Review Article


DOI :10.26650/ASE20231341460   IUP :10.26650/ASE20231341460    Full Text (PDF)

A Review on The Impact of Thermal Stress on Fish Biochemistry

Prasun RoychowdhuryMohammad AftabuddinManoj Kumar Pati

Fish are an important resource for humans, providing food, economic support, and ecological services. However, rising global temperatures and subsequent increases in their habitat water temperature, pose a significant challenge. We conducted a systematic review to understand the biochemical responses of thermal stress on fish. Stress can be acute (rapid exposure for a short duration) or chronic (repetitive long-term exposure). Stress responses occur at neurotransmitter and hormonal levels, progressing to peripheral and organism-wide effects. Prolonged stress leads to reduced growth, reproductive impairments, heightened infection susceptibility, and mortality. Elevated temperatures serve as abiotic stressors, triggering biotic stress responses. Fish employ strategies to cope with thermal stress, including altering gene expression, metabolite profiles, cellular signaling, and enzyme activity. Cumulative effects of thermal stress induce oxidative stress, causing cell death, organ failure, and mortality. Stressors increase the energy demand, prompting changes in hormonal, enzymatic, and biomolecular responses. Cortisol alters gene expression, stimulating glucose synthesis (gluconeogenesis). Other hormones (thyroid hormones, epinephrine, norepinephrine, insulin, glucagon) also play roles in the thermal stress response. Enzymes involved in metabolic pathways have optimal temperature and pH ranges altered by thermal stress. Heat shock proteins and warm acclimation proteins act as protective mechanisms by preserving the structural integrity of proteins, which is crucial for maintaining proper functionality and cellular responses. Further research is needed to expand on these molecular mechanisms to evaluate proper mitigation strategies. 


