Research Article


DOI :10.26650/ASE2025.1668358   IUP :10.26650/ASE2025.1668358    Full Text (PDF)

Seasonal Algal Diversity and Environmental Parameters of Streams of Samur-Yalama National Park, Azerbaijan

Yusif AbiyevShakar MukhtarovaAytaj MuradovaLada MarkovaGulnara Hasanova

This study provides the first comprehensive assessment of freshwater algal diversity and ecological status in the streams of Samur-Yalama National Park, Azerbaijan—a region of high biodiversity but limited baseline data. Seasonal surveys in 2023 recorded 46 algal taxa, including 37 first regional records, across ten rivers spanning contrasting hydrochemical environments. Heterokontophyta dominated (69.6% of taxa), with epilithic and benthic habitats supporting the highest diversity. Simpson’s Dominance Index (0.120–0.131) and saprobic index (0.69–0.89) indicated high diversity and predominantly oligosaprobic to β-mesosaprobic conditions, reflecting mostly unpolluted, welloxygenated waters. Principal Component Analysis identified mineralization (sulfate, calcium, TDS) and nutrient gradients as key drivers of algal community structure. Sensitive diatoms such as Fragilaria capucina and Achnanthidium minutissimum dominated pristine sites, while tolerant taxa like Gomphonema parvulum and Nitzschia palea increased under moderate enrichment. These findings establish a regional reference for algal-based biomonitoring, highlight the vulnerability of semi-arid stream ecosystems to environmental change, and provide essential baseline data for conservation planning, future monitoring, and ecosystem management in the South Caucasus and comparable dryland regions.


