CHAPTER


DOI :10.26650/B/ET07.2023.005.08   IUP :10.26650/B/ET07.2023.005.08    Full Text (PDF)

Radiomics

Merve Gülbiz Dağoğlu KartalSena Azamat

Nowadays, artificial intelligence and machine learning are used in different fields from engineering to industry, from medical applications to education. Especially in medicine, artificial intelligence and machine learning applications, which were started in the field of radiodiagnostics, found a place in pathology and radiotherapy in a concise time. In addition, it is used as a scale that guides the physician in the determination of risky operations and people in many branches of medicine. It has found widespread use in the rapid scanning of preparations and images, especially in the field of pathology and radiology, and has been put into practice. Artificial intelligence and machine learning applications in the field of genetics started with the human genome project and are now widely used in bioinformatics analysis applications related to all genetic studies and all sequencing technologies. Artificial intelligence and machine learning applications have been developed to blend and process Big data and clinical data derived from these genetic analyses and to use the results obtained in diagnosis, treatment, and follow-up of the disease. The use of artificial intelligence and machine learning in medical applications is becoming more and more common. In this review, applications of artificial intelligence and machine learning in medicine are briefly and simply mentioned.


DOI :10.26650/B/ET07.2023.005.08   IUP :10.26650/B/ET07.2023.005.08    Full Text (PDF)

Radyomiks

Merve Gülbiz Dağoğlu KartalSena Azamat

Günümüzde yapay zeka ve makine öğrenmesi mühendislikten endüstriye, tıp uygulamalarından eğitime kadar farklı alanlarda kullanılmaktadır. Özellikle tıpta öncelikle radyodiyagnostik alanda başlatılan yapay zeka ve makine öğrenmesi uygulamaları, çok kısa zamanda patoloji ve radyoterapi alanlarında da yer bulmuştur. Bundan başka birçok tıp dalında riskli operasyonların ve kişilerin belirlenmesinde hekime yol gösteren ölçekler olarak kullanılmaktadır. Özellikle patoloji ve radyoloji alanında preparatların ve görüntülerin hızlı taranmasında yaygın kullanım alanı bulmuş ve pratiğe girmiş durumdadır. Genetik alanında yapay zeka ve makine öğrenmesi uygulamaları insan genom projesi ile başlamış olup şu anda tüm genetik çalışmalar ile tüm dizileme teknolojilerine ilişkin biyoenformatik analiz uygulamalarında yaygın olarak kullanılmaktadır. Hali hazırda bu genetik analizlerden türetilen büyük veri (big data) ve klinik verilerin harmanlanarak işlenmesi ve buradan çıkarılan sonuçların tanı, tedavi ve hastalığın takibinde kullanılmasına ilişkin yapay zeka ve makine öğrenmesi uygulamaları geliştirilmiş durumdadır. Yapay zeka ve makine öğrenmesinin tıp uygulamalarında kullanım alanı giderek yaygınlaşmaktadır. Bu derlemede yapay zeka ve makine öğrenmesinin tıpta yer bulmuş uygulamalarından kısa ve basitçe bahsedilmiştir. 