PDF View

References

  • Abbaraju, N. V., & Rees, B. B. (2012). Effects of dissolved oxygen on glycolytic enzyme specific activities in liver and skeletal muscle of Fundulus heteroclitus. Fish Physiology and Biochemistry, 38(3), 615624. google scholar
  • Aftabuddin, M., & Roychowdhury, P. (2019). Thermal effect on physio-biochemical aspects of fishes and thermal tolerance under changing climatic scenario. Perspectives on Climate Change and Inland Fisheries in India, 258. google scholar
  • Aftabuddin, M., Roychowdhury, P., & Sarkar, U. K. (2017). Understanding Thermal Tolerance of Potential Fish in the changing climatic environment. Indian Farming, 67(3). google scholar
  • Akhtar, M. S., Pal, A. K., Sahu, N. P., Ciji, A., Meena, D. K., Das, P. (2013). Physiological responses of dietary tryptophan fed Labeo rohita to temperature and salinity stress. Journal of Animal Physiology and Animal Nutrition, 97(6), 1075-1083. google scholar
  • Alberts, B., Johnson, A., & Lewis, J. (2002). In Molecular Biology of the Cell (4th edition). New York: Garland Science google scholar
  • Angiulli, E., Pagliara, V., Cioni, C., Frabetti, F., Pizzetti, F., Alleva, E., & Toni, M. (2020). Increase in environmental temperature affects exploratory behaviour, anxiety and social preference in Danio rerio. Scientific Reports, 10(1), 5385. google scholar
  • Antonova, G., Lichtenbeld, H., Xia, T., Chatterjee, A., Dimitropoulou, C., & Catravas, J. D. (2007). Functional significance of hsp90 complexes with NOS and sGC in endothelial cells. Clinical Hemorheology and Microcirculation, 37(1-2), 19-35. google scholar
  • Antoun, M., Edwards, K. M., Sweeting, J., & Ding, D. (2017). The acute physiological stress response to driving: A systematic review. PloS One, 12(10), e0185517. google scholar
  • Arends, R. J., Mancera, J. M., Munoz, J. L., Bonga, S. W., & Flik, G. (1999). The stress response of the gilthead sea bream (Sparus aurata L.) to air exposure and confinement. Journal of Endocrinology, 163(1), 149. google scholar
  • Azhar, G. S., Mavalankar, D., Nori-Sarma, A., Rajiva, A., Dutta, P., Jaiswal, A., ... & Hess, J. J. (2014). Heat-related mortality in India: Excess all-cause mortality associated with the 2010 Ahmedabad heat wave. PLoS One, 9(3), e91831. google scholar
  • Babitha, G. S., & Peter, M. S. (2010). Cortisol promotes and integrates the osmotic competence of the organs in North African catfish (Clarias gariepinus Burchell): Evidence from in vivo and in situ approaches. General and Comparative Endocrinology, 168(1), 14-21. google scholar
  • Bag, N., Yap, D. H. X., & Wohland, T. (2014). Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy. Biochimica et Biophysica Acta (BBA) Biomembranes, 1838(3), 802-813. google scholar
  • Barandica, C. L. M. & Tort, L. (2008). Neuroendocrinolog^a e inmunolog^a de la respuesta al estres en peces. Revista de la Academia Colombiana de Ciencias, 32(123), 267-284. google scholar
  • Becker, D. C., & Genoway, R. G. (1979). Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environmental Biology of Fishes, 4(4), 245-256. google scholar
  • Beitinger, T. L., Bennett, W. A., & McCauley, R. W. (2000). Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes, 58(3), 237275. google scholar
  • Benjamin, I. J., & McMillan, D. R. (1998). Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circulation Research, 83(2), 117-132. google scholar
  • Bijlsma, R., & Loeschcke, V. (2005). Environmental stress, adaptation and evolution: an overview. Journal of Evolutionary Biology, 18(4), 744749. google scholar
  • Brander, K. (2010). Impacts of climate change on fisheries. Journal of Marine Systems, 79(3- 4), 389-402. google scholar
  • Camilo, M., & Maria, F.M. (2006). Effect of the rate of temperature increase of the dynamic method on the heat tolerance of fishes. Journal of Thermal Biology, 31(4), 337-44. google scholar
  • Cannon, W. B. (1929). Organization for physiological homeostasis. Physiological Reviews, 9(3), 399-431. google scholar
  • Chakravarty, S., Reddy, B. R., Sudhakar, S. R., Saxena, S., Das, T., Meghah, V., ... & Idris, M. M. (2013). Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. Plos One, 8(5), e63302. google scholar
  • Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis. Jama, 267(9), 1244-1252. google scholar
  • Comte, L., & Olden, J. D. (2017). Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Global Change Biology, 23(2), 728-736. google scholar
