Research Article


DOI :10.26650/ASE2024.1558443   IUP :10.26650/ASE2024.1558443    Full Text (PDF)

The Source of DPPH Radical Scavenging Activity: Insights from Freshwater Streams Isolated in Giresun

Sibel Altürk KaracaElif Neyran Soylu

Microalgae produce bioactive compounds, specifically antioxidants, that play a central role in fighting oxidative stress. It is a major factor in the development of aging, cancer and cardiovascular diseases. In this study five freshwater microalgal species from Giresun, Türkiye, namely Chlorococcum hypnosporum, Stichococcus bacillaris, Chlorella vulgaris, Chlorolilaea pamvotia, and Desmodesmus opoliensis were isolated. They were stringently screened for antioxidant activity. DPPH (2,2-diphenyl-1-picrylhydrazyl) assay was the method followed in evaluating antioxidant capacity. Chlorococcum hypnosporum showed higher antioxidant activity among the other species. However, Stichococcus bacillaris and Chlorella vulgaris showed lower antioxidant activity under the experimental conditions. The results of the our study show that microalgae are a good source of high-potential antioxidant compounds and they can be used in therapeutic and health related fields as eco-friendly alternatives compared to the currently globally used synthetic derivatives.


PDF View

References

  • Abdel-Kerim, O. H., Gheda, S. F., İsmail, G. A., Abo-Shady, A. M. (2020). Phytochemical screening and antioxidant activity of Chlorella vulgaris. Delta Journal of Science, 41, 81–91. google scholar
  • Akar, Z., Küçük, M., Doğan, H. (2017). A new colorimetric DPPH• scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 640-647. doi: 10.1080/14756366.2017.1284068. google scholar
  • André, C. M., Larondelle, Y., Evers, D. (2010). Dietary antioxidants and oxidative stress from a human and plant perspective: A review. Current Nutrition & Food Science, 6, 2-12. google scholar
  • Aşıkkutlu, B., Akköz, C. (2022). Determination of pigment content and antioxidant activities of some Chlorophyta species isolated from Altınapa Dam Lake (Konya/Turkey). Journal of Anatolian Environmental and Animal Sciences, 7(2), 227-234. google scholar
  • Ávila-Román, J., García-Gil, S., Rodríguez-Luna, A., Motilva, V., Talero, E. (2021). Antiinflammatory and anticancer effects of microalgal carotenoids. Marine Drugs, 19(10), 531. https://doi.org/10.3390/md19100531 google scholar
  • Ayaz Seyhan, S. (2019). DPPH antioxidant analysis reconsidered. Batman University Journal of Life Sciences, 9(2), 125. google scholar
  • Aydın, S. (2012). Giresun İlinden Toplanan Flavoparmelia caperata (L.) Hale (Parmeliaceae) ve Roccella phycopsis Ach. (Roccellaceae) likenlerinin antibakteriyal ve antioksidan özelliklerinin araştırılması [Master's thesis, Giresun Üniversitesi Biyoloji Anabilim Dalı, Giresun]. google scholar
  • Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., Chang, C. M. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27(4), 1326. doi: 10.3390/molecules27041326. google scholar
  • Berthon, J. Y., Nachat-Kappes, R., Bey, M., Cadoret, J. P., Renimel, I., Filaire, E. (2017). Marine algae as attractive source to skin care. Free Radical Research, 51(5), 555–567. google scholar
  • Bhalamurugan, G. L., Valerie, O., Mark, L. (2018). Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research, 23(3), 229–241. google scholar
  • Biehler, E., Bohn, T. (2010). Methods for assessing aspects of carotenoid bioavailability. Current Nutrition & Food Science, 6, 44-69. google scholar
  • Black, H. S., Boehm, F., Edge, R., Truscott, T. G. (2020). The benefits and risks of certain dietary carotenoids that exhibit both anti- and pro-oxidative mechanisms—A comprehensive review. Antioxidants, 9(3), 264. https://doi.org/10.3390/antiox 9030264 google scholar
  • Blois, M. S. (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181(4608), 1199-1200. doi: 10.1038/1811199a0. google scholar
  • Borowitzka, M. A. (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology, 7(1), 3–15. https:// doi.org/10.1007/BF00003748 google scholar