References

  • Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P., Carvalho, S., . . . Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 5, 4006. doi:10.1038/ncomms5006 google scholar
  • Bodalal, Z., Trebeschi, S., Nguyen-Kim, T. D. L., Schats, W., & Beets-Tan, R. (2019). Radiogenomics: bridging imaging and genomics. Abdom Radiol (NY), 44(6), 1960-1984. doi:10.1007/s00261-019-02028-w google scholar
  • Chaddad, A., Desrosiers, C., & Toews, M. (2017). Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age. Sci Rep, 7, 45639. doi:10.1038/srep45639 google scholar
  • Davnall, F., Yip, C. S., Ljungqvist, G., Selmi, M., Ng, F., Sanghera, B., . . . Goh, V. (2012). Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging, 3(6), 573-589. doi:10.1007/ s13244-012-0196-6 google scholar
  • Gerlinger, M., Rowan, A. J., Horswell, S., Math, M., Larkin, J., Endesfelder, D., . . . Swanton, C. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med, 366(10), 883-892. doi:10.1056/NEJMoa1113205 google scholar
  • Gillies, R. J., Anderson, A. R., Gatenby, R. A., & Morse, D. L. (2010). The biology underlying molecular imaging in oncology: from genome to anatome and back again. Clin Radiol, 65(7), 517-521. doi:10.1016/j. crad.2010.04.005 google scholar
  • Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images Are More than Pictures, They Are Data. Radiology,278(2), 563-577. doi:10.1148/radiol.2015151169 google scholar
  • Hobbs, S. K., Shi, G., Homer, R., Harsh, G., Atlas, S. W., & Bednarski, M. D. (2003). Magnetic resonance image-guided proteomics of human glioblastoma multiforme. J Magn Reson Imaging, 18(5), 530-536. doi:10.1002/jmri.10395 google scholar
  • Kurland, B. F., Gerstner, E. R., Mountz, J. M., Schwartz, L. H., Ryan, C. W., Graham, M. M., . . . Lieberman, F. S. (2012).Promise and pitfalls of quantitative imaging in oncology clinical trials. Magn Reson Imaging, 30(9), 1301-1312. doi:10.1016/j.mri.2012.06.009 google scholar
  • Lambin, P., Leijenaar, R. T. H., Deist, T. M., Peerlings, J., de Jong, E. E. C., van Timmeren, J., . . . Walsh, S. (2017). Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 14(12), 749-762. doi:10.1038/nrclinonc.2017.141 google scholar
  • Lambin, P., van Stiphout, R. G., Starmans, M. H., Rios-Velazquez, E., Nalbantov, G., Aerts, H. J., . . . Dekker, A. (2013). google scholar
  • Predicting outcomes in radiation oncology--multifactorial decision support systems. Nat Rev Clin Oncol, 10(1), 27-40. doi:10.1038/nrclinonc.2012.196 google scholar
  • Leandrou, S., Petroudi, S., Kyriacou, P. A., Reyes-Aldasoro, C. C., & Pattichis, C. S. (2018). Quantitative MRI Brain Studies in Mild Cognitive Impairment and Alzheimer’s Disease: A Methodological Review. IEEE Rev Biomed Eng, 11, 97-111. doi:10.1109/RBME.2018.2796598 google scholar
  • Lu, H., Arshad, M., Thornton, A., Avesani, G., Cunnea, P., Curry, E., . . . Aboagye, E. O. (2019). A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat Commun, 10(1), 764. doi:10.1038/s41467-019-08718-9 google scholar
  • Micheel, C. M., Nass, S. J., Omenn, G. S., Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials, Board on Health Care Services, Board on Health Sciences Policy, & Institute of Medicine (Eds.). (2012). Evolution of Translational Omics: Lessons Learned and the Path Forward. National Academies Press (US). google scholar
  • Segal, E., Sirlin, C. B., Ooi, C., Adler, A. S., Gollub, J., Chen, X., . . . Kuo, M. D. (2007). Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol, 25(6), 675-680. doi:10.1038/ nbt1306 google scholar
  • Sun, R., Limkin, E. J., Vakalopoulou, M., Dercle, L., Champiat, S., Han, S. R., . . . Ferte, C. (2018). A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol, 19(9), 1180-1191. doi:10.1016/S1470-2045(18)30413-3 google scholar
  • Tebbit, C. L., Zhai, J., Untch, B. R., Ellis, M. J., Dressman, H. K., Bentley, R. C., . . . Olson, J. A., Jr. (2009). Novel tumor sampling strategies to enable microarray gene expression signatures in breast cancer: a study to determine feasibility and reproducibility in the context of clinical care. Breast Cancer Res Treat, 118(3), 635-643. doi:10.1007/s10549-008-0301-1 google scholar
  • Tixier, F., Hatt, M., Valla, C., Fleury, V., Lamour, C., Ezzouhri, S., . . . Le Rest, C. C. (2014). Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med, 55(8), 1235-1241. doi:10.2967/jnumed.113.133389 google scholar
  • Van Meter, T., Dumur, C., Hafez, N., Garrett, C., Fillmore, H., & Broaddus, W. C. (2006). Microarray analysis of MRI-defined tissue samples in glioblastoma reveals differences in regional expression of therapeutic targets. Diagn Mol Pathol, 15(4), 195-205. doi:10.1097/01.pdm.0000213464.06387.36 google scholar
  • Wibmer, A., Hricak, H., Gondo, T., Matsumoto, K., Veeraraghavan, H., Fehr, D., . . . Vargas, H. A. (2015). Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol, 25(10), 2840-2850. doi:10.1007/s00330-015-3701-8 google scholar
  • Zhang, J., Spath, S. S., Marjani, S. L., Zhang, W., & Pan, X. (2018). Characterization of cancer genomic heterogeneity by next-generation sequencing advances precision medicine in cancer treatment. Precis Clin Med, 1(1), 29-48. doi:10.1093/pcmedi/pby007 google scholar
  • Zhao, S., Kuge, Y., Mochizuki, T., Takahashi, T., Nakada, K., Sato, M., . . . Tamaki, N. (2005). Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J Nucl Med, 46(4), 675-682. Retrieved from https://www.ncbi.nlm. nih.gov/pubmed/15809491 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.