  • Cui, Y., Hao, Y., Li, J., Bao, W., Li, G., Gao, Y., & Gu, X. (2016). Chronic Heat Stress Induces Immune Response, Oxidative Stress Response, and Apoptosis of Finishing Pig Liver: A Proteomic Approach. International Journal of Molecular Sciences, 17(5), 393. google scholar
  • Daniel, G. B., Derek, P. T., & Boris, W. (2008). Effects of Temperature on Global Patterns of Tuna and Billfish Richness. Marine Ecology Progress Series, 355, 267-276. google scholar
  • Das, M. K., Dutta, T., Acharya, S., & Bhowmick, S. (2002). Sublethal temperature stress in juvenile Labeo rohita (Ham-Buch.) and Rita rita (Ham.): some physiological changes. Indian Journal of Experimental Biology, 40(5), 589-593. google scholar
  • Das, M. K., Srivastava, P. K., Dey, S., & Rej, A. (2012). Impact of temperature and rainfall alterations on spawning behavior of Indian major carps and consequence on fishers’ income in Odisha. Journal of Inland Fisheries Society of India, 44(2), 1-11. google scholar
  • Das, T., Pal, A. K., Chakraborty, S. K., Manush, S. M., Sahu, N. P., & Mukherjee, S. C. (2005). Thermal tolerance, growth and oxygen consumption of Labeo rohita fry (Hamilton, 1822) acclimated to four temperatures. Journal of Thermal Biology, 30(5), 378-383. google scholar
  • Dash, S. K., & Mamgain, A. (2011). Changes in the frequency of different categories of temperature extremes in India. Journal of Applied Meteorology and Climatology, 50(9), 1842-1858. google scholar
  • Dave, G., Johansson-Sjöbeck, M. L., Larsson, Â., Lewander, K., & Lidman, U. (1979). Effects of cortisol on the fatty acid composition of the total blood plasma lipids in the European eel, Anguilla anguilla L. Comparative Biochemistry and Physiology Part A: Physiology, 64(1), 37-40. google scholar
  • Dengiz Balta, Z., Akhan, S., & Balta, F. (2017).The physiological stress response to acute thermal exposure in Black Sea trout (Salmo trutta labrax Pallas, 1814). Turkish Journal of Veterinary & Animal Sciences, 41(3), 400-406 google scholar
  • Dhanasiri, A. K., Fernandes, J. M., & Kiron, V. (2013). Liver transcriptome changes in zebrafish during acclimation to transport-associated stress. PLoS One, 8(6), e65028. google scholar
  • Diffenbaugh, N. S., Pal, J. S., Giorgi, F., & Gao, X. (2007). Heat stress intensification in the Mediterranean climate change hotspot. Geophysical Research Letters, 34(11). google scholar
  • Dijk, P. L., Tesch, C., Hardewig, I., & Portner, H. O. (1999). Physiological disturbances at critically high temperatures: a comparison between stenothermal Antarctic and eurythermal temperate eelpouts (Zoarcidae). Journal of Experimental Biology, 202(24), 3611-362. google scholar
  • Donelson, J. M., Munday, P. L., McCormick, M. I., & Pitcher, C. R. (2012). Rapid transgenerational acclimation of a tropical reef fish to climate change. Nature Climate Change, 2(1), 30-32. google scholar
  • Eliason, E. J., Clark, T. D., Hague, M. J., Hanson, L. M., Gallagher, Z. S., Jeffries, K. M., ... & Hinch, S. G. (2013). Differences in thermal tolerance among sockeye salmon populations. Science, 342(6159), 1098-1101. google scholar
  • FAO. (2016). In FAO year book, 2014 Fishery and Aquaculture statistics (pp.105). Food and Agriculture Organisation of the United Nations, Rome, Italy. google scholar
  • Farrell, A. P. (2009). In Encyclopedia of Fish Physiology: From Genome to Environment. Academic Press. google scholar
  • Ficke, A. D., Myrick, C. A., & Hansen, L. J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17(4), 581-613. google scholar
  • Fishbase. (2020). https://www.fishbase.se/Country/CountryChecklist. php?what=list&trpp=50&c_code=356&csub_code=&cpresence=Reported&sortby=alpha2&ext_CL=on&ext_ pic=on&vhabitat=all2 google scholar
  • Freeman, H. C., & Idler, D. R. (1973). Effects of corticosteroids on liver transaminases in two salmonids, the rainbow trout (Salmo gairdnerii) and the brook trout (Salvelinus fontinalis). General and Comparative Endocrinology, 20(1), 69-75. google scholar
  • Ganguly, S., Mahanty, A., Mitra, T., Mohanty, S., Das, B. K., & Mohanty, B. P. (2018). Nutrigenomic studies on hilsa to evaluate flesh quality attributes and genes associated with fatty acid metabolism from the rivers Hooghly and Padma. Food Research International, 103, 21-29. google scholar
  • Gardiânovâ, I., & Hejrovâ, P (2015). The use of small animals-mammals, birds, fish in zootherapy. Kontakt, 17(3), e171-e176. google scholar
  • Golla, A., 0stby, H., & Kermen, F. (2020). Chronic unpredictable stress induces anxiety-like behaviors in young zebrafish. Scientific Reports, 10(1), 1-10. google scholar
