Research Article


DOI :10.26650/ISTJECON2018-0007   IUP :10.26650/ISTJECON2018-0007    Full Text (PDF)

Regional Competitiveness in Turkey

Emine Demet Ekinci hamamcı

The aim of this study is to determine the competitiveness indices of the sub regions according to NUTS2 level in Turkey and to estimate efficiency of these indices for creating GDP per capita. In this study, it has been taken into account four basic factors -economic structure, innovation, human capital, infrastructure and accessibility- that affect both the high competition and the level of GDP per capita. In this study, the methods have been followed Exploratory Factor Analysis (EFA) and Data Envelopment Analysis (DEA). Inputs of study are seventeen items related to four factors, whereas output item is per capita GDP. In the study, regional competition indices are firstly obtained with EFA. Then, by using DEA, it has been estimated efficiency of these indices for creating GDP per capita. According to the indices’ results of economic and innovative infrastructure, skilled labor infrastructure and regional basic infrastructure, TR10 İstanbul, TR31 İzmir, TR42 Kocaeli and TR51 Ankara are most competitive sub regions of Turkey. In the CCR Model, only three sub regions - TR10 Istanbul, TR42 Kocaeli and TR51 Ankara- have become efficient in generating per capita income, whereas eight sub regions -TR10 İstanbul, TR21 Tekirdağ, TR42 Kocaeli, TR51 Ankara, TR82 Kastamonu, TRA2 Ağrı, TRB2 Van and TRC2 Şanlıurfa- are efficient in the BCC Model.

JEL Classification : R11 , R12 , R13
DOI :10.26650/ISTJECON2018-0007   IUP :10.26650/ISTJECON2018-0007    Full Text (PDF)

Türkiye’de Bölgesel Rekabet Edebilirlik

Emine Demet Ekinci hamamcı

Bu çalışmanın amacı Türkiye’de İBBS Düzey-2’ye göre alt bölgelerinin rekabet gücü endekslerini belirlemek ve söz konusu endekslerin kişi başına düşen Gayri Safi Yurt İçi Hasıla (GSYH) yaratmadaki etkinliklerini tespit etmektir. Çalışmada hem yüksek eksenli rekabeti oluşturan hem de kişi başına düşen GSYH’yi etkileyen dört temel unsur -iktisadi yapı, yenilikçilik, beşeri sermaye ile altyapı ve ulaşılabilirlik- dikkate alınmaktadır. Çalışmada Açımlayıcı Faktör Analizi (AFA) ve Veri Zarflama Analizi (VZA) yöntemleri takip edilmektedir. Girdi değişkeni yukarıda belirtilen dört faktöre ait 17 değişkenden oluşmaktadır. Çıktı değişkeni ise kişi başına düşen GSYH’dir. Çalışmada öncelikle AFA ile bölgesel rekabet endeksleri elde edilmektedir. Daha sonra VZA ile bu endekslerin girdi olarak kişi başına düşen GSYH yaratmadaki etkinlikleri tahmin edilmektedir. İktisadi ve yenilikçi altyapı, kalifiye işgücü altyapısı ve bölgesel temel altyapı endeks sonuçlarına göre TR10 İstanbul, TR31 İzmir, TR42 Kocaeli ve TR51 Ankara, Türkiye’nin en rekabetçi alt bölgeleridir. CCR modelinde kişi başına GSYH yaratmada sadece üç alt bölge -TR10 İstanbul, TR42 Kocaeli ve TR51 Ankara- etkin olurken BCC modelinde etkin olan bölgeler TR10 İstanbul, TR21 Tekirdağ, TR42 Kocaeli, TR51 Ankara, TR82 Kastamonu, TRA2 Ağrı, TRB2 Van ve TRC2 Şanlıurfa’dır.