PDF View

References

  • Abbasov, R., Karimov, R., & Jafarova, N. (2022). EcosYstem services in Azerbaijan: Value and losses. Springer. https://doi.org/10.1007/978-3-031-08770-7 google scholar
  • Abiyev, Y., Eker, R., Açıl, A., & Coskuner, K. A. (2025). Assessing fire susceptibility of threatened plant species in temperate forest ecosystem of Azerbaijan using Maxent method. Croatian Journal of Forest Engineering, 46(1), 141-154. https:// doi.org/10.5552/crojfe.2025.2456 google scholar
  • AfanasYev, D. F., Kamnev, A. N., Sushkova, E. G., & Steinhagen, S. (2016). The field guide to Ulva species found in the Black, Azov, Caspian Seas and eastern Baltic. Pero Publishing House. ISBN: 978-5-906883-16-2 google scholar
  • AfanasYev, D. F., Sushkova, E. G., & Kamnev, A. N. (2020). Marine and brackish species of Cladophoraceae and Aegagropila found in the Ponto-Caspian basin: The field guide. Pero Publishing House. https://repositorY.marine-research.ru/handle/ 299011/13575 google scholar
  • American Public Health Association (APHA). (2005). Standard methods for the examination of water and wastewater. American Public Health Association. google scholar
  • Ballah, M., Bhoyroo, V., & Neetoo, H. (2019). Assessment of the physico-chemical quality and extent of algal proliferation in water from an impounding reservoir prone to eutrophication. Journal of Ecology and Environment, 43, Article 5. https://doi.org/10.1186/s41610-018-0094-z google scholar
  • Barber, J., & Andersson, B. (1992). Too much of a good thing: Light can be bad for photosynthesis. Trends in Biochemical Sciences, 17(2), 61-66. https://doi.org/ 10.1016/0968-0004(92)90104-O google scholar
  • Barinova, S., & Kukhaleishvili, L. (2017). Diversity and ecology of algae and cyanobacteria in the Enguri River, Georgia. Elixir Bio Science. 104. 45934-45947). google scholar
  • Beardall, J., & Raven, J. A. (2016). Carbon acquisition by microalgae. In M. A. Borowitzka, J. Beardall, & J. A. Raven (Eds.), The physiology of microalgae (Developments in Applied Phycology, Vol. 6, pp. 89-100). Springer. https://doi.org/10.1007/978-3-319-24945-2_4 google scholar
  • Bellino, A., & Baldantoni, D. (2023). Biodiversity, Ecology and Distribution of Mediterranean Charophytes in Southern Italy. Plants (Basel, Switzerland), 12(19), 3434. https://doi.org/10.3390/plants12193434 google scholar
  • Blankenship, R. E. (2014). Molecular mechanisms of photosYnthesis (2nd ed.). WileY-Blackwell. ISBN 978-1-4051-8975-0 google scholar
  • Butterwick, C., HeaneY, S. I., & Talling, J. F. (2005). DiversitY in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology, 50(2), 291-300. https://doi.org/10.1111/j.1365-2427.2004.01317.x google scholar
  • Catalanotti, C., Yang, W., Posewitz, M. C., & Grossman, A. R. (2013). Fermentation metabolism and its evolution in algae. Frontiers in Plant Science, 4, 150. https://doi.org/10.3389/fpls.2013.00150 google scholar
  • Chen, J., Wang, S., Yan, Z., Zhao, X., Feng, M., Wang, J., & Zhou, Q. (2023). eDNA of zooplankton reveals the ecological communitY thresholds for keY environmental factors in the BaiYangdian Lake aquatic ecosYstem. Environmental Sciences Europe, 35(1), 91. https://doi.org/10.1186/s12302-023-00761-0 google scholar
  • Cottingham, K. L., Weathers, K. C., Ewing, H. A., Greer, M. L., & CareY, C. C. (2021). Predicting the effects of climate change on freshwater cYanobacterial blooms requires consideration of the complete cYanobacterial life cYcle. Journal of Plankton Research, 43(1), 10-19. https://doi.org/10.1093/plankt/fbaa059 google scholar
  • DubeY, D., Kumar, S., & Dutta, V. (2022). Algae and macrophytes as bioindicators of freshwater ecosystem. CRC Press. https://doi.org/10.1201/9781003220824-33 google scholar
  • Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., & Smith, J. E. (2009). Global analYsis of nitrogen and phosphorus limitation of primarY producers in freshwater, marine and terrestrial ecosYstems. Ecology Letters, 10(12), 1135-1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x google scholar