  • Hernândez-L6pez, J. R., Hernândez-Rodrfguez, M., Rivas-Manzano, P., & Bückle-Ramirez, L. F. (2018). Thermal Effect of Acute and Chronic Stress on Hepatic and Renal Tissue of the Pacific Sardine, Sardinops sagax caeruleus (Jenyns, 1842). International Journal of Morphology, 36(1), 212-220. google scholar
  • IPCC editor. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. google scholar
  • IPCC. (2007). Climate Change: The Physical Science Basis. Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. google scholar
  • IPCC. (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F. D., Qin, G. K., Plattner, M., Tignor, S. K., Allen, J., Boschung, A., ... Midgley, P. M. (Eds.). Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA. google scholar
  • IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri, R. K., and Meyer, L. A. (Eds.). Geneva, Switzerland: IPCC. google scholar
  • Jobling, M. (1995).In Environmental Biology of Fishes. Chapman & Hall. google scholar
  • Jurgelenaite, A., & Jakimavicius, D. (2014). Prediction of river water temperature and its dependence on hydro-meteorological factors. Environmental Research, Engineering and Management, 68(2). google scholar
  • Kaur, M., Atif, F., Ali, M., Rehman, H., & Raisuddin, S. (2005). Heat stress-induced alterations of antioxidants in the freshwater fish Channa punctata Bloch. Journal of Fish Biology, 67(6), 1653-1665. google scholar
  • Kikuchi, K., Watabe, S., & Aida, K. (1997). The Wap65 gene expression of goldfish (Carassius auratus) in association with warm water temperature as well as bacterial lipopolysaccharide (LPS). Fish Physiology and Biochemistry, 17(1-6), 423-432. google scholar
  • Kourtis, N., & Tavernarakis, N. (2011). Cellular stress response pathways and ageing: intricate molecular relationships. The EMBO Journal, 30(13), 2520-2531. google scholar
  • Kovach, R. P., Gharrett, A. J., & Tallmon, D. A. (2012). Genetic change for earlier migration timing in a pink salmon population. Proceedings of the Royal Society B: Biological Sciences, 279(1743), 3870-3878. google scholar
  • Kültz, D. (2015). Physiological mechanisms used by fish to cope with salinity stress. Journal of Experimental Biology, 218(12), 1907-1914. google scholar
  • Kumar, N., Minhas, P. S., Ambasankar, K., Krishnani, K. K., & Rana, R. S. (2014). Dietary lecithin potentiates thermal tolerance and cellular stress protection of milk fish (Chanos Chanos) reared under low dose endosulfan-induced stress. Journal of Thermal Biology, 46, 40-46. google scholar
  • Kumar, P., Pal, A. K., Sahu, N. P., Jha, A. K., & Priya, P. (2015). Biochemical and physiological stress responses to heat shock and their recovery in Labeo rohita fingerlings. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85(2), 485-490. google scholar
  • La, V. T., & Cooke, S. J. (2011). Advancing the science and practice of fish kill investigations. Reviews in Fisheries Science, 19(1), 21-33. google scholar
  • Lancaster, L. T., Dudaniec, R. Y., Chauhan, P., Wellenreuther, M., Svensson, E. I., & Hansson, B. (2016). Gene expression under thermal stress varies across a geographical range expansion front. Molecular Ecology, 25(5), 1141-1156. google scholar
  • Li, Z., & Srivastava, P. (2004). In Heat-shock proteins Current protocols in immunology, edited by John E Coligan [et al.]. google scholar
  • Madeira, C., Mendonça, V., Leal, M. C., Flores, A. A., Cabral, H. N., Diniz, M. S., & Vinagre, C. (2017). Thermal stress, thermal safety margins and acclimation capacity in tropical shallow waters-An experimental approach testing multiple end-points in two common fish. Ecological Indicators, 81, 146-158. google scholar
  • Majhi, S. K., & Das, S. K. (2013). Thermal tolerance, oxygen consumption and stress response in Danio dangila and Brachydanio rerio (Hamilton, 1822) acclimated to four temperatures. Turkish Journal of Fisheries and Aquatic Sciences, 13(2), 359-365. google scholar
  • Mason, J. W. (1971). A re-evaluation of the concept of ‘non-specificity’in stress theory. In Principles, Practices, and Positions in Neuropsychiatric Research (pp. 323-333). google scholar
  • Mazeaud, M. M., Mazeaud, F., & Donaldson, E. M. (1977). Primary and secondary effects of stress in fish: some new data with a general review. Transactions of the American Fisheries Society, 106(3), 201212. google scholar
  • McEwen, B. S. (2013). Allostasis and allostatic load: implications for neuropsychopharmacology. Stress and the Brain, 2-18. google scholar