JEL Classification : R11 , R12 , R13

EXTENDED ABSTRACT


Today, improvement of regions’ competitiveness is among the primary agenda items of governments. Accordingly, it is desired to determine the factors influencing regional competitiveness and to find solution ways by specifying the strong and weak aspects of the region. But there is no consensus regarding the definition and measurement of regional competitiveness. Therefore, studies being conducted about competitiveness aim to reach a conclusion by focusing on different factors. However, whether the regions have attained high level of incomes and employment, is accepted as an important indicator of competitiveness of regions in literature. Namely, the higher the income or employment a region can generate, the more its competitive power will be defined as proportionally. As a result of the studies, it has found out that there is a close relationship between regional differences of GDP per capita and the four basic factors - structure of economic activity, innovative capacity, accessibility of the region, and accumulation of knowledge and skills relating with the labor force-. Even though these four basic factors listed above are important particulars influencing GDP per capita, they are also among the essential aspects of high scale competitiveness.

In this study, the regional competitiveness has been examined by evaluating four basic factors that affect both the high scale competitiveness and the GDP per capita. In this regard, it is aimed to determine the competitiveness level of the regions and to determine their effectiveness in generating per capita income.

The study has covered 26 sub regions according to NUTS2 within current regional classification. In this study, the methods have been followed Exploratory Factor Analysis (EFA) and Data Envelopment Analysis (DEA). In the study, the input variables have consisted of 17 items representing the four basic factors mentioned above. The output variable is the GDP per capita. In the study, regional competition indices are firstly obtained with EFA. Then, by using DEA, it has been estimated efficiency of these indices for creating GDP per capita.

According to the results of EFA, principal components have consisted of three sub-dimensions and they have accounted for approximately 81% of the total variance in the original data matrices. After the principal components (factors) were obtained, they have been named according to the features. The first factor has been named as economic and innovative infrastructure owing to include all the economic variables and the patent rate representing innovation. The second factor is skilled labor infrastructure, including resources that create human capital. In the third component, regional qualifications have presented as proximity to the port, total highway length and average bank credit. So this factor has defined as regional basic infrastructure. 

Then, the composite indices have been calculated taking into account the weights of the variables in each principal components. According to the results; the most competitive regions are TR10, TR51 and TR31 sub regions at the economic and innovative infrastructure; TR51, TR10 and TR31 sub regions at the skilled labor infrastructure; TR10, TR31 and TR42 sub regions at the regional basic infrastructure, whereas the lowest competitive regions are TRA2, TRB2 and TRC2 sub regions at the economic and innovative infrastructure; TRB2, TRC2 and TRA2 sub regions at the skilled labor infrastructure; TRC2, TRB2 and TRC3 sub regions at the regional basic infrastructure, respectively.

In the study, DEA has been performed by using regional competitive indices as inputs. At this point, the aim of the study is to investigate efficiency in generating per capita GDP with the competitive potentials of sub regions. In the CCR Model results, only three DMUs - TR10 Istanbul, TR42 Kocaeli and TR51 Ankara- have become efficient. Eight sub regions -TR10 İstanbul, TR21 Tekirdağ, TR42 Kocaeli, TR51 Ankara, TR82 Kastamonu, TRA2 Ağrı, TRB2 Van and TRC2 Şanlıurfa- are efficiency in the BCC Model. According to the result of the slacks movements, in Turkey, inefficient DMUs couldn’t convert the skilled labor input to output at most. 


