Research Article


DOI :10.26650/ASE201813   IUP :10.26650/ASE201813    Full Text (PDF)

Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System

Hakan Türker

This study evaluates the performance of plants grown at different times in the aquaponics system-a modern and sustainable production method—on water quality. In the established aquaponics system, this study monitored the growth performance of koi fish, Cyprinus carpio var. koi, and different plants (lettuce, Lactuca sativa, var. Crispa as a leafy plant and strawberry, Fragaria sp. as a fruit plant), pertaining to macro nutrient cycling and effects of plants on water quality parameters. Experiments in an aquaponics system comprising a biological filter and plant unit found that the removal rates of macro nutrients from the system were as follows: 1) 4295% for phosphate and 55.45% for nitrate in lettuce and 2) 35.49% for phosphate and 46.36% for nitrate in strawberries. It was observed that, in general, the rate of removing macro nutrients was higher in the lettuce experiment than in the strawberries one. The elimination rates of macro nutrients in this study show that increasing dissolved nutrients in an aquarium is effectively reduced, which confirms that this production system is an environmentally-friendly and sustainable method.
DOI :10.26650/ASE201813   IUP :10.26650/ASE201813    Full Text (PDF)

Akuaponik Yetiştiricilik Sisteminde Farklı Bitkilerin Besin Dinamiği

Hakan Türker

Bu çalışmada modern ve sürdürülebilir üretim metotlarından olan akuaponik sisteminde farklı dönemlerde yetiştirilen bitkilerin su kalitesindeki performansı değerlendirilmiştir. Kurulan akuaponik üretim sisteminde koi, Cyprinus carpio var. Koi, balıklarının ve farklı bitkilerin (yapraklı bitki olarak; marul, Lactuca sativa var. Crispa, ve meyveli bitki olarak; çilek, Fragaria sp.,) büyüme performansı, makro besinlerin döngüsü ve bitkilerin su kalitesi parametrelerine etkileri izlenmiştir. Balık ve bitki üretim üniteleri ve filtreleme ünitelerinden oluşan akuaponik üretim sistemde yapılan denemelerde makro besinlerin sistemden giderilme oranları marul uygulamasında fosfat için %42,95 ve nitrat için %55,45 ve çilek uygulamasında da fosfat için %35,49 ve nitrat için %46,36 olarak bulunmuştur. Çalışma sonucundan bulgulara göre marul ile yapılan denemede, genel olarak makro besinlerin ortamdan giderilmesi çilek ile yapılan denemelere göre daha yüksek olduğu görülmüştür. Bu çalışmada elde edilen makro besinlerin giderilme oranları, yetiştiricilikte artan çözünmüş besinlerin etkili bir şekilde azaldığını göstermiş bu üretim sisteminin çevre-dostu ve sürdürülebilir bir metot olduğunu doğrulamıştır.

