Research Article


DOI :10.26650/ASE20241446250   IUP :10.26650/ASE20241446250    Full Text (PDF)

Impact of Various Carbon Sources on the Growth Efficiency, Antioxidant Efficacy, and Immunity of Clariid Catfish Clarias gariepinus (Burchell 1822)

Omoniyi Michal PopoolaTunde OlowolafeAyomide Miracle OyeladeBlessing Aderonke Oguntokun

The study examined the effects of various carbon sources on Clarias gariepinus (6.18±0.2g and 8±0.13 cm) growth efficiency, antioxidant efficacy, and immune function. The bioflocs system was developed using four carbon sources: tapioca, cassava flour, rice bran, and molasses. The fish were raised in concrete tanks for 10 weeks, and their water quality was monitored, after which they were challenged. The results demonstrated that the treatments significantly differed in terms of both survival rate and water quality parameters. Fish reared in biofloc systems exhibited significantly higher total cholesterol, total protein, superoxide dismutase (SOD), Lyzosome (LYZ), and Myeloperoxidase (MPO) activities compared with the control group. However, there was a reduction in the activities of ALT, AST, total glucose, and antiprotease in biofloc-treated C. gariepinus compared with the control. Expression of the IL-1 gene in the intestines was significantly elevated in fish raised in biofloc. Similarly, the transcription of GPX, GSR, IL-1, and IL-8 genes in the gut and liver of biofloc-treated fish was considerably enhanced. Applying biofloc to the rearing medium can enhance fish growth efficiency, immune system response, and the transcription of genes associated with immunity and antioxidant activities in C. gariepinus. The degree of immune system stimulation by the BFT system is impacted by the carbon source.


