Research Article


DOI :10.26650/eor.20241296069   IUP :10.26650/eor.20241296069    Full Text (PDF)

Optimizing the primary stability of dental implants in type IV bone: in-vitro comparison of machine-driven and ratcheting insertion protocols

Nuri Mert TayşiAyşegül Erten TayşiPınar ErçalSoner Şişmanoğlu

Purpose: The objective of this study was to assess the effects of various implant insertion techniques on the primary stability of dental implants in both type II and type IV cadaveric bovine.

Materials and Methods: A total of 48 dental implants (BEGO Semados RSX, BEGO Implant Systems GmbH & Co. KG, Germany) with a diameter of 3.75 mm and a length of 12 mm were used in the experiments. Bovine bone ribs were adjusted to mimic type II and type IV bone characteristics. Following the preparation of recipient sites, implants were inserted using three different protocols: machine-driven insertion (Standard group, Std group), ratchet insertion (Ratcheted, R Group), and a combination of both (Std + R group). The Osstell® Beacon device was used to record the implant stability quotient (ISQ) of each implant immediately after insertion. Two-way analysis of variance and Bonferroni tests were used for statistical evaluation.

Results: Bone type significantly influenced the ISQ values (p<0.05). However, when comparing insertion protocols separately for type II and type IV bone, no significant differences were observed. In type IV bone, both the Std group and R group exhibited significantly lower ISQ values compared to the same groups in type II bone (p<0.05 for each). Nevertheless, there were no significant differences in the ISQ values when employing the Std+R technique between the two types of bone.

Conclusion: Combining machine-driven and ratchet insertion techniques may prove beneficial in optimizing ISQ values in bovine samples simulating type IV bone.