PDF View

References

  • Adler, P.R., Harper J. K., Wade E.M., Takeda F., Summerfelt, S.T. (2000). Economic analysis of an aquaponic system for the integrated production of rainbow trout and plants. International Journal of Recirculating Aquaculture, 1, 15-34. google scholar
  • Chopin, T., Cooper J.A., Reid G., Cross S., Moore, C. (2012). Open-water integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4, 209-220. google scholar
  • Clarkson, R., Lane S.D. (1991). Use of small-scale nutrient film hydroponic technique to reduce mineral accumulation in aquarium water. Aquaculture and Fisheries Management, 22, 37-45. google scholar
  • COST. European Cooperation In Science and Tecnology. 2013. The EU Aquaponics Hub: Realising Sustainable Integrated Fish And Vegetable Production For The EU. COST Action FA1305. Retrieved from https://e-services.cost.eu/files/domain_files/FA/Action_FA1305/mou/FA1305-e.pdf (accessed 01.10.17) google scholar
  • Diver, S. (2006). Aquaponics – integration of hydroponics with aquaculture, Publication No: IP163, ATTRA, National Sustainable Agriculture Information Service, USA. google scholar
  • Ebeling, J.M., Losordo T.M., DeLong D.P. (1993). Engineering design and performance of a model aquaculture recirculating system (MARS) for secondary school aquaculture education programs. In: Techniques for Modern Aquaculture: Proceedings of an Aquacultural Engineering Conference, 21-23 June 1993, Spokane, Washington, USA. google scholar
  • Falls, B., Hudson L. (1999). Micro-Gravity Aquaculture and John Gleen. Aquaculture Magazine, Volume 25 (2). google scholar
  • Faucette, R.F. (1997). Evaluation of a Recirculating Aquaculture-Hydroponics System. Ph.D. Thesis. Oklahoma State University, Oklahoma, USA. google scholar
  • Hussain, T., Verma, A.K., Tiwari, V.K., Prakash, C., Rathore, G., Shete, A.P., Nuwansi, K.K.T. (2014). Optimizing koi carp, Cyprinus carpio var. Koi (Linnaeus, 1758), stocking density and nutrient recycling with spinach in an aquaponic system. Journal of the World Aquaculture Society, 45(6), 652-661. google scholar
  • Imanpoor, M.R., Ahmadi, A.R., Kordjazi, M. (2009). Effects of stocking density on survival and growth indices of common carp (Cyprinus carpio). Iranian Scientific Fisheries Journal, 18(3), 1-10. google scholar
  • Lennard, W.A., Leonard B.V. (2006). A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquaculture International, 14, 539–550. google scholar
  • Licamele, J. (2009). Biomass production and nutrient dynamics in an aquaponics system. The University of Arizona. google scholar
  • Losordo, T.M., Masser M.P., Rakocy J. (1992). Recirculating Aquaculture Tank Production Systems; An Overview of Critical Conservations. Southern Regional Aquaculture Center Publication No. 451. Stoneville, Mississippi, USA. google scholar
  • Mathieu, J.J., Wang J.K. (1995). “The effect of water velocity and nutrient concentration on plant nutrient uptake”, Aquacultural Engineering and Waste Management, Proceedings from Aquaculture Expo VIII and Aquaculture in the Mid-Atlantic Conference, June 24-29, 1995, Washington, D. C., USA. google scholar
  • MedCalc Statistical Software version 15.8 (2015) MedCalc Software bvba, Ostend, Belçika; Available from: https://www.medcalc.org. google scholar
  • Nijhof, M., Bovendeur, J. (1990). Fixed film nitrification characteristics in sea-water recirculation fish culture systems. Aquaculture, 87(2), 133-143. google scholar
  • Quillere, I., Marie D., Roux F., Gosse F., Morot-Gaudry J.F. (1993). An artificial productive ecosystem based on fish/bacteria/plant association; I. Design and management. Agriculture, Ecosystems and Environment, 47, 13-30. google scholar
  • Petrea, Ş. M., Cristea, V., Dediu, L., Contoman, M., Lupoae, P., Mocanu, M. (2013). Vegetable Production in an Integrated Aquaponic System with Rainbow Trout and Spinach. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Animal Science & Biotechnologies, 70(1), 45-54. google scholar
  • Rakocy, J.E., Nair, A. (1987). “Integrating fish culture and vegetable hydroponics: problems and prospects”, Virgin Islands Perspectives, Agriculture Research Notes, 2, 19–23. google scholar
  • Rakocy, J.E. (1989). Vegetable hydroponics and fish culture: a productive interface. Journal of World Aquaculture Society, 20(3), 42-47. google scholar
  • Rakocy, J.E., Masser, M.P., Losordo, T.M. (1992). Recirculating aquaculture tank production systems: Aquaponics-Integrating Fish and Plant Culture. SRAC Publication, No. 454. Southern Region Aquaculture Center, Mississippi State University, Stoneville, Mississippi, USA. google scholar
  • Rakocy, J.E., Hargreaves J.A. (1993). Integration of vegetable hydroponics with fish culture: A review. In: Techniques for Modern Aquaculture. Editör: Wang, J., St. Joseph, Michigan, USA. p.112-136. google scholar
  • Rakocy, J.E. (1997). Integrating tilapia culture with vegetable hydroponics in recirculating systems. In: Tilapia Aquaculture in the Americas, Editörler: B. A. Costa-Pierce, B. A., Rakocy J. E., Vol. 1. World Aquaculture Society, Louisiana, USA. p. 163-184. google scholar
  • Rakocy, J.E. (2007). An Integrated Fish and Field Crop System for Arid Areas, In: Ecological Aquaculture: The Evolution of the Blue Revolution. Editör: Costa-Pierce, B. A. Blackwell Science Ltd, Oxford, UK. p.263-285. google scholar
  • Seawright, D.E., Stickney R.R., Walker R.B. (1998). Nutrient dynamics in integrated aquaculture-hydroponics systems. Aquaculture, 160, 215-237. google scholar
  • Shelton, W.L., Smitherman, R.O., Jensen, G.L. (1981). Density related growth of grass carp, Ctenopharyngodon idella (Val.) in managed small impoundments in Alabama. Journal of Fish Biology, 18(1), 45-51. google scholar
  • Sun, W., Zhao, H., Wang, F., Liu, Y., Yang, J., Ji, M. (2017). Effect of salinity on nitrogen and phosphorus removal pathways in a hydroponic micro-ecosystem planted with Lythrum salicaria L. Ecological Engineering, 105, 205-210. google scholar
  • Summerfelt, S.T. (1998). An integrated approach to aquaculture waste management ın flowing water systems. Proceedings of the Second International Conference on Recirculating Aquaculture, 16-19 July, 1998, Virginia Polytechnic Institute and State University, Virginia, USA. google scholar
  • van Rijn, J., Rivera, G. (1990). Aerobic and anaerobic biofiltration in an aquaculture unit—nitrite accumulation as a result of nitrification and denitrification. Aquacultural Engineering, 9(4), 217-234. google scholar
  • Vijayan, M.M., Leatherland, J.F. (1988). Effect of stocking density on the growth and stress-response in brook charr, Salvelinus fontinalis. Aquaculture, 75(1-2), 159-170. google scholar
  • Williams E.M., Eddy, F.B. (1986). Chloride uptake in fresh water teleosts and its relationship to nitrite uptake and toxicity. Journal of Comparative Physiology B,156, 867–872. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Türker, H. (2018). Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System. Aquatic Sciences and Engineering, 33(3), 77-83. https://doi.org/10.26650/ASE201813