  • McEwen, B. S., & Gianaros, P. J. (2011). Stress- and allostasis-induced brain plasticity. Annual Review of Medicine, 62, 431-445. google scholar
  • McLemore, E. C., Tessier, D. J., Thresher, J., Komalavilas, P., & Brophy, C. M. (2005). Role of the small heat shock proteins in regulating vascular smooth muscle tone. Journal of the American College of Surgeons, 201(1), 30-36. google scholar
  • Mergenthaler, P., Lindauer, U., Dienel, G. A., & Meisel, A. (2013). Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends in Neurosciences, 36(10), 587-597. google scholar
  • Milano, E. G., Basari, F., & Chimenti, C. (1997). Adrenocortical and adrenomedullary homologs in eight species of adult and developing teleosts: morphology, histology, and immunohistochemistry. General and Comparative Endocrinology, 108(3), 483-496. google scholar
  • Mohanty, B. P., Mahanty, A., Ganguly, S., Mitra, T., Karunakaran, D., & Anandan, R. (2019). Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chemistry, 293, 561-570. google scholar
  • Mohapatra, S., Chakraborty, T., Prusty, A. K., PaniPrasad, K., & Mohanta, K. N. (2014). Beneficial effects of dietary probiotics mixture on hemato-immunology and cell apoptosis of Labeo rohita fingerlings reared at higher water temperatures. Plos One, 9(6), e100929. google scholar
  • Moltesen, M., Laursen, D. C., Thörnqvist, P. O., Andersson, M. Â., Winberg, S., & Höglund, E. (2016). Effects of acute and chronic stress on telencephalic neurochemistry and gene expression in rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 219(24), 3907-3914. google scholar
  • Murray, R. K., Granner, D. K., Mayes, P. A., & Rodwell, V. W. (1996). In Harper’s Illustrated Biochemistry (24th ed.) (pp. 537). Appleton & Lange, Stamford, CT. ISBN 0-8385-3612-3. google scholar
  • Nakamura, T., & Lipton, S. A. (2009). Cell death: protein misfolding and neurodegenerative diseases. Apoptosis, 14(4), 455-468. google scholar
  • Nakano, T., Kameda, M., Shoji, Y., Hayashi, S., Yamaguchi, T., & Sato, M. (2014). Effect of severe environmental thermal stress on redox state in salmon. Redox Biology, 2, 772-776. google scholar
  • Nelson, D. L., & Cox, M. M., (2001). Lehninger principles of biochemistry. Macmillan. google scholar
  • Norris, C. E., diIorio, P. J., Schultz, R. J., & Hightower, L. E. (1995). Variation in heat shock proteins within tropical and desert species of poeciliid fishes. Molecular Biology and Evolution, 12(6), 1048-1062. google scholar
  • Ouellet, V., Pierron, F., Mingelbier, M., Fournier, M., Fournier, M., & Couture, P. (2013). Thermal Stress Effects on Gene Expression and Phagocytosis in the Common Carp (Cyprinus Carpio): a Better Understanding of the Summer 2001 st. Lawrence River Fish Kill. The Open Fish Science Journal, 6(1). google scholar
  • Pacak, K., & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocrine Reviews, 22(4), 502-548. google scholar
  • Peter, M. S. (2011). The role of thyroid hormones in stress response of fish. General and Comparative Endocrinology, 172(2), 198-210. google scholar
  • Pörtner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315(5808), 95-97. google scholar
  • Purohit, G. K., Mahanty, A., Suar, M. Sharma, A. P., Mohanty, B. P., & Mohanty, S. (2014). Investigating hsp gene expression in liver of Channa striatus under heat stress for understanding the upper thermal acclimation. BioMed Research International, 381719, 1-10. google scholar
  • Ray, K. A. T., Apte, N. Y., & Chicholikar, J.R. (2012). In Climate of Ahmedabad. Meteriological Center Ahmedabad, Ahmedabad. google scholar
  • Recsetar, M. S., Zeigler, M. P., Ward, D. L., Bonar, S. A., & Caldwell, C. A. (2012). Relationship between fish size and upper thermal tolerance. Transactions of the American Fisheries Society, 141(6), 1433-1438. google scholar
  • Riyaz, N., & Arakkal, F. R. (2011). Spa therapy in dermatology. Indian Journal of Dermatology, Venereology and Leprology, 77, 128. google scholar
  • Roychowdhury, P., Aftabuddin, M., & Pati, M. K. (2019). Studies on biochemical responses of table sized Labeo rohita (Hamilton, 1822) to the thermal exposure at critical maximum temperature (CTmax). Exploratory Animal and Medical Research, 9(2), 197-203. google scholar
  • Roychowdhury, P., Aftabuddin, M., & Pati, M. K. (2020a). Thermal stress-induced oxidative damages in the liver and associated death in fish, Labeo rohita. Fish Physiology and Biochemistry, 1-12. google scholar
