Bioremoval of Chromium (VI) by Chlorella vulgaris Biomass Cultivated in the Presence of Carrot Pomace
This work shows the biosorption activity of Chlorella vulgaris, cultivated photoheterotrophically in the presence of an agro-industrial waste, for biological removal of Chromium (Cr) found in high amounts in wastewater. Firstly, the optimization of microalgal growth was examined under photoheterotrophic (BG-11 medium and 0.5 g/L of carrot pomace (CP) sugar) and photoautotrophic (BG-11 medium) conditions. Several significant parameters for biosorption of Cr (VI) onto dry C. vulgaris biomass, such as different concentrations of Cr (VI) (from 5 to 100 mg/L), biosorbent concentration (from 1 to 3 g/L), contact time (0-480 min), and pH (2-10) were optimized. The highest dry weight of microalgae was 0.81 g/L under photoheterotrophic conditions containing CP. Using dry microalgal biomass photoheterotrophically cultivated, the best Cr (VI) bioremoval was obtained as 100% at pH 2 using 3 g/L biosorbent, and 5.5-20.71 mg/L initial Cr (VI) concentrations. These findings suggest that C. vulgaris is an effective biosorbent for heavy metal bioremediation and waste management.
PDF View
References
- Ali Redha, A. (2020). Removal of heavy metals from aqueous media by biosorption. Arab Journal of Basic and Applied Sciences, 27(1), 183–193. https://doi.org/10. 1080/25765299.2020.1756177 google scholar
- Amin, M., & Chetpattananondh, P. (2019). Biochar from extracted marine Chlorella sp. residue for high efficiency adsorption with ultrasonication to remove Cr (VI), Zn (II) and Ni (II). Bioresource Technology, 289, 121578. https://doi.org/https:/ /doi.org/10.1016/j.biortech.2019.121578 google scholar
- Anwar, Z., Gulfraz, M., Imran, M., Asad, M. J., Shafi, A. I., Anwar, P., & Qureshi, R. (2012). Bioethanol productions from rice polish by optimization of dilute acid google scholar
- pretreatment and enzymatic hydrolysis. Pakistan Journal of Botany, 11(4), 169– 176. https://doi.org/10.5897/AJB11.1145 google scholar
- Ashour, M., Mansour, A. T., Alkhamis, Y. A., & Elshobary, M. (2024). Usage of Chlorella and diverse microalgae for CO2 capture - towards a bioenergy revolution. Frontiers in Bioengineering and Biotechnology, 12(August), 1–20. https://doi. org/10.3389/fbioe.2024.1387519 google scholar
- Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425–3431. https://doi.org/10.1016/j. apenergy.2010.12.064 google scholar
- Çakır, Z. B., Yılmaz, H., Ertan, F., Tanrıseven, A., & Özkan, M. (2024). Carrot pomace alone supports heterotrophic growth and lipid production of Auxenochlorella protothecoides. Biomass Conversion and Biorefinery, 14(6), 7315–7327. https:// doi.org/10.1007/s13399-022-02683-y google scholar
- Cheng, K., Qu, L., Mao, Z., Liao, R., Wu, Y., & Hassanvand, A. (2024). Biosorption of thorium onto Chlorella Vulgaris microalgae in aqueous media. Scientific Reports, 14(1), 1–13. https://doi.org/10.1038/s41598-024-70643-9 google scholar
- Dasharathy, S., Arjunan, S., Maliyur Basavaraju, A., Murugasen, V., Ramachandran, S., Keshav, R., & Murugan, R. (2022). Mutagenic, Carcinogenic, and Teratogenic Effect of Heavy Metals. Evidence-Based Complementary and Alternative Medicine, 2022. https://doi.org/10.1155/2022/8011953 google scholar
- Delrue, F., Álvarez-Díaz, P. D., Fon-Sing, S., Fleury, G., & Sassi, J. F. (2016). The environmental biorefinery: Using microalgae to remediate wastewater, a winwin paradigm. Energies, 9(3), 1–19. https://doi.org/10.3390/en9030132 google scholar
- Deng, X. Y., Xue, C. Y., Chen, B., Amoah, P. K., Li, D., Hu, X. L., & Gao, K. (2019). Glucose addition-induced changes in the growth and chemical compositions of a freshwater microalga Chlorella kessleri. Journal of Chemical Technology and Biotechnology, 94(4), 1202–1209. https://doi.org/10.1002/jctb.5870 google scholar
