2011). Microbial genomics and infectious diseases. N Engl J Med, 365 (4), 347-57. google scholar
  • Salvadori, M., Tsalouchos, A. (2019). Histological and clinical evaluation of marginal donor kidneys before transplantation: Which is best? World J Transplant. 26,9(4),62-80. google scholar
  • Schieferdecker, A., Oberle, A., Thiele, B., Hofmann, F., Gothel, M., Miethe, S., Hust, M., Braig, F., Voigt, M., von Pein, U.M., Koch-Nolte, F., Haag, F., Alawi, M., Indenbirken, D., Grundhoff, A., Bokemeyer, C., Bacher, U., Kröger, N., Binder, M. A. (2016). transplant “immunome” screening platform defines a targetable epitope fingerprint of multiple myeloma. Blood. 23,127(25),3202-14. google scholar
  • Schussek, S., Trieu, A., Doolan, D.L. (2014). Genome- and proteome-wide screening strategies for antigen discovery and immunogen design. Biotechnol Adv. 32(2),403-14. google scholar
  • Scian, M.J., Maluf, D.G., Archer, K.J., Turner, S.D., Suh, J.L., David, K.G., King, A.L., Posner, M.P., Brayman, K.L., Mas, V.R. (2012). Identification of biomarkers to assess organ quality and predict posttransplantation outcomes. Transplantation. 94,851-85. google scholar
  • Seib, K.L., Dougan, G., Rappuoli, R. (2009). The key role of genomics in modern vaccine and drug design for emerging infectious diseases. PLoS Genet, 5 (10), e1000612. google scholar
  • Seib, K.L., Zhao, X., Rappuoli, R. (2012). Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin Microbiol Infect., 18,109-16. google scholar
  • Sette, A., Rappuoli, R. (2010). Reverse vaccinology: developing vaccines in the era of genomics Immunity, 33 (4), 530-41. google scholar
  • Sette, A., Sidney J. (1998). HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr Opin Immunol, 10 (4), 478-82. google scholar
  • Smith, K.D., Bolouri, H. (2005). Dissecting innate immune responses with the tools of systems biology. Curr. Opin. Immunol. 17, 49-54. google scholar
  • Tomar, N., De, R.K. (2014). Immunoinformatics: a brief review. Methods Mol Biol., 1184, 23-55. google scholar
  • Tremoulet, A.H., Albani, S. (2005). Immunomics in clinical development: bridging the gap. Expert Rev Clin Immunol. 1(1), 3-6. google scholar
  • Trieu, A., Kayala, M.A., Burk, C., Molina, D.M., Freilich, D.A., Richie, T.L., et al. (2011). Sterile protective immunity to malaria is associated with a panel of novel P. falciparum antigens. Mol Cell Proteomics, 10 (9). google scholar
  • Vivona, S., Gardy, J.L., Ramachandran, S., Brinkman, F.S., Raghava, G.P., Flower, D.R., et al. (2008). Computer-aided biotechnology: from immuno-informatics to reverse vaccinology. Trends Biotechnol, 26 (4), 190-200. google scholar
  • Wang, Z., Gerstein, M., Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57-63. google scholar
  • Wulfkuhle, J., Espina, V., Liotta, L., Petricoin, E. (2004). Genomic and proteomic technologies for individualisation and improvement of cancer treatment. Eur. J. Cancer. 40(17), 2623-2632. google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.