  • Roychowdhury, P., Aftabuddin, M., & Pati, M. K. (2020b). Thermal stress altered growth performance and metabolism and induced anaemia and liver disorder in Labeo rohita. Aquaculture Research, 51(4), 1406-1414. google scholar
  • Ruane, N. M., Huisman, E. A., & Komen, J. (2001). Plasma cortisol and metabolite level profiles in two isogenic strains of common carp during confinement. Journal of Fish Biology, 59(1), 1-12. google scholar
  • Salinthone, S., Tyagi, M., & Gerthoffer, W. T. (2008). Small heat shock proteins in smooth muscle. Pharmacology & Therapeutics, 119(1), 4454. google scholar
  • Sapolsky, R. M. (1996). Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress, 1(1), 1-19. google scholar
  • Schlesinger, M. J. (1990). Heat shock proteins. Journal of Biological Chemistry, 265(21), 12111-12114. google scholar
  • Schreck, C. B., Contreras-Sanchez, W., & Fitzpatrick, M. S. (2001). Effects of stress on fish reproduction, gamete quality, and progeny. In Reproductive Biotechnology in Finfish Aquaculture (pp. 3-24). google scholar
  • Selye, H. (1936). A syndrome produced by diverse nocuous agents. Nature, 138(3479), 32-32. google scholar
  • Shi, Y. A. N. G. G. U., & Thomas, J. O. (1992). The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate. Molecular and Cellular Biology, 12(5), 2186-2192. google scholar
  • Sorte, C. J., Jones, S. J., & Miller, L. P. (2011). Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. Journal of Experimental Marine Biology and Ecology, 400(1-2), 209-217. google scholar
  • Tacon, A. G., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-158. google scholar
  • Ton, C., Stamatiou, D., & Liew, C. C. (2003). Gene expression profile of zebrafish exposed to hypoxia during development. Physiological Genomics, 13(2), 97-106. google scholar
  • V ijayan, M. M., & Moon, T. W. (1994). The stress response and the plasma disappearance of corticosteroid and glucose in a marine teleost, the sea raven. Canadian Journal of Zoology, 72(3), 379-386. google scholar
  • V ijayan, M. M., Foster, G. D., & Moon, T. W. (1993). Effects of cortisol on hepatic carbohydrate metabolism and responsiveness to hormones in the sea raven, Hemitripterus americanus. Fish Physiology and Biochemistry, 12(4), 327-335. google scholar
  • V ijayan, M. M., Mommsen, T. R, Glemet, H. C., & Moon, T. W. (1996). Metabolic effects of cortisol treatment in a marine teleost, the sea raven. Journal of Experimental Biology, 199(7), 1509-1514. google scholar
  • V ijayan, M. M., Pereira, C., Grau, E. G., & Iwama, G. K. (1997). Metabolic responses associated with confinement stress in tilapia: the role of cortisol. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 116(1), 89-95. google scholar
  • V olpato, G. L., & Barreto, R. E. (2001). Environmental blue light prevents stress in the fish Nile tilapia. Brazilian Journal of Medical and Biological Research, 34(8), 1041-1045. google scholar
  • Wang, J., Wei, Y., Li, X., Cao, H., Xu, M., & Dai, J. (2007). The identification of heat shock protein genes in goldfish (Carassius auratus) and their expression in a complex environment in Gaobeidian Lake, Beijing, China. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145(3), 350-362. google scholar
  • Wedemeyer, G. A. (1997). Effects of rearing conditions on the health and physiological quality of fish in intensive culture. Fish Stress and Health In Aquaculture, 35-71. google scholar
  • Wendelaar Bonga, S. E. (1997). The stress response in fish. Physiological Reviews, 77(3), 591- 625. google scholar
  • Weyts, F. A. A., Cohen, N., Flik, G., & Verburg-van Kemenade, B. M. L. (1999). Interactions between the immune system and the hypothalamo-pituitary-interrenal axis in fish. Fish & Shellfish Immunology, 9(1), 1-20. google scholar
  • Wodemeyer, G. A., & McLeay, D. J. (1981). Methods for determining the tolerance of fishes to environmental stressors. In Stress and fish (pp. 247-275). Academic Press, Western Fisheries Research Center. google scholar
  • Wu, C. (1995). Heat shock transcription factors: structure and regulation. Annual Review of Cell and Developmental Biology, 11(1), 441-469. google scholar
  • Xing, T., Gao, F., Tume, R. K., Zhou, G., & Xu, X. (2019). Stress effects on meat quality: A mechanistic perspective. Comprehensive Reviews in Food Science and Food Safety, 18(2), 380-401. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Roychowdhury, P., Aftabuddin, M., & Pati, M.K. (2024). A Review on The Impact of Thermal Stress on Fish Biochemistry. Aquatic Sciences and Engineering, 39(2), 121-129. https://doi.org/10.26650/ASE20231341460