  • Bouayed, J., Bohn, T. (2010). Exogenous antioxidants—Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Medicine and Cellular Longevity, 3(4), 228-237. doi: 10.4161/oxim.3.4.12858. google scholar
  • Boussiba, S. (2000). Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiologia Plantarum, 108, 111–117. google scholar
  • Boussiba, S., Vonshak, A. (1991). Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiology, 32, 1077–1082. google scholar
  • Brand-Williams, W., Cuvelier, M. E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi: 10.1016/S0023-6438(95)80008-5. google scholar
  • Butchi Akondi, R., Kumar, P., Annapurna, A., Pujari, M. (2011). Protective effect of rutin and naringin on sperm quality in streptozotocin (STZ) induced type 1 diabetic rats. Iranian Journal of Pharmaceutical Research, 10(3), 585–596. google scholar
  • Caple, F., Williams, E.A., Spiers, A., Tyson, J., Burtle, B., Daly, A.K., Mathers, J.C., Hesketh, J.E.(2010). Inter-individual variation in DNA damage and base excision repair in young, healthy non-smokers: effects of dietary supplementation and genotype. British Journal of Nutrition, 103:1585–1593. doi: 10.1017/ S0007114509993540. google scholar
  • Çakmak, F., Özkan, A. İ., Haşimi, N., Demirci, Ö., Ciniviz, M., Varışlı, L., Kılınç, E., & Tolan, V. (2024). Investigation of biological activities of some microalgae extract isolated from Kabakli Pond (Diyarbakır) Turkey. ADYU Journal of Science, 14(2), 59–77. https://doi.org/10.37094/adyujsci.1566859. google scholar
  • Demiriz, T., 2008. Bazı Alglerin Antibakteriyal Etkileri, Ankara Üniversitesi , Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dali, Yüksek Lisans Tezi. google scholar
  • Demorais, M. G., Silvavaz, B. D., Morais, E. G., Vieira Costa, J. A. (2015). Biologically active metabolites synthesized by microalgae. Journal of Natural Products, 75(3), 311– 335. google scholar
  • Finkel, T., Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239-247. doi: 10.1038/35041687. google scholar
  • Ganeshpurkar, A., Saluja, A. K. (2016). The pharmacological potential of rutin. Saudi Pharmaceutical Journal. https://doi.org/10.1016/j.jsps.2016.04.025. google scholar
  • Goiris K, Muylaert K, Fraeye I, Foubert I, Brabanter JD, Cooman LD (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24:1477–1486. google scholar
  • Goiris, K., Van Colen, W., Wilches, I., León-Tamariz, F., De Cooman, L., Muylart, K. (2015). Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Research, 7, 51–57. google scholar
  • Guiry, M.D. & Guiry, G.M. 2023. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. searched on 2023-11-27. google scholar
  • Gülçin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(2), 651–715. https://doi.org/10.1007/s00204-020-02689-3 google scholar
  • Gürlek, C., Yarkent, Ç., Köse, A., Tuğcu, B., Gebeloğlu, İ. K., Öncel, S. Ş., Elibol, M. (2019). Screening of antioxidant and cytotoxic activities of several microalgal extracts with pharmaceutical potential. Health Technoogy. 10, 111–117 https://doi.org/ 10.1007/s12553-019-00388-3. google scholar
  • Gürlek, C., Yarkent, Ç., Köse, A., Oral, İ., Öncel, Ş. Ş., Elibol, M. (2020). Evaluation of several microalgal extracts as bioactive metabolites as potential pharmaceutical compounds. In Advances in Biochemical Engineering/ Biotechnology (pp. 267–272). https://doi.org/10.1007/978-3-030-17971-7_41 google scholar
  • Hajialyani, M., Hosein Farzaei, M., Echeverría, J., Nabavi, S. M., Uriarte, E., Sobarzo-Sánchez, E. (2019). Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules, 24(3), 648. https://doi.org/10.3390/molecules 24030648 google scholar
  • Hamed, I. (2016). The evolution and versatility of microalgal biotechnology: A review. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1104–1123. google scholar
  • Hassanpour, S. H., Doroudi, A. (2023). Review of the antioxidant potential of different types of microalgae. Aquaculture Reports, 25, 101045. doi:10.1016/ j.aqrep.2023.101045. google scholar
