Review Article


DOI :10.26650/IstanbulJPharm.2023.1329006   IUP :10.26650/IstanbulJPharm.2023.1329006    Full Text (PDF)

Antioxidant supplements: Positive or negative actors in orthodontic treatment

Rümeysa Bilici GeçerGül ÖzhanDerya Dursun

Antioxidant supplements are popular and commonly considered healthy benefits such as reducing the risk of disease. It should be noted that their advantages/disadvantages are still unclear. Some research on antioxidants shows that they may reduce the risk of cancer, heart disease, neurodegenerative diseases, and some chronic diseases, and have various health benefits such as a positive effect on bone metabolism by supporting bone regeneration. Some of them show that the benefits of antioxidant supplements are not clear and indicate to increase the risk. The effects of antioxidants on orthodontic treatment are now being studied extensively due to their widespread use. Antioxidants that regulate bone modulation can be used to reduce orthodontic treatment time, accelerate tooth movement, or in some cases prevent unwanted tooth movement, but their unconscious use can adversely affect the orthodontic treatment. Understanding the mechanisms of action of antioxidants and their effects on orthodontic treatment can increase the success of treatment and prevent adverse situations that may occur due to the use of antioxidants. Many inflammatory mediators play a role in the response to mechanical forces in orthodontic treatment. Increased expression of pro-inflammatory cytokines is associated with oxidative stress. Antioxidants can affect remodeling processes in which osteoblast and osteoclast cells play a role, such as relapse, anchorage, and bone formation after maxillary expansion in orthodontic treatment. The use of antioxidants in orthodontic treatment may increase tooth movement and shorten retention time by increasing osteoblastic activity after maxillary expansion, or on the contrary, slow tooth movement and prolong treatment time by reducing oxidative stress and inflammation. Accordingly, factors such as the desired effect in orthodontic treatment and the phase of treatment should be considered when using antioxidants. We aimed to provide information and suggestions for evaluating the effectiveness of antioxidant use in orthodontic treatment with basic information about antioxidants. 