AMA

Roychowdhury P, Aftabuddin M, Pati M K. A Review on The Impact of Thermal Stress on Fish Biochemistry. Aquatic Sciences and Engineering. 2024;39(2):121-129. https://doi.org/10.26650/ASE20231341460


ABNT

Roychowdhury, P.; Aftabuddin, M.; Pati, M.K. A Review on The Impact of Thermal Stress on Fish Biochemistry. Aquatic Sciences and Engineering, [Publisher Location], v. 39, n. 2, p. 121-129, 2024.


Chicago: Author-Date Style

Roychowdhury, Prasun, and Mohammad Aftabuddin and Manoj Kumar Pati. 2024. “A Review on The Impact of Thermal Stress on Fish Biochemistry.” Aquatic Sciences and Engineering 39, no. 2: 121-129. https://doi.org/10.26650/ASE20231341460


Chicago: Humanities Style

Roychowdhury, Prasun, and Mohammad Aftabuddin and Manoj Kumar Pati. A Review on The Impact of Thermal Stress on Fish Biochemistry.” Aquatic Sciences and Engineering 39, no. 2 (May. 2024): 121-129. https://doi.org/10.26650/ASE20231341460


Harvard: Australian Style

Roychowdhury, P & Aftabuddin, M & Pati, MK 2024, 'A Review on The Impact of Thermal Stress on Fish Biochemistry', Aquatic Sciences and Engineering, vol. 39, no. 2, pp. 121-129, viewed 6 May. 2024, https://doi.org/10.26650/ASE20231341460


Harvard: Author-Date Style

Roychowdhury, P. and Aftabuddin, M. and Pati, M.K. (2024) ‘A Review on The Impact of Thermal Stress on Fish Biochemistry’, Aquatic Sciences and Engineering, 39(2), pp. 121-129. https://doi.org/10.26650/ASE20231341460 (6 May. 2024).


MLA

Roychowdhury, Prasun, and Mohammad Aftabuddin and Manoj Kumar Pati. A Review on The Impact of Thermal Stress on Fish Biochemistry.” Aquatic Sciences and Engineering, vol. 39, no. 2, 2024, pp. 121-129. [Database Container], https://doi.org/10.26650/ASE20231341460


Vancouver

Roychowdhury P, Aftabuddin M, Pati MK. A Review on The Impact of Thermal Stress on Fish Biochemistry. Aquatic Sciences and Engineering [Internet]. 6 May. 2024 [cited 6 May. 2024];39(2):121-129. Available from: https://doi.org/10.26650/ASE20231341460 doi: 10.26650/ASE20231341460


ISNAD

Roychowdhury, Prasun - Aftabuddin, Mohammad - Pati, ManojKumar. A Review on The Impact of Thermal Stress on Fish Biochemistry”. Aquatic Sciences and Engineering 39/2 (May. 2024): 121-129. https://doi.org/10.26650/ASE20231341460



TIMELINE


Submitted25.08.2023
Accepted25.01.2024
Published Online04.03.2024

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.