CHAPTER


DOI :10.26650/B/ET07.2021.003.11   IUP :10.26650/B/ET07.2021.003.11    Full Text (PDF)

Radiomics Definition, History, Applications, and Workflow

Merve Gülbiz Dağoğlu KartalSena Azamat

Medical imaging is one of the crucial techniques that are used to reveal accurate diagnosis and tailor appropriate management. Radiomics depends on the hypothesis that quantitative information obtained from the anatomic and functional data that make up the image reflects the underlying pathophysiology. Initial studies about radiomics were mostly conducted in the field of oncology since it has been discovered that tumor heterogeneity is the fundamental factor that hinders success in this field. Biopsy taken invasively to obtain a limited number of samples does not always reflect the features of an entire volume of the tumor. In contrast, the ability to assess the entire volume non-invasively with objective data is an important tool to determine an efficient treatment plan specific to every patient and to predict prognosis. In this context, radiomics is promising to be used in precision medicine. The radiomics process is based on the extraction of huge data from imaging features and correlating them with clinical or genetic data. Basic steps in workflow include: (a) obtaining the image, (b) determining the region of interest and segmentation, (c) extracting features, and (d) using extracted features to obtain a database. Each step has its own limitations and challenges. However, the fundamental problem regarding every step is the heterogeneity of the data input. The potential of radiomics, which is still not mature enough, should not be overlooked and multicentral prospective studies with a large series should be conducted to find solutions to implement radiomic data in routine practice.


DOI :10.26650/B/ET07.2021.003.11   IUP :10.26650/B/ET07.2021.003.11    Full Text (PDF)

Radyomiks Tanımı, Tarihçesi, Kullanım Alanları Ve İş Akışı

Merve Gülbiz Dağoğlu KartalSena Azamat

Radyomiks, tıbbi görüntüleme hastalıkların tanı ve tedavisine yön veren en önemli faktörlerden biridir. Radyomiks, radyolojik görüntüyü oluşturan anatomik ve fonksiyonel verilerden elde olunacak gözle ayırt edilemeyen niceliksel verilerin bir dokunun patofizyolojisini oluşturduğu görüşüne dayanmaktadır. Radyomiksle ilgili çalışmalar ilk önce onkoloji alanında başlamıştır. Bunun temel nedeni bu alanda başarıyı engelleyen en önemli faktörlerden birinin tümör heterojenitesi olduğunun anlaşılmasıdır. Buna göre girişimsel biyopsiyle sınırlı sayıda örnek almak yerine tüm hacim içinde heterojeniteyi objektif verilerle girişim gerektirmeyecek bir şekilde değerlendirebilmek her hasta için o hastaya özel ve en etkin tedaviyi belirlemek ve prognozu öngörmek açısından önemli bir silahtır. Bu anlamda radyomiks, kişiselleştirilmiş tıp için ümit vaad etmektedir. Radiyomiks görüntü özelliklerinden büyük miktarda verinin çıkarılmasını ve bunların klinik veriler ya da genetik profillerle korelasyonu esasına dayanır. İş akışında temel adımlar (a) Tıbbı görüntülerin elde edilmesi (b) Ilgilenilen hacimleri (klinik olarak anlamlı değer içerebilecekleri) tanımlamak ve bölüklemek, (c) Bölüklenmiş hacimlerde özellikleri çıkarmak ve nitelemek, (d) Çıkartılan özellikleri veri tabanı doldurmak için kullanmak olarak sıralanabilir. Her bir basamakta hala sınırlılıklar ve uygulama zorlukları mevcuttur. Ancak her basamağı içine alan temel sorun standart veri girdisi olmamasıdır. Henüz yeterli olgunluğa ulaşmamış olan radyomiksin vaad ettiği potansiyel göz ardı edilmemeli çok merkezli ve geniş olgu sayıları içeren prospektif çalışmalarla günlük uygulamaya eklemenin yolları aranmalıdır.



