Research Article


DOI :10.26650/acin.1474115   IUP :10.26650/acin.1474115    Full Text (PDF)

Classification of Ventricular Septal Defect Disease Using Deep Learning

Kadir Barutİhsan PençeÖzlem Çetinkaya BozkurtMelike Şişeci Çeşmeli

Ventricular Septal Defect (VSD) disease is the most prevalent type of congenital heart disease. VSD is a hole between the left and right ventricles of the heart structure. VSD disease accounts for approximately one-fifth of all congenital heart disease types. Therefore, accurate disease diagnosis is paramount in determining the most appropriate treatment methods. This study aims to classify VSD disease using the deep learning algorithms VGG16, ResNET50, and Inceptionv3 on Computed Tomography (CT) images and compare the pre-trained algorithms used. One of the reasons why imaging methods such as echocardiog raphy are generally used to detect congenital heart diseases is that there are almost no CT datasets related to this disease. The dataset used in this study is the ImageCHD dataset, which comprises 3D CT scans encompassing 16 distinct types of congenital heart defects. Hyperparameter optimization was performed using the grid search method to enhance the model performance, identifying the VGG16 model as the most effective. The model demonstrated a very high classification accuracy of 99.99% in the training dataset and 99.94% in the test dataset. Gradient-weighted Class Activation Mapping was employed to enhance model explainability, providing visualizations of the regions most critical for the classification, thereby enabling medical professionals to validate AI-driven predictions. An optimized model that successfully classifies VSD using 3D CT image data has been introduced to the literature for the first time. Therefore, this study assumes greater significance in the existing literature and sets a benchmark for future studies.