  • Jahnke, L. (1999). Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. Journal of Photochemistry and Photobiology, 48(1), 68–74. google scholar
  • Kamel, K. M., Abd El-Raouf, O. M., Metwally, S. A., Abd El-Latif, H. A., El-Sayed, M. E. (2014). Hesperidin and rutin, antioxidant citrus flavonoids, attenuate cisplatin-induced nephrotoxicity in rats. Journal of Biochemistry and Molecular Toxicology,28(7), 312–319. google scholar
  • Kaminski, K. A., Bonda, T. A., Korecki, J., Musial, W. J. (2002). Oxidative stress and neutrophil activation—the two keystones of ischemia/reperfusion injury. International Journal of Cardiology, 86, 41-59. doi: 10.1016/ s0167-5273(02)00189-4. google scholar
  • Lorenz, R. T., Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18(4), 160–167. google scholar
  • Lortou, U., Gkelis, S. (2023). Antibacterial activity, pigments, and biomass content of microalgae isolated from Greece. Journal of Biological Research-Thessaloniki, 30, 8. google scholar
  • Mavrommatis, A., Tsiplakou, E., Zerva, A., Pantiora, P. D., Georgakis, N. D., Tsintzou, G. P., Madesis, P., Labrou, N. E. (2023). Microalgae as a sustainable source of antioxidants in animal nutrition, health and livestock development. Antioxidants, 12(10), 1882. https://doi.org/10.3390/antiox12101882 google scholar
  • Mourelle, M. L., Gómez, C. P., Legido, J. L. (2017). The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics, 4(2), 46. google scholar
  • Ng, H. S., Chew, L. L. (2020). Valuable Compounds Produced by Microalgae. In V. Bisaria (Ed.), Handbook of Biorefinery Research and Technology (pp. 473-504). Dordrecht: Springer Netherlands. doi: 10.1007/978-94-024-1947-2_19. google scholar
  • Novoveská, L., Ross, M. E., Stanley, M. S., Pradelles, R., Wasiolek, V., Sassi, J. F. (2019). Microalgal carotenoids: A review of production, current markets, regulations, and future directions. Marine Drugs, 17(11), 640. google scholar
  • Odjadjare, E. C., Mutanda, T., Olaniran, A. O. (2017). Potential biotechnological application of microalgae: A critical review. Critical Reviews in Biotechnology, 37(1), 37–52. google scholar
  • Okarter, N., Liu, R. H. (2010). Health benefits of whole grain phytochemicals. Critical Reviews in Food Science and Nutrition, 50(3), 193-208. google scholar
  • Olasehinde, T. A., Olaniran, A. O., & Okoh, A. I. (2020). Cholinesterase inhibitory activity, antioxidant properties, and phytochemical composition of Chlorococcum sp. extracts. Journal of Food Biochemistry, 44(9), e13395. https://doi.org/10.1111/ jfbc.13395 google scholar
  • Paek, K. Y., Murthy, H. N., Zhong, J. J. (2014). Production of biomass and bioactive compounds using bioreactor technology. Springer. google scholar
  • Patil, S. L., Mallaiah, S. H., Patil, R. K. (2013). Antioxidative and radioprotective potential of rutin and quercetin in Swiss albino mice exposed to gamma radiation. Journal of Medical Physics, 38(2), 87–92. google scholar
  • Pawase, P. A., Goswami, C., Shams, R., Pandey, V. K., Tripathi, A., Rustagi, S., Darshan, G. (2024). A Conceptual Review on Classification, Extraction, Bioactive Potential, and Role of Phytochemicals in Human Health. Future Foods, 9, 100313. doi: 10.1016/j.fufo.2023.100313. google scholar
  • Pereira, L., Cotas, J., Valado, A. (2024). Antioxidants from microalgae and their potential impact on human well-being. Exploration of Drug Science, 2, 292-321. doi: 10.37349/eds.2024.00048. google scholar
  • Phaniendra, A., Jestadi, D. B., Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11-26. doi: 10.1007/s12291-014-0446-0. google scholar
  • Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. doi: 10.1155/2017/8416763. google scholar
  • Ponnampalam, E. N., Kiani, A., Santhiravel, S., Holman, B. W. B., Lauridsen, C., Dunshea, F. R. (2022). The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality—Invited Review. Animals, 12(23), 3279. doi: 10.3390/ani12233279. google scholar