References

  • Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P., Carvalho, S., . . . Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 5, 4006. doi:10.1038/ncomms5006 google scholar
  • Bodalal, Z., Trebeschi, S., Nguyen-Kim, T. D. L., Schats, W., & Beets-Tan, R. (2019). Radiogenomics: bridging imaging and genomics. Abdom Radiol (NY), 44(6), 1960-1984. doi:10.1007/s00261-019-02028-w google scholar
  • Chaddad, A., Desrosiers, C., & Toews, M. (2017). Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age. Sci Rep, 7, 45639. doi:10.1038/srep45639 google scholar
  • Davnall, F., Yip, C. S., Ljungqvist, G., Selmi, M., Ng, F., Sanghera, B., . . . Goh, V. (2012). Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging, 3(6), 573-589. doi:10.1007/ s13244-012-0196-6 google scholar
  • Gerlinger, M., Rowan, A. J., Horswell, S., Math, M., Larkin, J., Endesfelder, D., . . . Swanton, C. (2012). Intra-tumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med, 366(10), 883-892. doi:10.1056/NEJMoa1113205 google scholar
  • Gillies, R. J., Anderson, A. R., Gatenby, R. A., & Morse, D. L. (2010). The biology underlying molecular imaging in oncology:from genome to anatome and back again. Clin Radiol, 65(7), 517-521. doi:10.1016/j. crad.2010.04.005 google scholar
  • Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278(2), 563-577. doi:10.1148/radiol.2015151169 google scholar
  • Hobbs, S. K., Shi, G., Homer, R., Harsh, G., Atlas, S. W., & Bednarski, M. D. (2003). Magnetic resonance image-guided proteomics of human glioblastoma multiforme. J Magn Reson Imaging, 18(5), 530-536. doi:10.1002/jmri.10395 google scholar
  • Kurland, B. F., Gerstner, E. R., Mountz, J. M., Schwartz, L. H., Ryan, C. W., Graham, M. M., . . . Lieberman, F. S. (2012). Promise and pitfalls of quantitative imaging in oncology clinical trials. Magn Reson Imaging, 30(9), 1301-1312. doi:10.1016/j.mri.2012.06.009 google scholar
  • Lambin, P., Leijenaar, R. T. H., Deist, T. M., Peerlings, J., de Jong, E. E. C., van Timmeren, J., . . . Walsh, S. (2017). Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 14(12), 749-762. doi:10.1038/nrclinonc.2017.141 google scholar
  • Lambin, P., van Stiphout, R. G., Starmans, M. H., Rios-Velazquez, E., Nalbantov, G., Aerts, H. J., . . . Dekker, A. (2013). Predicting outcomes in radiation oncology--multifactorial decision support systems. Nat Rev Clin Oncol, 10(1), 27-40. doi:10.1038/nrclinonc.2012.196 google scholar
  • Leandrou, S., Petroudi, S., Kyriacou, P. A., Reyes-Aldasoro, C. C., & Pattichis, C. S. (2018). Quantitative MRI Brain Studies in Mild Cognitive Impairment and Alzheimer’s Disease: A Methodological Review. IEEE Rev Biomed Eng, 11, 97-111. doi:10.1109/RBME.2018.2796598 google scholar
  • Lu, H., Arshad, M., Thornton, A., Avesani, G., Cunnea, P., Curry, E., . . . Aboagye, E. O. (2019). A mathema-tical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic-and molecular-phenotypes of epithelial ovarian cancer. Nat Commun, 10(1), 764. doi:10.1038/s41467-019-08718-9 google scholar
  • Micheel, C. M., Nass, S. J., Omenn, G. S., Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials, Board on Health Care Services, Board on Health Sciences Policy, & Institute of Medicine (Eds.). (2012). Evolution of Translational Omics: Lessons Learned and the Path Forward. National Academies Press (US). google scholar
  • Segal, E., Sirlin, C. B., Ooi, C., Adler, A. S., Gollub, J., Chen, X., . . . Kuo, M. D. (2007). Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol, 25(6), 675-680. doi:10.1038/ nbt1306 google scholar
  • Sun, R., Limkin, E. J., Vakalopoulou, M., Dercle, L., Champiat, S., Han, S. R., . . . Ferte, C. (2018). A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol, 19(9), 1180-1191. doi:10.1016/S1470-2045(18)30413-3 google scholar
  • Tebbit, C. L., Zhai, J., Untch, B. R., Ellis, M. J., Dressman, H. K., Bentley, R. C., . . . Olson, J. A., Jr. (2009). Novel tumor sampling strategies to enable microarray gene expression signatures in breast cancer: a study to determine feasibility and reproducibility in the context of clinical care. Breast Cancer Res Treat, 118(3), 635-643. doi:10.1007/s10549-008-0301-1 google scholar
  • Tixier, F., Hatt, M., Valla, C., Fleury, V., Lamour, C., Ezzouhri, S., . . . Le Rest, C. C. (2014). Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med, 55(8), 1235-1241. doi:10.2967/jnumed.113.133389 google scholar
  • Van Meter, T., Dumur, C., Hafez, N., Garrett, C., Fillmore, H., & Broaddus, W. C. (2006). Microarray analysis of MRI-defined tissue samples in glioblastoma reveals differences in regional expression of therapeutic targets. Diagn Mol Pathol, 15(4), 195-205. doi:10.1097/01.pdm.0000213464.06387.36 google scholar
  • Wibmer, A., Hricak, H., Gondo, T., Matsumoto, K., Veeraraghavan, H., Fehr, D., . . . Vargas, H. A. (2015). Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol, 25(10), 2840-2850. doi:10.1007/s00330-015-3701-8 google scholar
  • Zhang, J., Spath, S. S., Marjani, S. L., Zhang, W., & Pan, X. (2018). Characterization of cancer genomic hete-rogeneity by next-generation sequencing advances precision medicine in cancer treatment. Precis Clin Med, 1(1), 29-48. doi:10.1093/pcmedi/pby007 google scholar
  • Zhao, S., Kuge, Y., Mochizuki, T., Takahashi, T., Nakada, K., Sato, M., . . . Tamaki, N. (2005). Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J Nucl Med, 46(4), 675-682. Retrieved from https://www.ncbi.nlm. nih.gov/pubmed/15809491 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.