  • Elser, J. J., Marzolf, E. R., & Goldman, C. R. (1990). Phosphorus and nitrogen limitation of phYtoplankton growth in the freshwaters of North America: A review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences, 47(7), 1468-1477. https://doi.org/10.1139/f90-165 google scholar
  • Elser, J. J., Chrzanowski, T. H., Sterner, R. W., Schampel, J. H., & Foster, D. K. (1995). Elemental ratios and the uptake and release of nutrients bY phYtoplankton and bacteria in three lakes of the Canadian shield. Microbial ecology, 29(2), 145-162. https://doi.org/10.1007/BF00167161 google scholar
  • Falkowski, P. G., & Raven, J. A. (2007). Aquatic photosynthesis (2nd ed.). Princeton UniversitY Press. https://doi.org/10.1515/9781400849727 google scholar
  • Fanton, H., Affre, L., Franquet, E., et al. (2023). Heavy ionic pollution disrupts assemblages of algae, macroinvertebrates and riparian vegetation. Environmental Pollution, 331(Part 1), 121791. https://doi.org/10.1016/j.envpol. 2023.121791 google scholar
  • Flores-MoYa, A., Posudin, Y. I., Fernândez, J. A., Figueroa, F. L., & Kawai, H. (2002). Photomovement of the swarmers of the brown algae Scytosiphon lomentaria and Petalonia fascia: Effect of photon irradiance, spectral composition and UV dose. Journal of Photochemistry and Photobiology B: Biology, 66(2), 134140. https://doi.org/10.1016/S1011-1344(02)00233-6 google scholar
  • Fourtanier, E., & Kociolek, J. P. (2009). Catalogue of Diatom Names. California AcademY of Sciences. google scholar
  • Glibert P. M. (2020). Harmful algae at the complex nexus of eutrophication and climate change. Harmful algae, 91, 101583. https://doi.org/10.1016/j.hal.2019. 03.001 google scholar
  • Gollerbach, M. M., & PolYanskY, V. I. (1951). Freshwater algae and their study: Identifier of freshwater algae of the USSR (Vol. 2). California AcademY of Sciences. google scholar
  • Graham, L. E., Graham, J. M., & Wilcox, L. W. (2009). Algae (2nd ed.). Benjamin Cummings. google scholar
  • Hao, B., Wu, H., You, J., Xing, W., & Cai, Y. (2021). Biomass and physiological responses of green algae and diatoms to nutrient availability differ between the presence and absence of macrophytes. Ecological Indicators, 129, 107987. https://doi. org/10.1016/j.ecolind.2021.107987 google scholar
  • HeckY, R. E., Campbell, P., & Hendzel, L. L. (1993). The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnology and Oceanography, 38(4), 709-724. https://doi.Org/10.4319/lo.1993.38.4.0709 google scholar
  • Jin, X., Zhang, Y., Li, Y., & Wang, Z. (2023). Suspended phosphorus pulses (TP ~0.05 mg L1 vs. SRP < 0.01 mg L') can sustain bloom events under low-flow conditions. Science of The Total Environment, 876, 162669. https://doi.org/10. 1016/j.scitotenv.2023.162669 google scholar
  • Khalil, S., Mahnashi, M. H., Hussain, M., Zafar, N., Waqar-Un-Nisa, Khan, F. S., Afzal, U., Shah, G. M., Niazi, U. M., Awais, M., & Irfan, M. (2021). Exploration and determination of algal role as bioindicator to evaluate water qualitY - probing fresh water algae. Saudi Journal of Biological Sciences, 28(10), 5728-5737. https://doi.org/10.1016/j.sjbs.2021.06.004 google scholar
  • Kirkwood, A.E. and Henley, W.J. (2006). Algal communıty dynamıcs and halotolerance ın a terrestrıal, hypersalıne envıronment. Journal of Phycology, 42: 537-547. https://doi.org/10.1111/j.1529-8817.2006.00227.x. google scholar
  • Kristiansen, J. (1996). Dispersal of freshwater algae — a review. Hydrobiologia 336, 151-157 (1996). https://doi.org/10.1007/BF00010829 google scholar
  • Lilisti, Z., Zamdial, Hartono, D., Brata, B., & Simarmata, M. (2021). The structure and composition of macrozoobenthos communitY in varYing water qualities in Kalibaru waters, Bengkulu, Indonesia. Biodiversitas, 22(1), 106-112. https://doi. org/10.13057/biodiv/d220115 google scholar