- EPA. (2024). IRIS Toxicological Review of Hexavalent Chromium [Cr(VI)]. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://iris.epa.gov/static/ pdfs/0144tr.pdf google scholar
- Fakhry, H., Ghoniem, A. A., Al-Otibi, F. O., Helmy, Y. A., El Hersh, M. S., Elattar, K. M., Saber, W. E. I. A., & Elsayed, A. (2023). A Comparative Study of Cr(VI) Sorption by Aureobasidium pullulans AKW Biomass and Its Extracellular Melanin: Complementary Modeling with Equilibrium Isotherms, Kinetic Studies, and Decision Tree Modeling. Polymers, 15(18). https://doi.org/10.3390/ polym15183754 google scholar
- Fomina, M., & Gadd, G. M. (2014). Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14. https://doi.org/ https://doi.org/10.1016/j.biortech.2013.12.102 google scholar
- Gokhale, S. V., Jyoti, K. K., & Lele, S. S. (2008). Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresource Technology, 99(9), 3600–3608. https://doi.org/ 10.1016/j.biortech.2007.07.039 google scholar
- Guha, S., Debnath, S., & Gayen, S. (2021). Biosorption of hexavalent chromium ( VI ) by Aspergillus nomius biomass and optimization of biosorption parameters. International Journal of Ecology and Environmental Sciences, 3(1), 461–467. google scholar
- Gül, Ü. D. (2022). Utilization of Surfactants to Augment Decolorization Process by Biosorbent. Nano World Journal, 8(4), 107–112. https://doi.org/https://doi.org/ 10.17756/nwj.2022-108 google scholar
- Hammed, A. M., Prajapati, S. K., Simsek, S., Simsek, H., Hammed, A. M., Prajapati, S. K., …, & Simsek, H. (2016). Growth regime and environmental remediation of microalgae. Algae, 31(3), 189–204. https://doi.org/http://dx.doi.org/10.4490/ algae.2016.31.8.28 google scholar
- Han, X., Wong, Y. S., Wong, M. H., & Tam, N. F. Y. (2007). Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. Journal of Hazardous Materials, 146(1–2), 65–72. https://doi.org/10.1016/j.jhazmat.2006.11.053 google scholar
- Hossini, H., Shafie, B., Niri, A. D., Nazari, M., Esfahlan, A. J., Ahmadpour, M., Nazmara, Z., Ahmadimanesh, M., Makhdoumi, P., Mirzaei, N., & Hoseinzadeh, E. (2022). A comprehensive review on human health effects of chromium: insights on induced toxicity. Environmental Science and Pollution Research, 29(47), 70686– 70705. https://doi.org/10.1007/s11356-022-22705-6 google scholar
- Ikram, A., Rasheed, A., Ahmad Khan, A., Khan, R., Ahmad, M., Bashir, R., & Hassan Mohamed, M. (2024). Exploring the health benefits and utility of carrots and google scholar
- carrot pomace: a systematic review. International Journal of Food Properties, 27(1), 180–193. https://doi.org/10.1080/10942912.2023.2301569 google scholar
- Khan, S., Das, P., Thaher, M. I., AbdulQuadir, M., Mahata, C., & Al Jabri, H. (2023). Utilization of nitrogen-rich agricultural waste streams by microalgae for the production of protein and value-added compounds. Current Opinion in Green and Sustainable Chemistry, 41, 100797. https://doi.org/https://doi.org/10.1016/ j.cogsc.2023.100797 google scholar
- Lin, T. S., & Wu, J. Y. (2015). Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresource Technology, 184, 100–107. https://doi.org/10.1016/j. biortech.2014.11.005 google scholar
- Martins, R., Sales, H., Pontes, R., Nunes, J., & Gouveia, I. (2023). Food Wastes and Microalgae as Sources of Bioactive Compounds and Pigments in a Modern Biorefinery: A Review. Antioxidants, 12(2), 1–27. https://doi.org/10.3390/antiox 12020328 google scholar
- Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a 030 google scholar
- Mirza, S. S., Eida, M., Jabeen, F., Iqtedar, M., Mahmood, A., Akmal, M., & Sabir, M. (2021). Biosorption of chromium from tannery effluent using carbon-activated algae granules of Chlorella vulgaris and Scenedesmus obliquus. International Journal of Environmental Science and Technology, 18(10), 3061–3070. https:// doi.org/10.1007/s13762-020-03033-z google scholar
