Research Article


DOI :10.26650/experimed.2018.377256   IUP :10.26650/experimed.2018.377256    Full Text (PDF)

Determination of Mutant Prevention Concentration in Extended Spectrum Beta Lactamases Producing Enterobacteriaceae

Gülşen Altınkanat GelmezGüner Söyletir

Objectives: The use of carbapenems for treating infections caused by extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae has increased. Consequently, this practice has resulted in the emergence of carbapenem resistance. In this study, we aimed to determine mutant prevention concentrations (MPCs) of carbapenems and the development of carbapenem resistance in infections caused by ESBL-producing bacteria.


Material and Method: The test group included isolates of Escherichia coli and Klebsiella pneumonia that produced imipenem and meropenem minimum inhibitor concentration (MIC)=<1mg/L and at least one of the ESBL (n=56). Negatives isolates (n=19) for all tested enzymes comprised the control group. Carbapenems included in the study were imipenem, meropenem, doripenem, and ertapenem. The MIC and MPC values of these drugs were determined using the agar dilution method for all tested organisms.


Results: In ESBL-negative isolates, the MPC90 values were in the susceptible range. In contrast, in the ESBL positive isolates, MPC90 value increased to 2–8 mg/L. The MPC values were 2- to 9-fold higher in the ESBL-producing strains compared with the non-ESBL strains. However, the mutant selection rate was not affected by the ESBL enzymes types (TEM, SHV, and CTX-M). In ESBL-positive strains, imipenem and meropenem, even at very low MICs (0.015–0.06 µg/mL), showed selective carbapenem-resistant mutants at a rate of 50%.


Conclusion: Our results suggest the following conclusions. i) ESBL production seems to increase carbapenem resistance in mutant strains, even though these are carbapenem susceptible in routine tests. ii) Among carbapenems, doripenem and ertapenem have the least potential for mutant selection whereas imipenem and meropenem have the most potential. 

DOI :10.26650/experimed.2018.377256   IUP :10.26650/experimed.2018.377256    Full Text (PDF)

Genişlemiş Spektrumlu Beta Laktamaz Üreten Enterobacteriaceae’larda Mutant Engelleme Konsantrasyonunun Saptanması

Gülşen Altınkanat GelmezGüner Söyletir

Amaç: Genişlemiş spektrumlu beta laktamaz (GSBL) üreten Enterobactericeae kökenleri ile gelişen enfeksiyonların tedavisinde karbapenemlerin sıklıkla kullanılması beraberinde karbapenem direnci gelişmesine neden olmuştur. Bu nedenle çalışmamızda karbapenemlerin mutant engelleme konsantrasyonlarının (MEK) saptanması ve tedavi sırasında gelişen dirence GSBL üretiminin herhangi bir etkisinin olup olmadığının belirlenmesi amaçlanmıştır.


Gereç ve Yöntem: Bu çalışmaya test grubu olarak, imipenem ve meropenem MİK=<1mg/L olan, fenotipik ve genotipik yöntemlerle GSBL enzimlerinden en az birine sahip olan (n=56) ve kontrol grubu olarak araştırılan enzimlerden hiçbirini içermeyen (n=19) Escherichia coli ve Klebsiella pneumoniae kökeni dahil edilmiştir. Kökenlerin imipenem, meropenem, ertapenem ve doripenem minimal inhibitör konsantrasyonları (MİK) ve mutant engelleme konsantrasyonları (MEK) agar dilüsyon yöntemiyle çalışılmıştır.


Bulgular: GSBL (-) kökenlerin MEK90 değerleri duyarlı sınırlarda kalır iken, GSBL üreten kökenlerde MEK90 değerleri 2-8μg/mL’ye kadar çıkmıştır. GSBL(+) kökenlerde karbapenem MEK değerleri GSBL(-) kökenlere kıyasla 2-9 kat daha yüksek bulunmuş ancak GSBL enzim türlerinin (TEM, SHV, CTX-M) bu dirence katkı açısından aralarında bir farklılık olmadığı saptanmıştır. GSBL(+) kökenlerde imipenem ve meropenem 0,015-0,06 μg/mL gibi çok düşük MİK değerlerinde bile yaklaşık %50 oranında mutant seçimine neden olmaktadır.


Sonuç: Bu verilere göre; i) Köken karbapenem duyarlı olsa da GSBL üretimi karbapenem dirençli mutant seçimine neden olabilir gibi gözükmektedir. ii) Doripenem ve ertapenem en az, imipenem ve meropenem en fazla mutant seçen karbapenemlerdir.