AMA

Türker H. Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System. Aquatic Sciences and Engineering. 2018;33(3):77-83. https://doi.org/10.26650/ASE201813


ABNT

Türker, H. Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System. Aquatic Sciences and Engineering, [Publisher Location], v. 33, n. 3, p. 77-83, 2018.


Chicago: Author-Date Style

Türker, Hakan,. 2018. “Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System.” Aquatic Sciences and Engineering 33, no. 3: 77-83. https://doi.org/10.26650/ASE201813


Chicago: Humanities Style

Türker, Hakan,. Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System.” Aquatic Sciences and Engineering 33, no. 3 (May. 2025): 77-83. https://doi.org/10.26650/ASE201813


Harvard: Australian Style

Türker, H 2018, 'Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System', Aquatic Sciences and Engineering, vol. 33, no. 3, pp. 77-83, viewed 2 May. 2025, https://doi.org/10.26650/ASE201813


Harvard: Author-Date Style

Türker, H. (2018) ‘Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System’, Aquatic Sciences and Engineering, 33(3), pp. 77-83. https://doi.org/10.26650/ASE201813 (2 May. 2025).


MLA

Türker, Hakan,. Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System.” Aquatic Sciences and Engineering, vol. 33, no. 3, 2018, pp. 77-83. [Database Container], https://doi.org/10.26650/ASE201813


Vancouver

Türker H. Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System. Aquatic Sciences and Engineering [Internet]. 2 May. 2025 [cited 2 May. 2025];33(3):77-83. Available from: https://doi.org/10.26650/ASE201813 doi: 10.26650/ASE201813


ISNAD

Türker, Hakan. Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System”. Aquatic Sciences and Engineering 33/3 (May. 2025): 77-83. https://doi.org/10.26650/ASE201813



TIMELINE


Submitted22.11.2017
Accepted19.04.2018

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE



Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.