PDF View

References

  • Abdel Rahman, A. N., ElHady, M., & Shalaby, S. I. (2019). Efficacy of the dehydrated lemon peels on the immunity, enzymatic antioxidant capacity and growth of Nile tilapia (Oreochromis niloticus) and African catfish (Clarias gariepinus). Aquacul. 505, 92-97. doi:10.1016/j. aquaculture.2019.02.051 google scholar
  • Abduljabbar, A. A., Nour, A. M., Srour, T., El-Bermawy, N., Fayed, W. A., & Mansour, A. T. (2015). Intensive Nile tilapia (Oreochromis niloticus) production under biofloc technology systems. Glob. J. Fish. Aquacul. Res. 2(1), 64-80. google scholar
  • Ahmad, I., Babitha Rani, A. M., Verma, A. K., & Maqsood, M. (2017). Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquacul. Inter. 25(3), 1215-1226.doi:10.1007/s10499-016-0108-8 google scholar
  • Ahmad. I., Verma, H. A. K., Babitha Rani, A. M., Rathore, G., Saharan, N., & Gora, A.H. (2016). Growth, non-specific immunity, and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources, Aquacul. 457, 61-67. doi:10.1016/j.aquaculture.2016.02.011 google scholar
  • Ali, M., Soltanian, S., Akbary, P., & Gholamhosseini, A. (2018). Growth performance and lysozyme activity of rainbow trout fingerlings fed with vitamin E and selenium, marjoram (Origanum spp.), and ajwain (Trachyspermum ammi) extracts. J. App Anim Resear. 46 (2018) 650-660. .Avnimelech, Y., Kochva, M., & Diab, S. (1994). Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio. Israeli J. Aquacul. Bamid., 46(3), 119-131. google scholar
  • Bakhshi, F., Najdegerami, E.H., Manaffar, R., Tukmechi, A., & Farah, K.R. (2018). Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquacul. 484, 259-267. google scholar
  • Bene, C., Arthur, R., Norbury, H., Allison, E. H., Beveridge, M., Bush, S., Campling, L., Leschen, W., Little, D., Squires, D., Thilsted, S. H., Troell, M., & Williams, M. (2016). Contribution of Fisheries and Aquaculture to Food Security and Poverty Reduction: Assessing the Current Evidence. World Devel. 79, 177-196. doi:10.1016/j. worlddev.2015.11.007 google scholar
  • Borgia, V. F., Thatheyus, A., J. Murugesan, A. G., Alexander, S. C. P., & Geetha, I. (2018). Effects of effluent from electroplating industry on the immune response in the freshwater fish, Cyprinus carpio, Fish Shellfish Immun. 79, 86-92. google scholar
  • Chan, C. Y., Tran, N., Pethiyagoda, S., Crissman, C. C., Sulser, T. B., & Phillips, M. J. (2019). Prospects and challenges of fish for food security in Africa. Glob. Food Sec. 20, 17-25. doi:10.1016/J.GFS.2018.12.002 google scholar
  • Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquacul. 356, 351-356. google scholar
  • De Schryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008). The basics of bioflocs technology: the added value for aquaculture, Aquacul. 277, 125-137. google scholar
  • De Schryver, P., Sinha, A.K., Baruah, K., Verstraete, W., Boon, N., De Boeck, G., & Bossier, P. (2010). Poly-beta-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl. Microbiol. Biotechnol. 86 1535-1541. google scholar
  • Diamond, J. (1993). Sediment Toxicity Assessment; JSTOR: New York, NY, USA,. google scholar
  • Ekasari, J., Hanif Azhar, M., Surawidjaja, E. H., Nuryati, S., De Schryver, P., & Bossier, P. (2014). Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunol. 41(2), 332-339. doi:10.1016/j.fsi.2014.09.004 google scholar
  • El-Sayed, A.-F. M. (2020). Intensive culture. Tilapia Culture, 103-134. doi:10.1016/B978-0-12-816509-6.00006-9 google scholar
  • Fauji, H., Budiardi, T., & Ekasari, J. (2018). Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in bioflocbased nursery production with different stocking densities. Aquac. Res., 49, 1339-1346. google scholar
  • Gallardo-Colli, A., Perez-Rostro, C. I., & Hernandez-Vergara, M. P. (2019). Reuse of water from biofloc technology for intensive culture of Nile tilapia (Oreochromis niloticus): effects on productive performance, organosomatic indices and body composition. Inter. Aqua. Res. 11(1), 43-55. google scholar
  • Haney, S.A., Platko, J.V. Oxender, D.L. & Calvo, J.M., (1992). Lrp, a leucineresponsive protein, regulates branched-chain amino acid transport genes in Escherichia coli. J. Bacteriol. 174,108-115 google scholar
  • Haridas, H., Verma, A. K., Rathore, G., Prakash, C., Sawant, P. B., & Babitha-Rani, A. M. (2017). Enhanced growth and immune-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquac. Res., 48, 4346-4355. google scholar
  • Hermesz, E.& Ferencz, A. (2009). Identification of two phospholipid hydroperoxide glutathione peroxidase (gpx4) genes in common carp. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, 150, 101106. google scholar
  • Hwihy, H., Zeina, A., Abu Husien, M., & El-Damhougy, K. (2021). Impact of Biofloc technology on growth performance and biochemical parameters of Oreochromis niloticus. Egyptian J. Aquat.Biol Fish. 25, 761-774. google scholar