  • Ratnam, D. V., Ankola, D. D., Bhardwaj, V., Sahana, D. K., Kumar, M. N. (2006). Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. Journal of Controlled Release, 113, 189-207. google scholar
  • Rodriguez-Garcia, I., Guil-Guerrero, J. L. (2008). Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods. Food Chemistry, 108(3), 1023–1026. google scholar
  • Sassi, K. K., Silva, J., Calixto, C., Sassi, R., Sassi, C. F. (2019). Metabolites of interest for food technology produced by microalgae from Northeast Brazil. Revista Ciência Agronômica, 50(1), 54–65. google scholar
  • Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., Setzer, W. N., Calina, D., Cho, W. C., Sharifi-Rad, J. (2020). Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Frontiers in Physiology, 11, 694. doi: 10.3389/fphys.2020.00694. google scholar
  • Sharma, O. P., Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202-1205. google scholar
  • Stoica, R., Velea, S., Ilie, L., Calugareanu, M., Ghimis, S. B., Ion, R. M. (2013). The influence of ethanol concentration on the total phenolics and antioxidant activity of Scenedesmus opoliensis algal biomass extracts. Revue Chimique (Bucharest), 64, 304–306. google scholar
  • Swapnil, P., Meena, M., Kumar Singh, S., Dhuldhaj, U. P., Marwal, A. (2021). Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Current Plant Biology, 26, 100203. https://doi.org/10.1016/j.cpb.2021.100203 google scholar
  • Takaichi, S. (2011). Carotenoids in algae: Distributions, biosyntheses and functions. Marine Drugs, 9(6), 1101–1118. google scholar
  • Takyar, M. B. T., Khajavi, S. H., Safari, R. (2019). Evaluation of antioxidant properties of Chlorella vulgaris and Spirulina platensis and their application in order to extend the shelf life of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage. LWT - Food Science and Technology, 100, 244–249. google scholar
  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44-84. doi: 10.1016/ j.biocel.2006.07.001. google scholar
  • Vasanthi, H. R., ShriShriMal, N., Das, D. K. (2012). Phytochemicals from plants to combat cardiovascular disease. Current Medicinal Chemistry, 19(14), 2242-2251. doi: 10.2174/092986712800229078. google scholar
  • Vehapi, M., Yilmaz, A., Özçimen, D. (2018). Antifungal activities of Chlorella vulgaris and Chlorella minutissima microalgae cultivated in Bold's basal medium, wastewater and tree extract water against Aspergillus niger and Fusarium oxysporum. Romanian Biotechnological Letters. google scholar
  • Wallace, T. C., Bailey, R. L., Blumberg, J. B., Burton-Freeman, B., Chen, C. O., Crowe-White, K. M., Drewnowski, A., Hooshmand, S., Johnson, E., Lewis, R. (2020). Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Critical Reviews in Food Science and Nutrition, 60(13), 2174-2211. doi: 10.1080/10408398.2019.1632258. google scholar
  • Wehr, J., Sheath, R.G. 2003. Freshwater Algae Of North America: Ecology And Classification Academic Press, 917 Pp. google scholar
  • Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., Takriff, M. S. (2014). An overview: Biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research, 21, 6. google scholar
  • Yang, J., Guo, J., Yuan, J. (2008). Rutin'in in vitro antioksidan özellikleri. Düşük ağırlık, 41, 1060–1066. google scholar
  • Yu, M., Chen, M., Gui, J., Huang, S., Liu, Y., Shentu, H., He, J., Fang, Z., Wang, W., Zhang, Y. (2019). Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo. International Journal of Biological Macromolecules, 137, 139–150. google scholar
  • Zhu, Y., Sang, S. (2017). Phytochemicals in whole grain wheat and their healthpromoting effects. Molecular Nutrition & Food Research, 61, 1600852. doi: 10.1002/mnfr.201600852. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Altürk Karaca, S., & Soylu, E.N. (2025). The Source of DPPH Radical Scavenging Activity: Insights from Freshwater Streams Isolated in Giresun. Aquatic Sciences and Engineering, 40(3), 144-152. https://doi.org/10.26650/ASE2024.1558443