PDF View

References

  • Rameh S, Menhall A, Younes R. Key factors influencing short implant success. Oral Maxillofac Surg 2020;24:263-75. google scholar
  • Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent 2003;12:306-17. google scholar
  • Kotsakis GA, Romanos GE. Biological mechanisms underlying complications related to implant site preparation. Periodontol 2000 2022;88:52-63. google scholar
  • Papaspyridakos P, Chen CJ, Singh M, Weber HP, Gallucci GO. Success criteria in implant dentistry: a systematic review. J Dent Res 2012;91:242-8. google scholar
  • Alghamdi H, Anand PS, Anil S. Undersized implant site preparation to enhance primary implant stability in poor bone density: a prospective clinical study. J Oral Maxillofac Surg 2011;69:506-12. google scholar
  • Viceconti M, Brusi G, Pancanti A, Cristofolini L. Primary stability of an anatomical cementless hip stem: a statistical analysis. J Biomech 2006;39:1169-79. google scholar
  • Staedt H, Kämmerer PW, Goetze E, Thiem DGE, Al-Nawas B, Heimes D. Implant primary stability depending on protocol and insertion mode - an ex vivo study. Int J Implant Dent 2020;6:49. google scholar
  • Herrero-Climent M, Falcão A, López-Jarana P, Díaz-Castro CM, Ríos-Carrasco B, Ríos-Santos JV. In vitro comparative analysis of two resonance frequency measurement devices: Osstell implant stability coefficient and Penguin resonance frequency analysis. Clin Implant Dent Relat Res 2019; 21:1124-31. google scholar
  • Lozano-Carrascal N, Salomó-Coll O, Gilabert-Cerdà M, Farré-Pagés N, Gargallo-Albiol J, Hernández-Alfaro F. Effect of implant macro-design on primary stability: A prospective clinical study. Med Oral Patol Oral Cir Bucal 2016;21:214-21. google scholar
  • Vanden Bogaerde L, Sennerby L. A Randomized Case-Series Study Comparing the Stability of Implant with Two Different Surfaces Placed in Fresh Extraction Sockets and Immediately Loaded. Int J Dent 2016;2016:8424931. google scholar
  • Lemos BF, Lopez-Jarana P, Falcao C, Ríos-Carrasco B, Gil J, Ríos-Santos JV, Herrero-Climent M. Effects of Different Undersizing Site Preparations on Implant Stability. Int J Environ Res Public Health 2020;17:8965. google scholar
  • Herekar M, Sethi M, Ahmad T, Fernandes AS, Patil V, Kulkarni H. A correlation between bone (B), insertion torque (IT), and implant stability (S): BITS score. J Prosthet Dent 2014; 112:805-10. google scholar
  • Lachmann S, Jäger B, Axmann D, Gomez-Roman G, Groten M, Weber H. Resonance frequency analysis and damping capacity assessment. Part I: an in vitro study on measurement reliability and a method of comparison in the determination of primary dental implant stability. Clin Oral Implants Res 2006;17:75-9. google scholar
  • García-Vives N, Andrés-García R, Rios-Santos V, Fernández-Palacín A, Bullón-Fernández P, Herrero-Climent M, Herrero-Climent F. In vitro evaluation of the type of implant bed preparation with osteotomes in bone type IV and its influence on the stability of two implant systems. Med Oral Patol Oral Cir Bucal 2009;14:455-60. google scholar
  • Baker JA, Vora S, Bairam L, Kim HI, Davis EL, Andreana S. Piezoelectric vs. conventional implant site preparation: ex vivo implant primary stability. Clin Oral Implants Res 2012;23:433-7. google scholar
  • Santamaría-Arrieta G, Brizuela-Velasco A, Fernández-González FJ, Chávarri-Prado D, Chento-Valiente Y, Solaberrieta E, Diéguez-Pereira M, Vega JA, Yurrebaso-Asúa J. Biomechanical evaluation of oversized drilling technique on primary implant stability measured by insertion torque and resonance frequency analysis. J Clin Exp Dent 2016;8:307-11. google scholar
  • Emmert M, Gülses A, Behrens E, Karayürek F, Acil Y, Wiltfang J, Spille JH. An experimental study on the effects of the cortical thickness and bone density on initial mechanical anchorage of different Straumann® implant designs. Int J Implant Dent 2021;7:83. google scholar
  • Toyoshima T, Tanaka H, Ayukawa Y, Howashi M, Masuzaki T, Kiyosue T, Koyano K, Nakamura S. Primary Stability of a Hybrid Implant Compared with Tapered and Cylindrical Implants in an Ex Vivo Model. Clin Implant Dent Relat Res 2015;17:950-6. google scholar
  • Moon SH, Um HS, Lee JK, Chang BS, Lee MK. The effect of implant shape and bone preparation on primary stability. J Periodontal Implant Sci 2010;40:239-43. google scholar
  • Anil S, Aldosari AA. Impact of bone quality and implant type on the primary stability: an experimental study using bovine bone. J Oral Implantol 2015;41:144-8. google scholar
  • Antequera-Diaz R, Quesada-García MP, Vallecillo C, Vallecillo-Rivas M, Muñoz-Soto E, Olmedo-Gaya MV. Intra- and inter-operator concordance of the resonance frequency analysis. A cross-sectional and prospective clinical study. Clin Oral Investig 2022; 26:6521-30. google scholar
  • Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent 2010;38:612-20. google scholar
  • Bataineh AB, Al-Dakes AM. The influence of length of implant on primary stability: An in vitro study using resonance frequency analysis. J Clin Exp Dent 2017;9:1-6. google scholar
  • Romanos GE, Ciornei G, Jucan A, Malmstrom H, Gupta B. In vitro assessment of primary stability of Straumann® implant designs. Clin Implant Dent Relat Res 2014;16:89-95. google scholar
  • Al-Sabbagh M, Eldomiaty W, Khabbaz Y. Can Osseointegration Be Achieved Without Primary Stability? Dent Clin North Am 2019;63:461-73. google scholar
  • Norton MR. The Influence of Low Insertion Torque on Primary Stability, Implant Survival, and Maintenance of Marginal Bone Levels: A Closed-Cohort Prospective Study. Int J Oral Maxillofac Implants 2017;32:849-57. google scholar