- MordorIntelligence. (2024). Carrots and Turnips Market Size & Share Analysis -Growth Trends & Forecasts (2024 - 2029). https://www.mordorintelligence. com/industry-reports/carrots-and-turnips-market google scholar
- Musah, B. I., Wan, P., Xu, Y., Liang, C., & Peng, L. (2022a). Biosorption of chromium (VI) and iron (II) by acid-based modified Chlorella vulgaris and Spirulina platensis: isotherms and thermodynamics. International Journal of Environmental Science and Technology, 19(11), 11087–11102. https://doi.org/10.1007/s13762-021-03873-3 google scholar
- Musah, B. I., Wan, P., Xu, Y., Liang, C., & Peng, L. (2022b). Contrastive analysis of nickel (II), iron (II), copper (II), and chromium (VI) removal using modified Chlorella vulgaris and Spirulina platensis: Characterization and recovery studies. Journal of Environmental Chemical Engineering, 10(5), 108422. https:// doi.org/https://doi.org/10.1016/j.jece.2022.108422 google scholar
- Mustafa, S., Bhatti, H. N., Maqbool, M., & Iqbal, M. (2021). Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. Journal of Water Process Engineering, 41, 102009. https://doi. org/https://doi.org/10.1016/j.jwpe.2021.102009 google scholar
- Nagababu, A., Reddy, D. S., & Mohan, G. K. (2022). Toxic chrome removal from industrial effluents using marine algae: Modeling and optimization. Journal of Industrial and Engineering Chemistry, 114, 377–390. https://doi.org/https://doi.org/10. 1016/j.jiec.2022.07.027 google scholar
- Ordóñez, J. I., Cortés, S., Maluenda, P., & Soto, I. (2023). Biosorption of Heavy Metals with Algae: Critical Review of Its Application in Real Effluents. Sustainability (Switzerland), 15(6), 1–14. https://doi.org/10.3390/su15065521 google scholar
- Park, W. K., Moon, M., Kwak, M. S., Jeon, S., Choi, G. G., Yang, J. W., & Lee, B. (2014). Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: Increased production of biomass and FAMEs. Bioresource Technology, 171, 343– 349. https://doi.org/10.1016/j.biortech.2014.08.109 google scholar
- Pradhan, D., Sukla, L. B., Mishra, B. B., & Devi, N. (2019). Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production, 209, 617–629. https://doi.org/https://doi.org/10.1016/j.jclepro.2018. 10.288 google scholar
- Rajendran, S., Priya, A. K., Kumar, P. S., Hoang, T. K., Sekar, K., Chong, K. Y., …, & Show, P. L. (2022). A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere, 303, 135146. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.135146 google scholar
- Ramesh, B., Saravanan, A., Kumar, P. S., Yaashikaa, P. R., Thamarai, P., Shaji, A., & Rangasamy, G. (2023). A review on algae biosorption for the removal of hazardous pollutants from wastewater: Limiting factors, prospects and google scholar
- recommendations. Environmental Pollution, 327, 121572. https://doi.org/https: //doi.org/10.1016/j.envpol.2023.121572 google scholar
- Ramirez, K. D. R., Ñañez, K. B., Gomez, C. L. G., & Moreira, Í. T. A. (2024). Efficient PAHs removal and CO2 fixation by marine microalgae in wastewater using an airlift photobioreactor for biofuel production. Environmental Research, 261, 119672. https://doi.org/https://doi.org/10.1016/j.envres.2024.119672 google scholar
- Rattanapoltee, P., & Kaewkannetra, P. (2014). Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production. Applied Biochemistry and Biotechnology, 173(6), 1495–1510. https://doi.org/10. 1007/s12010-014-0949-4 google scholar
- Raymond Sunday, E. (2018). Phycoremediation: An Eco-Solution to Environmental Protection and Sustainable Remediation. Journal of Chemical, Environmental and Biological Engineering, 2(1), 5. https://doi.org/10.11648/j.jcebe.20180201.12 google scholar
- Rippka, R. (1988). Isolation and Purification of Cyanobacteria. Methods in Enzymology, 167(C). https://doi.org/10.1016/0076-6879(88)67004-2 google scholar