AMA

Altürk Karaca S, Soylu E N. The Source of DPPH Radical Scavenging Activity: Insights from Freshwater Streams Isolated in Giresun. Aquatic Sciences and Engineering. 2025;40(3):144-152. https://doi.org/10.26650/ASE2024.1558443


ABNT

Altürk Karaca, S.; Soylu, E.N. The Source of DPPH Radical Scavenging Activity: Insights from Freshwater Streams Isolated in Giresun. Aquatic Sciences and Engineering, [Publisher Location], v. 40, n. 3, p. 144-152, 2025.


Chicago: Author-Date Style

Altürk Karaca, Sibel, and Elif Neyran Soylu. 2025. “The Source of DPPH Radical Scavenging Activity: Insights from Freshwater Streams Isolated in Giresun.” Aquatic Sciences and Engineering 40, no. 3: 144-152. https://doi.org/10.26650/ASE2024.1558443


Chicago: Humanities Style

Altürk Karaca, Sibel, and Elif Neyran Soylu. The Source of DPPH Radical Scavenging Activity: Insights from Freshwater Streams Isolated in Giresun.” Aquatic Sciences and Engineering 40, no. 3 (Aug. 2025): 144-152. https://doi.org/10.26650/ASE2024.1558443


Harvard: Australian Style

Altürk Karaca, S & Soylu, EN 2025, 'The Source of DPPH Radical Scavenging Activity: Insights from Freshwater Streams Isolated in Giresun', Aquatic Sciences and Engineering, vol. 40, no. 3, pp. 144-152, viewed 14 Aug. 2025, https://doi.org/10.26650/ASE2024.1558443


Harvard: Author-Date Style

Altürk Karaca, S. and Soylu, E.N. (2025) ‘The Source of DPPH Radical Scavenging Activity: Insights from Freshwater Streams Isolated in Giresun’, Aquatic Sciences and Engineering, 40(3), pp. 144-152. https://doi.org/10.26650/ASE2024.1558443 (14 Aug. 2025).


MLA

Altürk Karaca, Sibel, and Elif Neyran Soylu. The Source of DPPH Radical Scavenging Activity: Insights from Freshwater Streams Isolated in Giresun.” Aquatic Sciences and Engineering, vol. 40, no. 3, 2025, pp. 144-152. [Database Container], https://doi.org/10.26650/ASE2024.1558443


Vancouver

Altürk Karaca S, Soylu EN. The Source of DPPH Radical Scavenging Activity: Insights from Freshwater Streams Isolated in Giresun. Aquatic Sciences and Engineering [Internet]. 14 Aug. 2025 [cited 14 Aug. 2025];40(3):144-152. Available from: https://doi.org/10.26650/ASE2024.1558443 doi: 10.26650/ASE2024.1558443


ISNAD

Altürk Karaca, Sibel - Soylu, ElifNeyran. The Source of DPPH Radical Scavenging Activity: Insights from Freshwater Streams Isolated in Giresun”. Aquatic Sciences and Engineering 40/3 (Aug. 2025): 144-152. https://doi.org/10.26650/ASE2024.1558443



TIMELINE


Submitted02.10.2024
Accepted25.03.2025
Published Online04.07.2025

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE



Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.