  • Cáceres F, Troncoso C, Silva R, Pinto N. Effects of osseodensification protocol on insertion, removal torques, and resonance frequency analysis of BioHorizons® conical implants. An ex vivo study. J Oral Biol Craniofac Res 2020;10:625-8. google scholar
  • Cavallaro J Jr, Greenstein B, Greenstein G. Clinical methodologies for achieving primary dental implant stability: the effects of alveolar bone density. J Am Dent Assoc 2009;140:1366-72. google scholar
  • Chen CH, Pei X, Tulu US, Aghvami M, Chen CT, Gaudillière D, Arioka M, Maghazeh Moghim M, Bahat O, Kolinski M, Crosby TR, Felderhoff A, Brunski JB, Helms JA. A Comparative Assessment of Implant Site Viability in Humans and Rats. J Dent Res 2018;97:451-9. google scholar
  • Dottore AM, Kawakami PY, Bechara K, Rodrigues JA, Cassoni A, Figueiredo LC, Piattelli A, Shibli JA. Stability of implants placed in augmented posterior mandible after alveolar osteotomy using resorbable nonceramic hydroxyapatite or intraoral autogenous bone: 12-month follow-up. Clin Implant Dent Relat Res 2014;16:330-6. google scholar
  • Farré-Pagés N, Augé-Castro ML, Alaejos-Algarra F, Mareque-Bueno J, Ferrés-Padró E, Hernández-Alfaro F. Relation between bone density and primary implant stability. Med Oral Patol Oral Cir Bucal 2011;16:62-7. google scholar
  • Li T, Kong L, Wang Y, Hu K, Song L, Liu B, Li D, Shao J, Ding Y. Selection of optimal dental implant diameter and length in type IV bone: a three-dimensional finite element analysis. Int J Oral Maxillofac Surg 2009;38:1077-83. google scholar
  • Orban K, Varga E Jr, Windisch P, Braunitzer G, Molnar B. Accuracy of half-guided implant placement with machine-driven or manual insertion: a prospective, randomized clinical study. Clin Oral Investig 2022;26:1035-43. google scholar
  • Aliabadi E, Tavanafar S, Khaghaninejad MS. Marginal bone resorption of posterior mandible dental implants with different insertion methods. BMC Oral Health 2020;20:31. google scholar
  • Novsak D, Trinajstic Zrinski M, Spalj S. Machine-driven versus manual insertion mode: influence on primary stability of orthodontic mini-implants. Implant Dent 2015;24:31-6. google scholar
  • Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 1999;57:700-6. google scholar
  • Kim JS, Choi SH, Cha SK, Kim JH, Lee HJ, Yeom SS, Hwang CJ. Comparison of success rates of orthodontic mini-screws by the insertion method. Korean J Orthod 2012;42:242-8. google scholar
  • Bandela V, Munagapati B, Komala J, Basany RB, Patil SR, Kanaparthi S. Comparison of Primary Stability of Implants Installed by Two Different Methods in D3 and D4 Bone Types: An In Vitro Study. J Int Soc Prev Community Dent 2020;10:620-6. google scholar
  • Chávarri-Prado D, Brizuela-Velasco A, Diéguez-Pereira M, Pérez-Pevida E, Jiménez-Garrudo A, Viteri-Agustín I, Estrada-Martínez A, Montalbán-Vadillo O. Influence of cortical bone and implant design in the primary stability of dental implants measured by two different devices of resonance frequency analysis: An in vitro study. J Clin Exp Dent 2020;12:242-8. google scholar
  • Shetty V, Mishra D, Barui S, Basu B. Preclinical study probing primary stability of dental implants in synthetic and natural bones. Int J Appl Ceram 2023;20:842-55. google scholar
  • Delgado-Ruiz R, Gold J, Somohano Marquez T, Romanos G. Under-Drilling versus Hybrid Osseodensification Technique: Differences in Implant Primary Stability and Bone Density of the Implant Bed Walls. Materials (Basel) 2020;13:390. google scholar
  • Lekholm U, Zarb G. Patient selection and preparation. In: Brånemark P, Zarb G, Albrektsson T, editors. Tissue-Integrated Prostheses. Osseointegration in Dentistry.1st Ed., Chicago: Quintessence Publishing, 1985, p.199-209. google scholar
  • Misch CE. Divisions of available bone in implant dentistry. Int J Oral Implantol 1990;7:9-17. google scholar
  • Jemt T, Lekholm U. Implant treatment in edentulous maxillae: a 5-year follow-up report on patients with different degrees of jaw resorption. Int J Oral Maxillofac Implants 1995;10:303-11. google scholar
  • Rebaudi A, Trisi P, Cella R, Cecchini G. Preoperative evaluation of bone quality and bone density using a novel CT/microCT-based hard-normal-soft classification system. Int J Oral Maxillofac Implants 2010;25:75-85. google scholar
  • Iezzi G, Scarano A, Di Stefano DA, Arosio P, Doi K, Ricci L, Piattelli A, Perrotti V. Correlation between the bone density recorded by a computerized implant motor and by a histomorphometric analysis: a preliminary in vitro study on bovine ribs. Clin Implant Dent Relat Res 2015;17:35-44. google scholar
  • Tettamanti L, Andrisani C, Bassi MA, Vinci R, Silvestre-Rangil J, Tagliabue A. Immediate loading implants: review of the critical aspects. Oral Implantol (Rome) 2017;10:129-39. google scholar
  • Baltayan S, Pi-Anfruns J, Aghaloo T, Moy PK. The predictive value of resonance frequency analysis measurements in the surgical placement and loading of endosseous implants. J. Oral Maxillofac. Surg 2016;74:1145-52. google scholar
  • Rodrigo D, Aracil L, Martin C, Sanz M. Diagnosis of implant stability and its impact on implant survival: a prospective case series study. Clin Oral Implants Res 2020;21:255-61. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Tayşi, N.M., Erten Tayşi, A., Erçal, P., & Şişmanoğlu, S. (2023). Optimizing the primary stability of dental implants in type IV bone: in-vitro comparison of machine-driven and ratcheting insertion protocols. European Oral Research, 0(0), -. https://doi.org/10.26650/eor.20241296069