- Sarıkaya, A. G. (2019). Kinetic and thermodynamic studies of the biosorption of Cr (VI) in aqueous solutions by Agaricus campestris. Environmental Technology, 42(1), 72–80. https://doi.org/https://doi.org/10.1080/09593330.2019.1620867 google scholar
- Sheikh, Z., Amin, M., Khan, N., Khan, M. N., Sami, S. K., Khan, S. B., …, & Cheng, C. K. (2021). Potential application of Allium Cepa seeds as a novel biosorbent for efficient biosorption of heavy metals ions from aqueous solution. Chemosphere, 279, 130545. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.130545 google scholar
- Sibi, G. (2016). Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Energy & Environment, 1(2), 172–177. https://doi.org/https://doi.org/10.1016/j. gee.2016.08.002 google scholar
- Singh, S. K., Bansal, A., Jha, M. K., & Dey, A. (2012). An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater. Bioresource Technology, 104, 257–265. https://doi.org/10.1016/j. biortech.2011.11.044 google scholar
- Snell, F. D., & Snell, C. T. (1959). Colorimetric Methods of Analysis (3rd ed.). Van Nostrand Company. google scholar
- Soto-Ramírez, R., Tavernini, L., Lobos, M. G., Poirrier, P., & Chamy, R. (2023). Thermodynamic and kinetic insights into the adsorption mechanism of Cd (II) using Chlorella vulgaris cells with coverage modified by culture media engineering. Algal Research, 74, 103179. https://doi.org/https://doi.org/10. 1016/j.algal.2023.103179 google scholar
- Tattibayeva, Z., Tazhibayeva, S., Kujawski, W., Zayadan, B., & Musabekov, K. (2022). Peculiarities of adsorption of Cr (VI) ions on the surface of Chlorella vulgaris ZBS1 algae cells. Heliyon, 8(9), e10468. https://doi.org/10.1016/j.heliyon.2022. e10468 google scholar
- Tekin, N., Ergörünlü, B., Karatay, S. E., & Dönmez, G. (2023). Enhanced lipid accumulation of Chlorella vulgaris with agricultural waste under optimized photoheterotrophic conditions. Biomass Conversion and Biorefinery, 13(5), 4183–4194. https://doi.org/10.1007/s13399-021-01793-3 google scholar
- Urréjola-Madriñán, S., Paz-Armada, I., Cameselle, C., & Gouveia, S. (2022). Application of Central Composite Design for Optimization of Adsorption of Chromium(VI) by Spirulina platensis Algae Biomass. Water (Switzerland), 14(16). https://doi. org/10.3390/w14162539 google scholar
- WHO. (2003). Chromium in Drinking-water. chrome-extension://efaidnbmnnnib pcajpcglclefindmkaj/https://cdn.who.int/media/docs/default-source/wash-documents/wash-chemicals/chromium.pdf?sfvrsn=37abd598_6#:~:text=As a practical measure%2C 0.05,chromium can be re-evaluated. google scholar
- Zuliani, L., Frison, N., Jelic, A., Fatone, F., Bolzonella, D., & Ballottari, M. (2016). Microalgae cultivation on anaerobic digestate of municipalwastewater, sewage sludge and agro-waste. International Journal of Molecular Sciences, 17(10). https://doi.org/10.3390/ijms17101692 google scholar
Citations
Copy and paste a formatted citation or use one of the options to export in your chosen format
EXPORT
APA
Açıkel, E., Tekin, N., Bayraktar, H., Dönmez, G., & Ertuğrul Karatay, S. (2019). Bioremoval of Chromium (VI) by Chlorella vulgaris Biomass Cultivated in the Presence of Carrot Pomace. Aquatic Sciences and Engineering, 0(0), -. https://doi.org/10.26650/ASE.2025.1674813
AMA
Açıkel E, Tekin N, Bayraktar H, Dönmez G, Ertuğrul Karatay S. Bioremoval of Chromium (VI) by Chlorella vulgaris Biomass Cultivated in the Presence of Carrot Pomace. Aquatic Sciences and Engineering. 2019;0(0):-. https://doi.org/10.26650/ASE.2025.1674813
ABNT
Açıkel, E.; Tekin, N.; Bayraktar, H.; Dönmez, G.; Ertuğrul Karatay, S. Bioremoval of Chromium (VI) by Chlorella vulgaris Biomass Cultivated in the Presence of Carrot Pomace. Aquatic Sciences and Engineering, [Publisher Location], v. 0, n. 0, p. -, 2019.