PDF View

References

  • Adler, N. and Golany, B. (2007). PCA-DEA. In J. Zhu and W. Cook (Eds.), Modelling data irregularities and structural complexities in Data Envelopment Analysis. (pp. 139-153). New York, Springer. google scholar
  • Adler, N. and Golany, B. (2002). Including principal component weights to improve discrimination in data envelopment analysis. Journal of Operational Research Society, 53, 985–991. https://doi. org/10.1057/palgrave.jors.2601400. google scholar
  • Adler, N. and Golany, B. (2001). Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe. European Journal of Operational Research, 132, 260–273. Erişim Adresi: https://web.iem. technion.ac.il/images/user-files/golany/papers/EJOR_01.pdf. google scholar
  • Albayrak, A. N. ve Erkut, G. (2010). Türkiye’de bölgesel rekabet gücü analizi. MEGARON, 5(3), 137– 148. Erişim adresi: https://www.journalagent.com/megaron/pdfs/MEGARON_5_3_137_148.pdf. google scholar
  • Alkin, K., Bulu, M. ve Kaya, H. (2007). İller arası rekabet endeksi: Türkiye’deki illerin rekabetçilik seviyelerinin göreceli olarak ölçülebilmesi için bir yaklaşım. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 6(11), 221–235. Erişim adresi: https://ticaret.edu.tr/uploads/Kutuphane/dergi/ s11/M00169.pdf. google scholar
  • Aydemir, Z. C. (2002). Bölgesel rekabet edebilirlik kapsamında illerin kaynak kullanım görece verimlilikleri veri zarflama analizi uygulaması. (Uzmanlık Tezi). DPT, Yayın No: 2664. Ankara. google scholar
  • Banker, R. D. and Thrall, R. M. (1992). Estimation of returns to scale using data envelopment analysis, European Journal of Operational Research, 62, 74–84. https://doi.org/10.1016/03772217(92)90178-C. google scholar
  • Beath J. (2002). UK industrial policy: Old tunes on new instruments?, Oxford Review of Economic Policy, 18, 221–239. https://doi.org/10.1093/oxrep/18.2.221. Büyüköztürk, Ş. (2006). Sosyal bilimler için veri analizi el kitabı (6. bs). Ankara: Pegem Yayıncılık. google scholar
  • Büyüköztürk, Ş. (2002). Faktör analizi: Temel kavramlar ve ölçek geliştirmede kullanımı. Kuram ve Uygulamada Eğitim Yönetimi Dergisi, 8(32), 470–483. Erişim adresi: http://dergipark.gov.tr/ download/article-file/108451. google scholar
  • Charnes, A., Cooper, W. W. and Rhodes, E. (1981). Evaluating program and managerial efficiency: an application of data envelopment analysis to program follow through. Management Science, 27(6), 668–697. https://doi.org/10.1287/mnsc.27.6.668. google scholar
  • Çolakoğlu, Ö. M. ve Büyükekşi, C. (2014). Açımlayıcı faktör analiz sürecini etkileyen unsurların değerlendirilmesi. Karaelmas Journal of Educational Sciences, 2, 58–64. google scholar
  • Doğan, N. ve Başokçu, T. O. (2010). İstatistik tutum ölçeği için uygulanan faktör analizi ve aşamalı kümelenme analizi sonuçlarının karşılaştırılması. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, 1(2), 65–71. Erişim Adresi: https://dergipark.org.tr/download/article-file/65985. google scholar
  • DPT-Devlet Planlama Teşkilatı. (1996). İllerin ve bölgelerin sosyoekonomik gelişmişlik sıralaması araştırması. Ankara. DPT-Devlet Planlama Teşkilatı. (2003). İllerin ve bölgelerin sosyoekonomik gelişmişlik sıralaması araştırması. Yayın No: 2671. Ankara. google scholar
  • ECORYS-NEI. (2001). International benchmark of the regional investment climate in Northwestern Europe. google scholar
  • Golany, B. and Roll, Y. (1989). An application procedure for DEA. International Journal of Management Science, 17(3), 237–250. doi.org.10.1016/0305-0483(89)90029-7. google scholar
  • Güngör, İ. ve Demirgil, H. (2005). Bölgesel rekabet yapısının bulanık VZA ile araştırılması. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi, 10, 23–38. Erişim adresi: http://dergipark. gov.tr/download/article-file/194905. google scholar
  • Huavari, J., Kangasharju, A. and Alanen, A. (2001). Constructing an index for regional competitiveness, Pellervo Economic Research Institute Working Papers, No: 44, Helsinki. google scholar
  • Huggins, R. and Izushi, H. (2016). UK competitiveness index 2016. University of Wales Institute, Cardiff – UWIC: Centre for International Competitiveness – Cardiff School of Management. google scholar
  • Huggins, R. and Davies, W. (2006). European competitiveness index 2006-07. University of Wales Institute, Cardiff – UWIC: Robert Huggins Associates Ltd. google scholar
  • Huggins, R. (2002). UK competitiveness index 2002: City, Metropolitan and Ward Benchmarking. University of Wales Institute, Cardiff – UWIC: Robert Huggins Associates Ltd. google scholar