AMA

Tayşi N M, Erten Tayşi A, Erçal P, Şişmanoğlu S. Optimizing the primary stability of dental implants in type IV bone: in-vitro comparison of machine-driven and ratcheting insertion protocols. European Oral Research. 2023;0(0):-. https://doi.org/10.26650/eor.20241296069


ABNT

Tayşi, N.M.; Erten Tayşi, A.; Erçal, P.; Şişmanoğlu, S. Optimizing the primary stability of dental implants in type IV bone: in-vitro comparison of machine-driven and ratcheting insertion protocols. European Oral Research, [Publisher Location], v. 0, n. 0, p. -, 2023.


Chicago: Author-Date Style

Tayşi, Nuri Mert, and Ayşegül Erten Tayşi and Pınar Erçal and Soner Şişmanoğlu. 2023. “Optimizing the primary stability of dental implants in type IV bone: in-vitro comparison of machine-driven and ratcheting insertion protocols.” European Oral Research 0, no. 0: -. https://doi.org/10.26650/eor.20241296069


Chicago: Humanities Style

Tayşi, Nuri Mert, and Ayşegül Erten Tayşi and Pınar Erçal and Soner Şişmanoğlu. Optimizing the primary stability of dental implants in type IV bone: in-vitro comparison of machine-driven and ratcheting insertion protocols.” European Oral Research 0, no. 0 (Nov. 2024): -. https://doi.org/10.26650/eor.20241296069


Harvard: Australian Style

Tayşi, NM & Erten Tayşi, A & Erçal, P & Şişmanoğlu, S 2023, 'Optimizing the primary stability of dental implants in type IV bone: in-vitro comparison of machine-driven and ratcheting insertion protocols', European Oral Research, vol. 0, no. 0, pp. -, viewed 22 Nov. 2024, https://doi.org/10.26650/eor.20241296069


Harvard: Author-Date Style

Tayşi, N.M. and Erten Tayşi, A. and Erçal, P. and Şişmanoğlu, S. (2023) ‘Optimizing the primary stability of dental implants in type IV bone: in-vitro comparison of machine-driven and ratcheting insertion protocols’, European Oral Research, 0(0), pp. -. https://doi.org/10.26650/eor.20241296069 (22 Nov. 2024).


MLA

Tayşi, Nuri Mert, and Ayşegül Erten Tayşi and Pınar Erçal and Soner Şişmanoğlu. Optimizing the primary stability of dental implants in type IV bone: in-vitro comparison of machine-driven and ratcheting insertion protocols.” European Oral Research, vol. 0, no. 0, 2023, pp. -. [Database Container], https://doi.org/10.26650/eor.20241296069


Vancouver

Tayşi NM, Erten Tayşi A, Erçal P, Şişmanoğlu S. Optimizing the primary stability of dental implants in type IV bone: in-vitro comparison of machine-driven and ratcheting insertion protocols. European Oral Research [Internet]. 22 Nov. 2024 [cited 22 Nov. 2024];0(0):-. Available from: https://doi.org/10.26650/eor.20241296069 doi: 10.26650/eor.20241296069


ISNAD

Tayşi, NuriMert - Erten Tayşi, Ayşegül - Erçal, Pınar - Şişmanoğlu, Soner. Optimizing the primary stability of dental implants in type IV bone: in-vitro comparison of machine-driven and ratcheting insertion protocols”. European Oral Research 0/0 (Nov. 2024): -. https://doi.org/10.26650/eor.20241296069



TIMELINE


Accepted21.08.2023
Published Online10.10.2023

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.