  • Lürling, M., Mello, M. M. E., van Oosterhout, F., de Senerpont Domis, L., & Marinho, M. M. (2018). Response of natural cYanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Frontiers in Microbiology, 9, 1851. https://doi.org/10.3389/fmicb.2018.01851 google scholar
  • Magurran, A. E. (1988). Ecological diversity and its measurement. Princeton UniversitY Press. google scholar
  • Muxtarova, Ş. C., & Muradova, A. B. (2021). Xaçmaz va Şabran rayonlarında Yerlaşan kontinental sututarlarında Yayılan diatom Yosunların elektron mikroskopik üsullarla öYranilmasi [Electron microscopic study of diatom algae distributed in continental wetlands located in Khachmaz and Shabran regions]. Azerbaijan Journal of Botany, 2, 50-57. google scholar
  • Muniz, I. P. (1990). Freshwater acidification: Its effects on species and communities of freshwater microbes, plants and animals. Proceedings of the Royal Society of Edinburgh Section B: Biological Sciences, 97, 227-254. https://doi.org/10.1017/ S0269727000005364 google scholar
  • Naselli-Flores, L., & Padisâk, J. (2023). EcosYstem services provided By marine and freshwater phYtoplankton. Hydrobiologia, 850, 2691-2706. https://doi.org/10. 1007/s10750-022-04795-Y google scholar
  • NeplYukhina, A. A., Saifutdinov, R. A., Paskhina, A. A., & Korobushkin, D. I. (2022). Diatom diversity, distribution and ecology in Mediterranean ecosYstems of Abrau Peninsula, north-western Caucasus. Biodiversity data journal, 10, e89405. https://doi.org/10.3897/BDJ.10.e89405 google scholar
  • Nong, X., Guan, X., Chen, L., et al. (2024). Identifying environmental impacts on planktonic algal proliferation and associated risks: A five-Year observation study in Danjiangkou Reservoir, China. Scientific Reports, 14, Article 21568. https://doi.org/10.1038/s41598-024-70408-4 google scholar
  • Nunes, P., Roland, F., Amado, A. M., Resende, N. da S., & Cardoso, S. J. (2022). Responses of phYtoplanktonic chlorophyll-a composition to inorganic turbiditY caused by mine tailings. Frontiers in Environmental Science, 9, Article 605838. https:// doi.org/10.3389/fenvs.2021.605838 google scholar
  • Nuriyeva, M. A. (2019). Diversity and taxonomic structure of CYanoprokarYota in the Azerbaijani sector of the Caspian Sea. Plant & Fungal Research, 2(2), 2-10. google scholar
  • Odum, E. P., & Barrett, G. W. (2005). Fundamentals of ecologY (5th ed.). Thomson Brooks/Cole. google scholar
  • Oemke, M.P., Burton, T.M. (1986). Diatom colonization dynamics in a lotic system. Hydrobiologia 139, 153. https://doi.org/10.1007/BF00028099) google scholar
  • Paerl, H. W., & Huisman, J. (2009). Climate change: A catalYst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 1(1), 2737. https://doi.org/10.1111/j.1758-2229.2008.00004.x google scholar
  • Paerl, H. W., & Otten, T. G. (2013). Harmful cYanobacterial blooms: Causes, consequences, and controls. Microbial Ecology, 65(4), 995-1010. https://doi. org/10.1007/s00248-012-0159-Y google scholar
  • Paerl, H. W., Hall, N. S., & Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic- and climatic-induced change. Science of the Total Environment, 409(10), 1739-1745. https://doi.org/10.1016/j. scitotenv.2010.12.001 google scholar
  • Persoone, G., & De Pauw, N. (1979). SYstems of biological indicators for water qualitY assessment (pp. 39-75). ECSC, EEC, EAEC Luxembourg. google scholar
  • Reinl, K. L., Harris, T. D., North, R. L., Almela, P., Berger, S. A., Bizic, M., Burnet, S. H., Grossart, H.-P., Ibelings, B. W., Jakobsson, E., Knoll, L. B., Lafrancois, B. M., McElarney, Y., Morales-Williams, A. M., Obertegger, U., Ogashawara, I., Paule-Mercado, M. C., Peierls, B. L., Rusak, J. A., ... Yokota, K. (2023). Blooms also like it cold. Limnology and Oceanography Letters, 8(6), 546-564. https://doi.org/10. 1002/lol2.10316 google scholar