  • Imai, H., & Nakagawa, Y. (2003). Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Rad. Biol. Med. 34(2), 145-169. google scholar
  • Keiko, M., Iwashita, P., Nakandakare, I. B., Terhune, J. S., Wood, T., & Jos, M. (2015). Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus. Fish Shellfish Immunol. 43(1), 60-6. google scholar
  • Kheti, B., Kamilya, D., Choudhury, J., Parhi, J., Debbarma, M., & Singh, S.T. (2017). Dietary microbial floc potentiates immune response, immune relevant gene expression and disease resistance in rohu, Labeo rohita (Hamilton, 1822) fingerlings, Aquacul. 468 501-507. google scholar
  • Kim, J. H., Kang, Y. J., Kim, K. I., Kim, S. K., & Kim, J. H. (2019). Toxic effects of nitrogenous compounds (ammonia, nitrite, and nitrate) on acute toxicity and antioxidant responses of juvenile olive flounder, Paralichthys olivaceus. Env.Toxicol. Pharmacol. 67, 73-78. google scholar
  • Kim, J. H., Cho, J. H., Kim, S. R., & Hur, Y. B. (2020). Toxic effects of waterborne ammonia exposure on hematological parameters, oxidative stress and stress indicators of juvenile hybrid grouper, Epinephelus lanceolatus Jx Epinephelus fuscoguttatus $. Env Toxicol. Pharmacol. 80, 103453. google scholar
  • Kishawy, A. T., Sewid, A. H., Nada, H. S., Kamel, M. A., El-Mandrawy, S. A., Abdelhakim, T. M., El-Murr, A. E. I., Nahhas, E. N., Hozzein, W. N., & Ibrahim, D. (2020). Mannanoligosaccharides as a carbon source in Biofloc boost dietary plant protein and water quality, growth, immunity and Aeromonas hydrophila resistance in Nile tilapia (Oreochromis niloticus). Anim. 10, 1724 google scholar
  • Kumar, S., Sahu, N. P., Pal, A. K., Choudhury, D., Yengkokpam, S., & Mukherjee, S.C. (2005). Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. rohita juveniles. Fish Shellfish Immunol. 19, 331-344. google scholar
  • Liu, G., Ye, Z., Liu, D., Zhao, J., Sivaramasamy, E., Deng, Y., & Zhu, S. (2018). Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems. Fish Shellfish Immunol. 81, 416-422. google scholar
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-AACT method. Method. 25(4), 402-408. doi:10.1006/meth.2001.1262 google scholar
  • Long, L., Yang, J., Li, Y., Guan, C., & Wu, F. (2015). Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquacul.448, 135-141. google scholar
  • Lumsangkul, C., Tapingkae, W., Sringarm, K., Jaturasitha, S., Le Xuan, C., Wannavijit, S., Outama, P., & Doan, H. Van. (2021). Effect of Dietary Sugarcane Bagasse Supplementation on Growth Performance, Immune Response, and Immune and Antioxidant-Related Gene Expressions of Nile Tilapia (Oreochromis niloticus) Cultured under Biofloc System. Anim. doi: 10.3390/ani11072035 google scholar
  • Mansour, A.T., & Esteban, M.A. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 64, 202-209. google scholar
  • Menaga, M., Felix, S., Charulatha, M., Gopalakannan, A., & Panigrahi, A. (2019). Effect of in-situ and ex-situ biofloc on immune response of Genetically Improved Farmed Tilapia. Fish Shellfish Immunol. 92, 698-705. doi:10.1016/j.fsi.2019.06.031 google scholar
  • Nabi, M. M. (2021). Biofloc technology in aquaculture and its potentiality : A review MA Halim , S Biofloc technology in aquaculture and its potentiality : A review. January 2019. google scholar
  • Ndondo, J. T. K. (2023). Review of the Food and Agriculture Organisation (FAO) Strategic Priorities on Food Safety 2023. In Food Safety-New Insights. IntechOpen. google scholar
  • Popoola, O. M., Behera, B. K., & Kumar, V. (2023). Dietary silver nanoparticles as immunostimulant on rohu (Labeo rohita): Effects on the growth, cellular ultrastructure, immune-gene expression, and survival against Aeromonas hydrophila. Fish Shellfish Immunol. Rep. 4, 100080. doi:10.1016/j.fsirep.2022.100080 google scholar
  • Popoola, O. M., & Miracle, O. A. (2022). Performance of Different Biomaterials as Carbon Sources on the Immunological Response and Oxidative Status of African Catfish Clarias gariepinus in Biofloc Systems. Aquacul. Stu. 22(2). doi:10.4194/AQUAST800 google scholar
  • Qiao, G., Zhang, M., Li, Y., Xu, C., Xu, D. H., Zhao, Z., Zhang, J., & Li, Q. (2018). Biofloc technology (BFT): An alternative aquaculture system for prevention of Cyprinid herpesvirus 2 infection in gibel carp (Carassius auratus gibelio). Fish Shellfish Immunol. 83, 140-147. doi:10.1016/j.fsi.2018.09.015 google scholar
  • Quade, M. J., & Roth, J. A. (1997). A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet. Immunol Immunopat. 58(3-4), 239-248. doi:10.1016/S0165-2427(97)00048-2. google scholar
  • Ray, A.J., Seaborn, G., Leffler, J.W., Wilde, S.B., Lawson, A., & Browdy, C.L. (2010). Characterization of microbial communities in minimalexchange, intensive aquaculture systems and the effects of suspended solids management, Aquac. 310, 130-138. google scholar