PDF View

References

  • 1. Clinical and Laboratory Standard Institute. Performance of standards for antimicrobial susceptibility testing; Twenty-two Information Supplement M100-S22, 2012, Wayne, PA: Clinical and Laboratory Standard Institute. google scholar
  • 2. Credito K, Kosowska-Shick K, Appelbaum PC. Mutant prevention concentrations of four carbapenems against gram-negative rods. Antimicrobial Agents And Chemotherapy, 2010, 54(6): 2692-2695. google scholar
  • 3. D'Andrea MM, Giani T, Arena F, Borgianni L, Gesu G, Li Bergoli M, Manso E, Mussap M, Sambri V, Sarti M, Luzzaro F, Rossolini GM. Multifocal emergence of ESBL-producing Klebsiella pneumoniae clone with differential non-carbapenemase-mediated resistance to carbapenems in Italian hospitals. 19th European Congress of Clinical Microbiology and Infectious Diseases. Helsinki, Finland, 16 - 19 May, 2009, P1700 google scholar
  • 4. Drlica K. The mutant selection window and antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 2003, 52(1): 1-17. google scholar
  • 5. Drlica K, Zhao X, Blondeau JM, Hesje C. Low correlation between MIC and mutant prevention concentration. Antimicrob Agents Chemother, 2006, 50(1): 403-4. google scholar
  • 6. Drlica K, Zhao X. Mutant selection window hypothesis updated. Clinical Infectious Diseases, 2007, 44(5): 681-688. google scholar
  • 7. Falagas ME, Karageorgopoulos DE. Extended-spectrum beta-lactamase-producing organisms. J Hosp Infect, 2009, 73(4): 345-354. google scholar
  • 8. Gür D, Hascelik G, Aydin N, Telli M, Gültekin M, Ogülnç D, Arikan OA, Uysal S, Yaman A, Kibar F, Gülay Z, Sumerkan B, Esel D, Kayacan CB, Aktas Z, Soyletir G, Altinkanat G, Durupinar B, Darka O, Akgün Y, Yayla B, Gedikoglu S, Sinirtas M, Berktas M, Yaman G. Antimicrobial resistance in gram-negative hospital isolates: results of the Turkish HITIT-2 Surveillance Study of 2007. J Chemother, 2009, 21:383-389. google scholar
  • 9. Hansen G, Blondeau JM. Comparison of the minimum inhibitory, mutant prevention, and minimum bactericidal concentrations of ciprofloxacin, levofloxacin, and garenoxacin against enteric gram-negative urinary tract infection pathogens. J Chemother, 2005, 17(5): 484-492. google scholar
  • 10. Jesús Oteo, Delgado Iribarren I, Dolores Vega, Verónica Bautista, María Cruz Rodríguez, María Velasco, José María Saavedra, María Pérez-Vázquez, Silvia García-Cobos, Luis Martínez-Martínez, José Campos. Emergence of imipenem resistance in clinical Escherichia coli during therapy. International Journal of Antimicrobial Agents, 2008, 32(6): 534-537. google scholar
  • 11. Kaczmarek FM, Dib-Hajj F, Shang W, Gootz TD. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of bla ACT-1 beta lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrobial Agents and Chemotherapy, 2006, 50(10): 3396–3406. google scholar
  • 12. Lee K, Yong D, Choi YS, Yum JH, Kim JM, Woodford N, Livermore DM, Chong Y. Reduced imipenem susceptibility in Klebsiella pneumoniae clinical isolates with plasmid-mediated CMY-2 and DHA-1 beta-lactamases co-mediated by porin loss. Int. J. Antimicrob Agents, 2007, 29: 201-206. google scholar
  • 13. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm. Trends Mol Med. 2012 May;18(5):263-72 google scholar
  • 14. Öksüz L, Gürler N. Typing of extended-spectrum beta-lactamases in Escherichia coli and Klebsiella spp. strains and analysis of plasmid profiles. Mikrobiyol Bul, 2009, 43(2): 183-94. google scholar
  • 15. Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. International Journal of Medical Microbiology, 2010, 300(6): 371–379. google scholar
  • 16. Poirel L, Heritier C, Spicq C, Nordmann P. In vivo acquisition of high-level resistance to ımipenemin Escherichia coli. Journal of Clinical Microbiology, 2004, 42(8): 3831–3833. google scholar
  • 17. Roberts JA, Kruger P, Paterson DL, Lipman J. Antibiotic resistance: What’s dosing got to do with it? Crit Care Med, 2008, 36(8): 2433-40. google scholar
  • 18. Sindelar G, Zhao X, Liew A, Dong Y, Lu T, Zhou J, Domagala J, Drlica K. Mutant prevention concentration as a measure of fluoroquinolone potency against mycobacteria. Antimicrobial Agents of Chemotherapy, 2000, 44(12): 3337-43. google scholar
  • 19. Smith HJ, Nichol KA, Hoban DJ, Zhanel GG. Stretching the mutant prevention concentration (MPC) beyond its limits. Journal of Antimicrobial Chemotherapy, 2003, 51(6): 1323-5 google scholar
  • 20. Song W, S.B, Choi JY, Jeong SH, Jeon EH, Lee YK, Hong SG, Lee K. In vivo selection of carbapenem-resistant Klebsiella pneumoniae by OmpK36 loss during meropenem treatment. Diagn Microbiol Infect Dis, 2009, 65(4): 447-449. google scholar
  • 21. Xilin Zhao, Drlica K. A unified anti-mutant dosing strategy. Journal of Antimicrobial Chemotherapy, 2008, 62(3): 434-436. google scholar
  • 22. Zhao X, Drlica K. Restricting the Selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clinical Infectious Diseases, 2001, 33(Suppl 3): 147-156. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Altınkanat Gelmez, G., & Söyletir, G. (2018). Determination of Mutant Prevention Concentration in Extended Spectrum Beta Lactamases Producing Enterobacteriaceae. Experimed, 8(1), 1-6. https://doi.org/10.26650/experimed.2018.377256