  • Romanov, R. E., Zhakova, L. V., Efremov, A. N., KonechnaYa, G. Y., Boldina, O. N., Afanasyev, D. F., Akatova, T. V., & Melnikov, D. G. (2025). The CharophYtes (Characeae, Charophyceae) of the Caucasus. Plants, 14(12), Article 1788. https:// doi.org/10.3390/plants14121788 google scholar
  • Sânchez, M., Perez, G., Izaguirre, I., & Pizarro, H. (2013). Influence of underwater light climate on periphYton and phYtoplankton communities in shallow lakes from the Pampa Plain (Argentina) with contrasting steadY states. Journal of Limnology, 72(1), 62-78. https://doi.org/10.4081/jlimnol.2013.e6 google scholar
  • Schmid, A. M. M. (1994). Aspects of morphogenesis and function of diatom cell walls with implications for taxonomY. Protoplasma, 181, 43-60. google scholar
  • Seckbach, J., & Kociolek, P. (2011). The diatom world. Springer. google scholar
  • Smith, V. H. (1983). Low nitrogen to phosphorus ratios favor dominance bY blue-green algae in lake phYtoplankton. Science, 221(4611), 669-671. https://doi.org/ 10.1126/science.221.4611.669 google scholar
  • Stancheva, R., & Sheath, R. G. (2016). Benthic soft-bodied algae as bioindicators of stream water quality. Knowledge and Management of Aquatic Ecosystems, 417, Article 15. https://doi.org/10.1051/kmae/2016002 google scholar
  • Stenger-Kovâcs, C., Beres, V. B., Buczkö, K., Tapolczai, K., Padisâk, J., Selmeczg G. B., & LengYel, E. (2023). Diatom community response to inland water salinization: a review. Hydrobiologia, 850(20), 4627-4663. https://doi.org/10.1007/s10750-023-05167-w google scholar
  • Tasnim, N., Karmakar, D., Hasan, R., et al. (2023). Effect of light intensitY and pH on cell density assessed bY spectrophotometry for the unicellular algae Chlorella vulgaris. American Journal of Plant Sciences, 14, 472-481. https://doi.org/10. 4236/ajps.2023.144031 google scholar
  • U.S. Environmental Protection Agency. (2019). National recommended water qualitY criteria—Aquatic life criteria table (EPA-822-R-19-001). https://www.epa. gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table google scholar
  • Van der Werff, A. (1999). A new method of concentrating and cleaning diatoms and other organisms. Verhandlungen des Internationalen Vereins für Limnologie, 12, 276-277. google scholar
  • Volkova, E. A., Zimens, E. G., & VishnYakov, V. S. (2020). New taxonomic records of Zygnemataceae (Charophyta) from the Lake Baikal region. Limnology and Freshwater Biology, 6, 1090-1100. google scholar
  • Vuorio, K., Jarvinen, M., & Kotamaki, N. (2020). Phosphorus thresholds for bloom-forming cyanobacterial taxa in boreal lakes. Hydrobiologia, 847, 4389-4400. https://doi.org/10.1007/s10750-019-04161-5 google scholar
  • Wehr, J. D., Sheath, R. G., & Kociolek, J. P. (2015). Freshwater algae of North America: Ecology and classification (2nd ed.). Academic Press. google scholar
  • Williams, D. M. (1985). MorphologY, taxonomY and inter-relationships of the ribbed araphid diatoms from the genera Diatoma and Meridion (Diatomaceae: BacillariophYta). Bibliotheca Diatomologica, 8, 1-228. google scholar
  • Zahradkova, S., & Soldan, T. (2008). Saprobic system. In S. E. Jorgensen & B. D. Fath (Eds.), Encyclopedia of Ecology (pp. 3242-3343). Elsevier BV. google scholar
  • Zepernick, B. N., Gann, E. R., Martin, R. M., Pound, H. L., Krausfeldt, L. E., Chaffin, J. D., & Wilhelm, S. W. (2021). Elevated pH conditions associated with Microcystis spp. blooms decrease viabilitY of the cultured diatom Fragilaria crotonensis and natural diatoms in Lake Erie. Frontiers in Microbiology, 12, Article 598736. https://doi.org/10.3389/fmicb.2021.598736 google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Abiyev, Y., Mukhtarova, S., Muradova, A., Markova, L., & Hasanova, G. (2025). Seasonal Algal Diversity and Environmental Parameters of Streams of Samur-Yalama National Park, Azerbaijan. Aquatic Sciences and Engineering, 40(3), 192-205. https://doi.org/10.26650/ASE2025.1668358