PDF View

References

  • Abbas, S., Ojo, S., Al Hejaili, A., Sampedro, G. A., Almadhor, A., Zaidi, M. M., & Kryvinska, N. (2024). Artificial intelligence framework for heart disease classification from audio signals. Scientific Reports, 14 (i), 3123. doi:10.1038/s41598-024-53778-7 google scholar
  • Arslan, N. N., & Ozdemir, D. (2024). Analysis of CNN models in classifying Alzheimer’s stages: comparison and explainability examination of the proposed separable convolution-based neural network and transfer learning models. Signal, Image and Video Processing, 18 (SI), 447-461. DOI: 10.1007/s11760-024-03166-5 google scholar
  • Aziz, S., Khan, M. U., Alhaisoni, M., Akram, T., & Altaf, M. (2020). Phonocardiogram signal processing for the automatic diagnosis of congenital heart disorders through the fusion of temporal and cepstral features. Sensors, 20(13), 3790. doi:10.3390/s20133790 google scholar
  • Bernier, P. L., Stefanescu, A., Samoukovic, G., & Tchervenkov, C. I. (2010). The challenge of congenital heart disease worldwide: epidemi-ologic and demographic facts. Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual, 13(1), 26-34. https://doi.org/10.1053/j.pcsu.2010.02.005 google scholar
  • Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, & Li Fei-Fei. (2009). ImageNet: A large-scale hierarchical image database. İn 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 248-255). IEEE. doi: 10.1109/CVPR.2009.5206848 google scholar
  • Dillman, J. R., & Hernandez, R. J. (2009). Role of CT in the evaluation of congenital cardiovascular disease in children. American Journal of Roentgenology, 192(5), 1219-1231. doi: 10.2214/AJR.09.2382 google scholar
  • Dörterler, S., Dumlu, H., Özdemir, D., & Temurtaş, H. (2024). Hybridization of meta-heuristic algorithms with k-means for clustering analysis: Case of medical datasets. Gazi Journal of Engineering Sciences, 10(1), 1-11. https://doi.org/10.30855/gmbd.0705N01 google scholar
  • Geva, T., Martins, J. D., & Wald, R. M. (2014). Atrial septal defects. The Lancet, 383(9932), 1921-1932. https://doi.org/l0.1016/S0140-6736Cl3) 62145-5 google scholar
  • Hallıoğlu, O., Karpuz, D., Giray, D., Demetgül, H., & Öztaş, A. (2018). Frequency of the congenital heart diseases according to the risk groups: Fetal echocardiographic screening. The Journal of Gynecology-Obstetrics and Neonatology, 15(1), 1-4. google scholar
  • Hassani, K., Jafarian, K., & Doyle, D. J. (2017). Heart sounds feature used for the classification of ventricular septal defect size in children. İn IFMBE Proceedings (Vol. 61, pp. 28-31). Springer Verlag. doi:10.1007/978-981-10-4220-1_6 google scholar
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770-778). IEEE. doi: 10.1109/CVPR.2016.90 google scholar
  • Kara, İ. (2023). Query by image examination: Classification of digital image-based forensics using deep learning methods. Açta Infologica, 7(2), 348-359. doi:10.26650/acin.1282567 google scholar
  • Koundinya, T. S., Sudhanva, S., Shashank, C. S., Chandrasekar, S., & Munavalli, J. R. (2023). Congenital heart disease detection using spectral analysis and CNN. In 2023, 4th International Conference for Emerging Technology, INCET 2023. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/INCET57972.2023.10170429 google scholar
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386 google scholar
  • Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi: 10.1109/5.726791 google scholar
  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-y google scholar
  • Sapitri, A. I., Nurmaini, S., Sukemi, Rachmatullah, M. N., & Darmawahyuni, A. (2021). Segmentation atrioventricular septal defect by using convolutional neural networks based on U-NET architecture. IAES International Journal of Artificial Intelligence, 10(3), 553-562. doi: 10.11591/ijai.v10.i3.pp553-562 google scholar
  • Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: visual explanations from deep networks via gradient-based localization. İn 2017 IEEE International Conference on Computer Vision (ICCV) (pp. 618-626). IEEE. doi: 10.1109/ ICCV.2017.74 google scholar
  • Şevli, O. (2023). A deep learning-based classification study for diagnosing corneal ulcers on ocular staining images. Açta Infologica, 7(2), 281-292. https://doi.org/l0.26650/acin.1173465 google scholar
  • Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations (ICLR 2015), 1-14. Retrieved from http://arxiv.org/abs/1409.1556 google scholar
  • Sun, S., Jiang, Z., Wang, H., Fang, Y., & Tao, T. (2012). Heart sound feature parameter distribution and support vector machine-based classification boundary determination method for ventricular septal defect auscultation. Journal of Computational Science and Technology, 6(3), 198-206. doi:10.1299/jcst.6.198 google scholar
  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2818-2826). IEEE. https://doi.org/10.1109/CVPR.2016.308 google scholar
  • Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A survey on deep transfer learning. The 27th International Conference on Artificial Neural Networks (ICANN 2018). Retrieved from http://arxiv.org/abs/1808.01974 google scholar
  • Tay Lik Wui, E., Yip, J. W. L., & Li, W. (2011). Echocardiography. In Diagnosis and Management of Adult Congenital Heart Disease (pp. 2843). Elsevier. https://doi.org/l0.1016/B978-0-7020-3426-8.00005-8 google scholar
  • Tüzün, B. N., & Özdemir, D. (2023). Classification of brain tumors using deep learning models. Journal of Scientific Reports-A, 054, 296306. doi: 10.59313/jsr-a.1293119 google scholar
  • Wang, J.-K., Chang, Y.-F., Tsai, K.-H., Wang, W.-C., Tsai, C.-Y., Cheng, C.-H., & Tsao, Y. (2020). Automatic recognition of ventricular septal defect murmurs using convolutional recurrent neural networks with temporal attentive pooling. Scientific Reports, 10(1), 21797. doi:10.1038/s41598-020-77994-z google scholar
  • Xu, X., Wang, T., Zhuang, J., Yuan, H., Huang, M., Cen, J., ... Shi, Y. (2021). ImageCHD: A 3D computed tomography image dataset for classification of congenital heart disease. Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data, 4, 77-87. Retrieved from http://arxiv.org/abs/2101.10799 google scholar
  • Y amashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9(4), 611-629. doi:10.1007/s13244-018-0639-9 google scholar
  • Y ang, Y., Wu, B., Wu, H., Xu, W., Lyu, G., Liu, P., & He, S. (2023). Classification of normal and abnormal fetal heart ultrasound images and identification of ventricular septal defects based on deep learning. Journal of Perinatal Medicine, 51(8), 1052-1058. doi:10.1515/ jpm-2023-0041 google scholar
  • Y ıldız, J., Çetin, İ. İ., Aktaş, D., Arı, M. E., Kocabaş, A., Ekici, F., & Şaylı, T. R. (2015). Is an echocardiographic evaluation necessary for all children with a cardiac murmur? Turkish Journal of Pediatric Disease. doi:10.12956/tjpd.2015.158 google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Barut, K., Pençe, İ., Çetinkaya Bozkurt, Ö., & Şişeci Çeşmeli, M. (2019). Classification of Ventricular Septal Defect Disease Using Deep Learning. Acta Infologica, 0(0), -. https://doi.org/10.26650/acin.1474115