Chicago: Author-Date Style
Açıkel, Eda, and Nazlıhan Tekin and Halime Bayraktar and Gönül Dönmez and Sevgi Ertuğrul Karatay. 2019. “Bioremoval of Chromium (VI) by Chlorella vulgaris Biomass Cultivated in the Presence of Carrot Pomace.” Aquatic Sciences and Engineering 0, no. 0: -. https://doi.org/10.26650/ASE.2025.1674813
Chicago: Humanities Style
Açıkel, Eda, and Nazlıhan Tekin and Halime Bayraktar and Gönül Dönmez and Sevgi Ertuğrul Karatay. “Bioremoval of Chromium (VI) by Chlorella vulgaris Biomass Cultivated in the Presence of Carrot Pomace.” Aquatic Sciences and Engineering 0, no. 0 (Sep. 2025): -. https://doi.org/10.26650/ASE.2025.1674813
Harvard: Australian Style
Açıkel, E & Tekin, N & Bayraktar, H & Dönmez, G & Ertuğrul Karatay, S 2019, 'Bioremoval of Chromium (VI) by Chlorella vulgaris Biomass Cultivated in the Presence of Carrot Pomace', Aquatic Sciences and Engineering, vol. 0, no. 0, pp. -, viewed 6 Sep. 2025, https://doi.org/10.26650/ASE.2025.1674813
Harvard: Author-Date Style
Açıkel, E. and Tekin, N. and Bayraktar, H. and Dönmez, G. and Ertuğrul Karatay, S. (2019) ‘Bioremoval of Chromium (VI) by Chlorella vulgaris Biomass Cultivated in the Presence of Carrot Pomace’, Aquatic Sciences and Engineering, 0(0), pp. -. https://doi.org/10.26650/ASE.2025.1674813 (6 Sep. 2025).
MLA
Açıkel, Eda, and Nazlıhan Tekin and Halime Bayraktar and Gönül Dönmez and Sevgi Ertuğrul Karatay. “Bioremoval of Chromium (VI) by Chlorella vulgaris Biomass Cultivated in the Presence of Carrot Pomace.” Aquatic Sciences and Engineering, vol. 0, no. 0, 2019, pp. -. [Database Container], https://doi.org/10.26650/ASE.2025.1674813
Vancouver
Açıkel E, Tekin N, Bayraktar H, Dönmez G, Ertuğrul Karatay S. Bioremoval of Chromium (VI) by Chlorella vulgaris Biomass Cultivated in the Presence of Carrot Pomace. Aquatic Sciences and Engineering [Internet]. 6 Sep. 2025 [cited 6 Sep. 2025];0(0):-. Available from: https://doi.org/10.26650/ASE.2025.1674813 doi: 10.26650/ASE.2025.1674813
ISNAD
Açıkel, Eda - Tekin, Nazlıhan - Bayraktar, Halime - Dönmez, Gönül - Ertuğrul Karatay, Sevgi. “Bioremoval of Chromium (VI) by Chlorella vulgaris Biomass Cultivated in the Presence of Carrot Pomace”. Aquatic Sciences and Engineering 0/0 (Sep. 2025): -. https://doi.org/10.26650/ASE.2025.1674813