  • IMD-International Institute of Management Development. (2017). World competitiveness yearbook-2017, Lausanne, Switzerland. google scholar
  • Johnson, R. A. and Dean, W. W. (2002). Applied multivariate statistical analysis. (5th. Ed). New Jersey, Prentice-Hall, Inc. google scholar
  • Kalaycı, Ş. (2008). SPSS uygulamalı çok değişkenli istatistik teknikleri. (3th bs). Asil Yayın Dağıtım AŞ, Ankara. Kalkınma Bakanlığı. (2013). İllerin ve bölgelerin sosyoekonomik gelişmişlik sıralaması araştırmasıSEGE-2011. Bölgesel Gelişme ve Yapısal Uyum Genel Müdürlüğü. Ankara. Erişim adresi: file:///C:/ Users/ETU/Downloads/SEGE-2011.pdf. google scholar
  • Kara, M. (2008). Bölgesel rekabet edebilirlik kavramı ve bölgesel kalkınma politikalarına yansımaları. (Uzmanlık Tezi). DPT, Yayın No: 2774, Ankara. google scholar
  • Karacaer, Ş. (1998). Antalya yöresindeki 4 ve 5 yıldızlı otellerde toplam etkinlik ölçümü: Bir veri zarflama analizi uygulaması. (Y. Lisans Tezi). Hacettepe Üniversitesi Sosyal Bilimler Enstitüsü, Ankara. google scholar
  • Karsak, E. ve İşcan, E. F. (2000). Çimento sektöründe göreli faaliyet performanslarının ağırlık kısıtlamaları ve çapraz etkinlik kullanarak veri zarflama analizi ile değerlendirilmesi. Endüstri Mühendisliği Dergisi, 11(3), 2–10. google scholar
  • Kitson, M., Martin, R. and Tyler, P. (2004). Regional competitiveness: An elusive yet key concept?. Regional Studies, 38, 991–999. https://doi.org/10.1080/0034340042000320816. google scholar
  • Krugman, P. (1996). Making sense of the competitiveness debate. Oxford Review of Economic Policy, 12, 17–35. https://doi.org/10.1093/oxrep/12.3.17. google scholar
  • Martin, R. (2004). A study on the factors of regional competitiveness: A final report for the European Commission Directorate-General Regional Policy. University of Cambridge. Cambridge Econometrics and Ecorys-NEI, Rotterdam. google scholar
  • Örkcü, H. H. ve Kardiyen, F. (2006). “İllerin gelişmişlik düzeylerini sıralama ve sınıflandırma bakımından very zarflama analizi ve çok değişkenli istatistiksel yöntemlerin karşılaştırılması üzerine bir çalışma”. H.Ü. İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(2), 127–152. Erişim adresi: http://dergipark.gov.tr/download/article-file/309053. google scholar
  • Özdamar, K. (2010). Paket programları ile istatiksel veri analizi 2. Ankara: Kaan Kitabevi. google scholar
  • Özdemir, A. İ. ve Altıparmak, A. (2005). Sosyoekonomik göstergeler açısından illerin gelişmişlik düzeyinin karşılaştırmalı analizi. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24, 98–110. Erişim adresi: http://dergipark.ulakbim.gov.tr/erciyesiibd/article/viewFile/5000115327/ 5000107328. google scholar
  • Özden, Ü. H. (2008). Veri Zarflama Analizi ile Türkiye’de Vakıf Üniversitelerinin Etkinliğinin Ölçülmesi. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 37(2), 167–185. Erişim adresi: http:// dergipark.gov.tr/download/article-file/98116. google scholar
  • Talluri, S. (2000). Data envelopment analysis: models and extensions. Production/Operations Management Decision Line, 31(3), 8–11. http://doi=10.1.1.584.6440&rep=rep1&type=pdf. google scholar
  • Turok, I. (2004). Cities, regions and competitiveness. Regional Studies, 38(9), 1069–1083. https://doi. org/10.1080/0034340042000292647. google scholar
  • Ueda, T. and Hoshiai, Y. (1997). Application of principal component analysis for parsimonious summarization of DEA inputs and/or outputs. Journal of Operational Research Society, 40, 446– 78. DOI:10.15807/jorsj.40.466. google scholar
  • URAK-Uluslararası Rekabet Araştırmaları Kurumu. (2016). İller arası rekabetçilik endeksi. Erişim adresi: www.urak.org. WEF-World Economic Forum. (2017). Global competitiveness report 2017-2018, Oxford University Press, Oxford. google scholar
  • Williams, B., Onsman, A. and Bown, T. (2010). Exploratory Factor Analysis: A five-step guide for novices. Journal of Emergency Primary Health Care, 8(3), 1–13. google scholar
  • Yıldırım, İ. E. (2009). Veri zarflama sürecinde temel bileşenler analizinin ayırım gücünü arttırıcı etkisi. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 38(1), 66–83. Erişim adresi: http://dergipark.gov.tr/ download/article-file/98175. google scholar
  • Zoller, M. (2012). A Comparison between principal component analysis and factor analysis. University of Applied Sciences Wurzburg-Schweinfurt 16.07.2012 1 A. 1-4. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Ekinci hamamcı, E.D. (2019). Regional Competitiveness in Turkey. Istanbul Journal of Economics, 69(1), 67-101. https://doi.org/10.26650/ISTJECON2018-0007