AMA

Altınkanat Gelmez G, Söyletir G. Determination of Mutant Prevention Concentration in Extended Spectrum Beta Lactamases Producing Enterobacteriaceae. Experimed. 2018;8(1):1-6. https://doi.org/10.26650/experimed.2018.377256


ABNT

Altınkanat Gelmez, G.; Söyletir, G. Determination of Mutant Prevention Concentration in Extended Spectrum Beta Lactamases Producing Enterobacteriaceae. Experimed, [Publisher Location], v. 8, n. 1, p. 1-6, 2018.


Chicago: Author-Date Style

Altınkanat Gelmez, Gülşen, and Güner Söyletir. 2018. “Determination of Mutant Prevention Concentration in Extended Spectrum Beta Lactamases Producing Enterobacteriaceae.” Experimed 8, no. 1: 1-6. https://doi.org/10.26650/experimed.2018.377256


Chicago: Humanities Style

Altınkanat Gelmez, Gülşen, and Güner Söyletir. Determination of Mutant Prevention Concentration in Extended Spectrum Beta Lactamases Producing Enterobacteriaceae.” Experimed 8, no. 1 (May. 2025): 1-6. https://doi.org/10.26650/experimed.2018.377256


Harvard: Australian Style

Altınkanat Gelmez, G & Söyletir, G 2018, 'Determination of Mutant Prevention Concentration in Extended Spectrum Beta Lactamases Producing Enterobacteriaceae', Experimed, vol. 8, no. 1, pp. 1-6, viewed 22 May. 2025, https://doi.org/10.26650/experimed.2018.377256


Harvard: Author-Date Style

Altınkanat Gelmez, G. and Söyletir, G. (2018) ‘Determination of Mutant Prevention Concentration in Extended Spectrum Beta Lactamases Producing Enterobacteriaceae’, Experimed, 8(1), pp. 1-6. https://doi.org/10.26650/experimed.2018.377256 (22 May. 2025).


MLA

Altınkanat Gelmez, Gülşen, and Güner Söyletir. Determination of Mutant Prevention Concentration in Extended Spectrum Beta Lactamases Producing Enterobacteriaceae.” Experimed, vol. 8, no. 1, 2018, pp. 1-6. [Database Container], https://doi.org/10.26650/experimed.2018.377256


Vancouver

Altınkanat Gelmez G, Söyletir G. Determination of Mutant Prevention Concentration in Extended Spectrum Beta Lactamases Producing Enterobacteriaceae. Experimed [Internet]. 22 May. 2025 [cited 22 May. 2025];8(1):1-6. Available from: https://doi.org/10.26650/experimed.2018.377256 doi: 10.26650/experimed.2018.377256


ISNAD

Altınkanat Gelmez, Gülşen - Söyletir, Güner. Determination of Mutant Prevention Concentration in Extended Spectrum Beta Lactamases Producing Enterobacteriaceae”. Experimed 8/1 (May. 2025): 1-6. https://doi.org/10.26650/experimed.2018.377256



TIMELINE


Accepted01.02.2018
Published Online09.05.2018

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE



Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.