  • Ring0, E., Olsen, R. E., Gifstad, T. 0., Dalmo, R. A., Amlund, H., Hemre, G. I., & Bakke, A. M. (2010). Prebiotics in aquaculture: a review. Aquac. Nutr. 16(2), 117-136. google scholar
  • Sakai, M., Hikima, J. I., & Kono, T. (2021). Fish cytokines: current research and applications. Fish. Sci. 87, 1-9. google scholar
  • Schaperclaus, W., Kulow, H., & Schreckenbach, K. (1991). Hematological and serological technique, In: Kothekar, V.S. (Ed.), Fish disease, 2nd ed. Connaught circus, Vol. 1. Oxonian press, New Delhi:Gulab primani, pp. 71-108. google scholar
  • Shourbela, R. M., Khatab, S. A., Hassan, M. M., Van Doan, H., & Dawood, M. A. (2021). The effect of stocking density and carbon sources on the oxidative status, and nonspecific immunity of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Animals, 11, 184. google scholar
  • Skouras, A., Broeg, K., Dizer, H., von Westernhagen, H., Hansen, P. D., & Steinhagen, D. (2003). The use of innate immune responses as biomarkers in a program of integrated biological effects monitoring on flounder (Platichthys flesus) from the southern North Sea. Helgol. Mar. Res. 57, 190-198. google scholar
  • Shah, B. R., & Mraz, J. (2020). Advances in nanotechnology for sustainable aquaculture and fisheries. Rev. Aquacul. 12(2), 925-942. doi:10.1111/ RAQ.12356 google scholar
  • Tan, C., Sun, D., Tan, H., Liu, W., Luo, G., & Wei, X., (2018). Effects of stocking density on growth, body composition, digestive enzyme levels and blood biochemical parameters of Anguilla marmorata in a recirculating aquaculture system. Turk. J. Fish. Fish. Aquat. Sci. 18 (1), 9-16. google scholar
  • Upadhyay, A., Swain, H. S., Das, B. K., Ramteke, M. H., Kumar, V., Krishna, G., Mohanty, B. P., Chadha, N. K., & Das, A. K. (2022). Stocking density matters in open water cage culture: Influence on growth, digestive enzymes, haemato-immuno and stress responses of Puntius sarana (Ham, 1822). Aquacul, 547, 737445. doi:10.1016/j.aquaculture.2021.737445 google scholar
  • Van Doan, H., Hoseinifar, S. H., Elumalai, P., Tongsiri, S., Chitmanat, C., Jaturasitha, S., & Doolgindachbaporn, S. (2018). Effects of orange peel-derived pectin on innate immune response, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus) cultured under indoor biofloc system, Fish Shellfish Immunol. 80 5662. doi:10.1016/j.fsi.2018.05.049. google scholar
  • Verma, A. K., Rani, A.B., Rathore, G., Saharan, N., & Gora, A. H. (2016). Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. AquacuI. 457, 61-67. google scholar
  • Wang, J., Yu, W., Gao, M., Zhang, F., Gu, C., Yu, Y., & Wei, Y. (2015). Impact of obstructive sleep apnea syndrome on endothelial function, arterial stiffening, and serum inflammatory markers: an updated metaanalysis and metaregression of 18 studies. J. Ame. Heart Assoc. 4(11), e002454. google scholar
  • Wang, T., & Secombes, C. J. (2013). The cytokine networks of adaptive immunity in fish. Fish & Shellfish immunol, 35(6), 1703-1718. google scholar
  • Yi, Z., Li, X., Luo, W., Xu, Z., Ji, C., Zhang, Y., & Zhang, X. (2018). Feed conversion ratio, residual feed intake and cholecystokinin type A receptor gene polymorphisms are associated with feed intake and average daily gain in a Chinese local chicken population. J. Animal Sci. Biotech, 9, 1-9. google scholar
  • Yu, Y., Jae-Ho C., Ju-Hyeong L., A-Hyun J., Kyung M. L., & Jun-Hwan K. (2023). “Biofloc Technology in Fish Aquaculture: A Review” Antioxidants 12, (2), 398. doi:10.3390/antiox12020398 google scholar
  • Yu, Z., Li, L., Zhu, R., Li, M., & Wu, L. F. (2020). Effects of bioflocs with different C/N ratios on growth, immunological parameters, antioxidants and culture water quality in Opsariichthys kaopingensis Dybowski. Aquacul. Res. 51, 805-815. google scholar
  • hang, N., Luo, G., Tan, H., Liu, W., & Hou, Z. (2016). Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly—P—hydroxybutyric as a carbon source. Aquacul, 464, 710-717. doi.10.1016/j.aquaculture.2016.08.013 google scholar
  • Youse, M., Jouladeh—roudbar, A., & Kafash, A. (2020). Using endemic freshwater fi shes as proxies of their ecosystems to identify high priority rivers for conservation under climate change. 112(February). doi:10.1016/j.ecolind.2020.106137 google scholar
  • Zhou, Q., Wang, L., Wang, H., Xie, F., & Wang, T. (2012). Effect of dietary vitamin C on the growth performance and innate immunity of juvenile cobia (Rachycentron canadum). Fish Shellfish Immunol. 32(6), 969975. doi:10.1016/j.fsi.2012.01.024 google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Popoola, O.M., Olowolafe, T., Oyelade, A.M., & Oguntokun, B.A. (2024). Impact of Various Carbon Sources on the Growth Efficiency, Antioxidant Efficacy, and Immunity of Clariid Catfish Clarias gariepinus (Burchell 1822). Aquatic Sciences and Engineering, 39(4), 229-238. https://doi.org/10.26650/ASE20241446250