AMA

Barut K, Pençe İ, Çetinkaya Bozkurt Ö, Şişeci Çeşmeli M. Classification of Ventricular Septal Defect Disease Using Deep Learning. Acta Infologica. 2019;0(0):-. https://doi.org/10.26650/acin.1474115


ABNT

Barut, K.; Pençe, İ.; Çetinkaya Bozkurt, Ö.; Şişeci Çeşmeli, M. Classification of Ventricular Septal Defect Disease Using Deep Learning. Acta Infologica, [Publisher Location], v. 0, n. 0, p. -, 2019.


Chicago: Author-Date Style

Barut, Kadir, and İhsan Pençe and Özlem Çetinkaya Bozkurt and Melike Şişeci Çeşmeli. 2019. “Classification of Ventricular Septal Defect Disease Using Deep Learning.” Acta Infologica 0, no. 0: -. https://doi.org/10.26650/acin.1474115


Chicago: Humanities Style

Barut, Kadir, and İhsan Pençe and Özlem Çetinkaya Bozkurt and Melike Şişeci Çeşmeli. Classification of Ventricular Septal Defect Disease Using Deep Learning.” Acta Infologica 0, no. 0 (Mar. 2025): -. https://doi.org/10.26650/acin.1474115


Harvard: Australian Style

Barut, K & Pençe, İ & Çetinkaya Bozkurt, Ö & Şişeci Çeşmeli, M 2019, 'Classification of Ventricular Septal Defect Disease Using Deep Learning', Acta Infologica, vol. 0, no. 0, pp. -, viewed 10 Mar. 2025, https://doi.org/10.26650/acin.1474115


Harvard: Author-Date Style

Barut, K. and Pençe, İ. and Çetinkaya Bozkurt, Ö. and Şişeci Çeşmeli, M. (2019) ‘Classification of Ventricular Septal Defect Disease Using Deep Learning’, Acta Infologica, 0(0), pp. -. https://doi.org/10.26650/acin.1474115 (10 Mar. 2025).


MLA

Barut, Kadir, and İhsan Pençe and Özlem Çetinkaya Bozkurt and Melike Şişeci Çeşmeli. Classification of Ventricular Septal Defect Disease Using Deep Learning.” Acta Infologica, vol. 0, no. 0, 2019, pp. -. [Database Container], https://doi.org/10.26650/acin.1474115


Vancouver

Barut K, Pençe İ, Çetinkaya Bozkurt Ö, Şişeci Çeşmeli M. Classification of Ventricular Septal Defect Disease Using Deep Learning. Acta Infologica [Internet]. 10 Mar. 2025 [cited 10 Mar. 2025];0(0):-. Available from: https://doi.org/10.26650/acin.1474115 doi: 10.26650/acin.1474115


ISNAD

Barut, Kadir - Pençe, İhsan - Çetinkaya Bozkurt, Özlem - Şişeci Çeşmeli, Melike. Classification of Ventricular Septal Defect Disease Using Deep Learning”. Acta Infologica 0/0 (Mar. 2025): -. https://doi.org/10.26650/acin.1474115



TIMELINE


Submitted26.04.2024
Accepted24.01.2025
Published Online21.02.2025

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.