AMA

Abiyev Y, Mukhtarova S, Muradova A, Markova L, Hasanova G. Seasonal Algal Diversity and Environmental Parameters of Streams of Samur-Yalama National Park, Azerbaijan. Aquatic Sciences and Engineering. 2025;40(3):192-205. https://doi.org/10.26650/ASE2025.1668358


ABNT

Abiyev, Y.; Mukhtarova, S.; Muradova, A.; Markova, L.; Hasanova, G. Seasonal Algal Diversity and Environmental Parameters of Streams of Samur-Yalama National Park, Azerbaijan. Aquatic Sciences and Engineering, [Publisher Location], v. 40, n. 3, p. 192-205, 2025.


Chicago: Author-Date Style

Abiyev, Yusif, and Shakar Mukhtarova and Aytaj Muradova and Lada Markova and Gulnara Hasanova. 2025. “Seasonal Algal Diversity and Environmental Parameters of Streams of Samur-Yalama National Park, Azerbaijan.” Aquatic Sciences and Engineering 40, no. 3: 192-205. https://doi.org/10.26650/ASE2025.1668358


Chicago: Humanities Style

Abiyev, Yusif, and Shakar Mukhtarova and Aytaj Muradova and Lada Markova and Gulnara Hasanova. Seasonal Algal Diversity and Environmental Parameters of Streams of Samur-Yalama National Park, Azerbaijan.” Aquatic Sciences and Engineering 40, no. 3 (Aug. 2025): 192-205. https://doi.org/10.26650/ASE2025.1668358


Harvard: Australian Style

Abiyev, Y & Mukhtarova, S & Muradova, A & Markova, L & Hasanova, G 2025, 'Seasonal Algal Diversity and Environmental Parameters of Streams of Samur-Yalama National Park, Azerbaijan', Aquatic Sciences and Engineering, vol. 40, no. 3, pp. 192-205, viewed 14 Aug. 2025, https://doi.org/10.26650/ASE2025.1668358


Harvard: Author-Date Style

Abiyev, Y. and Mukhtarova, S. and Muradova, A. and Markova, L. and Hasanova, G. (2025) ‘Seasonal Algal Diversity and Environmental Parameters of Streams of Samur-Yalama National Park, Azerbaijan’, Aquatic Sciences and Engineering, 40(3), pp. 192-205. https://doi.org/10.26650/ASE2025.1668358 (14 Aug. 2025).


MLA

Abiyev, Yusif, and Shakar Mukhtarova and Aytaj Muradova and Lada Markova and Gulnara Hasanova. Seasonal Algal Diversity and Environmental Parameters of Streams of Samur-Yalama National Park, Azerbaijan.” Aquatic Sciences and Engineering, vol. 40, no. 3, 2025, pp. 192-205. [Database Container], https://doi.org/10.26650/ASE2025.1668358


Vancouver

Abiyev Y, Mukhtarova S, Muradova A, Markova L, Hasanova G. Seasonal Algal Diversity and Environmental Parameters of Streams of Samur-Yalama National Park, Azerbaijan. Aquatic Sciences and Engineering [Internet]. 14 Aug. 2025 [cited 14 Aug. 2025];40(3):192-205. Available from: https://doi.org/10.26650/ASE2025.1668358 doi: 10.26650/ASE2025.1668358


ISNAD

Abiyev, Yusif - Mukhtarova, Shakar - Muradova, Aytaj - Markova, Lada - Hasanova, Gulnara. Seasonal Algal Diversity and Environmental Parameters of Streams of Samur-Yalama National Park, Azerbaijan”. Aquatic Sciences and Engineering 40/3 (Aug. 2025): 192-205. https://doi.org/10.26650/ASE2025.1668358



TIMELINE


Submitted30.03.2025
Accepted09.07.2025
Published Online29.07.2025

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE



Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.