AMA

Popoola O M, Olowolafe T, Oyelade A M, Oguntokun B A. Impact of Various Carbon Sources on the Growth Efficiency, Antioxidant Efficacy, and Immunity of Clariid Catfish Clarias gariepinus (Burchell 1822). Aquatic Sciences and Engineering. 2024;39(4):229-238. https://doi.org/10.26650/ASE20241446250


ABNT

Popoola, O.M.; Olowolafe, T.; Oyelade, A.M.; Oguntokun, B.A. Impact of Various Carbon Sources on the Growth Efficiency, Antioxidant Efficacy, and Immunity of Clariid Catfish Clarias gariepinus (Burchell 1822). Aquatic Sciences and Engineering, [Publisher Location], v. 39, n. 4, p. 229-238, 2024.


Chicago: Author-Date Style

Popoola, Omoniyi Michal, and Tunde Olowolafe and Ayomide Miracle Oyelade and Blessing Aderonke Oguntokun. 2024. “Impact of Various Carbon Sources on the Growth Efficiency, Antioxidant Efficacy, and Immunity of Clariid Catfish Clarias gariepinus (Burchell 1822).” Aquatic Sciences and Engineering 39, no. 4: 229-238. https://doi.org/10.26650/ASE20241446250


Chicago: Humanities Style

Popoola, Omoniyi Michal, and Tunde Olowolafe and Ayomide Miracle Oyelade and Blessing Aderonke Oguntokun. Impact of Various Carbon Sources on the Growth Efficiency, Antioxidant Efficacy, and Immunity of Clariid Catfish Clarias gariepinus (Burchell 1822).” Aquatic Sciences and Engineering 39, no. 4 (Nov. 2024): 229-238. https://doi.org/10.26650/ASE20241446250


Harvard: Australian Style

Popoola, OM & Olowolafe, T & Oyelade, AM & Oguntokun, BA 2024, 'Impact of Various Carbon Sources on the Growth Efficiency, Antioxidant Efficacy, and Immunity of Clariid Catfish Clarias gariepinus (Burchell 1822)', Aquatic Sciences and Engineering, vol. 39, no. 4, pp. 229-238, viewed 20 Nov. 2024, https://doi.org/10.26650/ASE20241446250


Harvard: Author-Date Style

Popoola, O.M. and Olowolafe, T. and Oyelade, A.M. and Oguntokun, B.A. (2024) ‘Impact of Various Carbon Sources on the Growth Efficiency, Antioxidant Efficacy, and Immunity of Clariid Catfish Clarias gariepinus (Burchell 1822)’, Aquatic Sciences and Engineering, 39(4), pp. 229-238. https://doi.org/10.26650/ASE20241446250 (20 Nov. 2024).


MLA

Popoola, Omoniyi Michal, and Tunde Olowolafe and Ayomide Miracle Oyelade and Blessing Aderonke Oguntokun. Impact of Various Carbon Sources on the Growth Efficiency, Antioxidant Efficacy, and Immunity of Clariid Catfish Clarias gariepinus (Burchell 1822).” Aquatic Sciences and Engineering, vol. 39, no. 4, 2024, pp. 229-238. [Database Container], https://doi.org/10.26650/ASE20241446250


Vancouver

Popoola OM, Olowolafe T, Oyelade AM, Oguntokun BA. Impact of Various Carbon Sources on the Growth Efficiency, Antioxidant Efficacy, and Immunity of Clariid Catfish Clarias gariepinus (Burchell 1822). Aquatic Sciences and Engineering [Internet]. 20 Nov. 2024 [cited 20 Nov. 2024];39(4):229-238. Available from: https://doi.org/10.26650/ASE20241446250 doi: 10.26650/ASE20241446250


ISNAD

Popoola, OmoniyiMichal - Olowolafe, Tunde - Oyelade, AyomideMiracle - Oguntokun, BlessingAderonke. Impact of Various Carbon Sources on the Growth Efficiency, Antioxidant Efficacy, and Immunity of Clariid Catfish Clarias gariepinus (Burchell 1822)”. Aquatic Sciences and Engineering 39/4 (Nov. 2024): 229-238. https://doi.org/10.26650/ASE20241446250



TIMELINE


Submitted02.03.2024
Accepted16.07.2024
Published Online09.09.2024

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.