AMA

Ekinci hamamcı E D. Regional Competitiveness in Turkey. Istanbul Journal of Economics. 2019;69(1):67-101. https://doi.org/10.26650/ISTJECON2018-0007


ABNT

Ekinci hamamcı, E.D. Regional Competitiveness in Turkey. Istanbul Journal of Economics, [Publisher Location], v. 69, n. 1, p. 67-101, 2019.


Chicago: Author-Date Style

Ekinci hamamcı, Emine Demet,. 2019. “Regional Competitiveness in Turkey.” Istanbul Journal of Economics 69, no. 1: 67-101. https://doi.org/10.26650/ISTJECON2018-0007


Chicago: Humanities Style

Ekinci hamamcı, Emine Demet,. Regional Competitiveness in Turkey.” Istanbul Journal of Economics 69, no. 1 (Mar. 2025): 67-101. https://doi.org/10.26650/ISTJECON2018-0007


Harvard: Australian Style

Ekinci hamamcı, ED 2019, 'Regional Competitiveness in Turkey', Istanbul Journal of Economics, vol. 69, no. 1, pp. 67-101, viewed 10 Mar. 2025, https://doi.org/10.26650/ISTJECON2018-0007


Harvard: Author-Date Style

Ekinci hamamcı, E.D. (2019) ‘Regional Competitiveness in Turkey’, Istanbul Journal of Economics, 69(1), pp. 67-101. https://doi.org/10.26650/ISTJECON2018-0007 (10 Mar. 2025).


MLA

Ekinci hamamcı, Emine Demet,. Regional Competitiveness in Turkey.” Istanbul Journal of Economics, vol. 69, no. 1, 2019, pp. 67-101. [Database Container], https://doi.org/10.26650/ISTJECON2018-0007


Vancouver

Ekinci hamamcı ED. Regional Competitiveness in Turkey. Istanbul Journal of Economics [Internet]. 10 Mar. 2025 [cited 10 Mar. 2025];69(1):67-101. Available from: https://doi.org/10.26650/ISTJECON2018-0007 doi: 10.26650/ISTJECON2018-0007


ISNAD

Ekinci hamamcı, EmineDemet. Regional Competitiveness in Turkey”. Istanbul Journal of Economics 69/1 (Mar. 2025): 67-101. https://doi.org/10.26650/ISTJECON2018-0007



TIMELINE


Submitted29.11.2018
Accepted24.05.2019
Published Online28.06.2019

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.