PDF View

References

  • Al-Dlaigan, Y. H., Shaw, L., & Smith, A. (2001). Dental erosion in a group of British 14-year-old school children. Part II: Influ-ence of dietary intake. British Dental Journal, 190(5), 258-261. http://dx.doi.org/10.1038/sj.bdj.4800943 google scholar
  • Arai, C., Nomura, Y., Ishikawa, M., Noda, K., Choi, J. W., Yashiro, Y., . . . Nakamura, Y. (2010). HSPA1A is upregulated in periodontal lig-ament at early stage of tooth movement in rats. Histochemistry and Cell Biology, 134(4), 337-343. http://dx.doi.org/10.1007/s00418-010-0737-3 google scholar
  • Arenas-Jal, M., Sune-Negre, J. M., & Garcia-Montoya, E. (2020). Coenzyme Q10 supplementation: Efficacy, safety, and formu-lation challenges. Comprehensive Reviews and Food Science Food Safety, 19(2), 574-594. http://dx.doi.org/10.1111/1541-4337.12539 google scholar
  • Asefi, S., Seifi, M., Fard, G. H., & Lotfi, A. (2018). Innovative eval-uation of local injective gel of curcumin on the orthodontic tooth movement in rats. Dental Research Journal (Isfahan), 15(1), 4049. http://dx.doi.org/10.4103/1735-3327.223618 google scholar
  • Bilici Gecer, R. (2023). In Vıvo Investıgatıon of The Effects of Coen-zyme Q10 on Orthodontıc Tooth Movement (Doctoral Thesis). (Not Published) google scholar
  • Boissy, P., Andersen, T. L., Abdallah, B. M., Kassem, M., Plesner, T., & Delaisse, J. M. (2005). Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation. Cancer Research Journal, 65(21), 9943-9952. http://dx.doi.org/10.1158/0008-5472.CAN-05-0651 google scholar
  • Bolat, E. (2014). Histological and Biochemical Evaluation of the Effects of Vitamins C and E on Orthodontic Tooth Movement in Rats (Doctoral thesis). Retrieved from https://acikbilim.yok.gov.tr/handle/20.500.12812/269623 google scholar
  • Bolat, E., Esenlik, E., Oncu, M., Ozgocmen, M., Avunduk, M. C., & Yuksel, O. (2020). Evaluation of the effects of vitamins C and E on experimental orthodontic tooth movement. Journal of Dental Research, Dental Clinics, Dent Prospects, 14(2), 131-137. http://dx.doi.org/10.34172/joddd.2020.0027 google scholar
  • Borhanuddin, B., Mohd Fozi, N. F., & Naina Mohamed, I. (2012). Vitamin e and the healing of bone fracture: the current state of evidence. Evidence- Based Complementary and Alternative Medicine, 2012, 684510. http://dx.doi.org/10.1155/2012/684510 google scholar
  • Buczko, P., Knas, M., Grycz, M., Szarmach, I., & Zalewska, A. (2017). Orthodontic treatment modifies the oxidant-antioxidant balance in saliva of clinically healthy subjects. Advances in Medical Sciences, 62(1), 129-135. http://dx.doi.org/10.1016/j.advms.2016.11.004 google scholar
  • Calder, P. C. (2006). n-3 polyunsaturated fatty acids, inflam-mation, and inflammatory diseases. The American Jour-nal of Clinical Nutrition, 83(6 Suppl), 1505S-1519S. http://dx.doi.org/10.1093/ajcn/83.6.1505S google scholar
  • Cesur, M. G., Gulle, K., Sirin, F. B., Akpolat, M., Ogrenim, G., Alkan, A., & Cesur, G. (2018). Effects of curcumin and melatonin on bone formation in orthopedically expanded suture in rats: A biochemi-cal, histological and immunohistochemical study. Orthodontics & Craniofacial Research. http://dx.doi.org/10.1111/ocr.12232 google scholar
  • Chae, H. S., Park, H. J., Hwang, H. R., Kwon, A., Lim, W. H.,Yi, W. J., . . . Baek, J. H. (2011). The effect of antioxi-dants on the production of pro-inflammatory cytokines and or-thodontic tooth movement. Molecules and Cells, 32(2), 189-196. http://dx.doi.org/10.1007/s10059-011-0071-1 google scholar
  • Chen, Y. W., Wang, H. C., Gao, L. H., Liu, C., Jiang, Y. X., Qu, H., . . . Jiang, J. H. (2016). Osteoclastogene-sis in Local Alveolar Bone in Early Decortication-Facilitated Orthodontic Tooth Movement. PLoS One, 11(4), e0153937. http://dx.doi.org/10.1371/journal.pone.0153937 google scholar
  • Clarke, M. W., Burnett, J. R., & Croft, K. D. (2008). Vitamin E in human health and disease. Crit Rev Clin Lab Sci, 45(5), 417-450. http://dx.doi.org/10.1080/10408360802118625 google scholar
  • Colombo, M. L. (2010). An update on vitamin E, tocopherol and tocotrienol-perspectives. Molecules, 15(4), 2103-2113. http://dx.doi.org/10.3390/molecules15042103 google scholar
  • Crane, F. L. (2001). Biochemical functions of coenzyme Q10. Journal of the American College of Nutrition, 20(6), 591-598. http://dx.doi.org/10.1080/07315724.2001.10719063 google scholar
  • Dehis, H., Rahman, A.R.A., Aziz M.A.W.M.A., Yasin, M.M., Yussif, N.M.A. (2018). Efficacy and safety of locally injectable Vitamin C on accelerating the orthodontic movement of maxillary canine im-paction (oral mesotherapy technique): Prospective study. Clinical Cases in Mineral and Bone Metabolism, 15, 280-287. google scholar
  • Demir, M. E. (2020). Evaluatıon of The Effect of Grape Seed Extract on Bone Formatıon in Palatal Sutures of Rats Durıng Rapıd Maxıllary Expansıon (Doctoral thesis). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key= _F5QEpayDXGqGZlp9XiFtJ-OSGgWjuSQRl4R0dB1UQnk1e LOeZvHcV5TqGnfu_4j google scholar
  • EFSA (European Food Safety Authority) (2014). Refined exposure assessment for curcumin (E 100). The EFSA Journal, 12(10), 3876. Retrieved from http:// www.efsa.europa.eu/efsajournal google scholar
  • Esenlik, E., Naziroglu, M., Acikalin, C., & Ovey, I. S. (2012). Vitamin E supplementation modulates gingival crevicular fluid lipid peroxidation and antioxidant levels in patients with orthodontic tooth movement. Cell Biochemistry & Function, 30(5), 376-381. http://dx.doi.org/10.1002/cbf.1833 google scholar
  • Fan, L., Feng, Y., Chen, G. C., Qin, L. Q., Fu, C. L., & Chen, L. H. (2017). Effects of coenzyme Q10 supplementation on inflam-matory markers: A systematic review and meta-analysis of ran-domized controlled trials. Pharmacology Research, 119, 128-136. http://dx.doi.org/10.1016/j.phrs.2017.01.032 google scholar
  • Farhadian, N., Miresmaeili, A., Azar, R., Zargaran, M., Moghimbeigi, A., & Soheilifar, S. (2015). Effect of dietary ascorbic Acid on osteogenesis of expanding midpalatal suture in rats. Joural of Dental Medicine (Tehran), 12(1), 39-48. google scholar
  • Fujita, I., Hirano, J., Itoh, N., Nakanishi, T., & Tanaka, K. (2001). Dexamethasone induces sodium-dependant vitamin C transporter in a mouse osteoblastic cell line MC3T3-E1. British Journal of Nutrition, 86(2), 145-149. http://dx.doi.org/10.1079/bjn2001406 google scholar
  • Gad, A. M., & Soliman, S. O. (2023). Evaluation of systemic Omega-3 PUFAs effect on orthodontic tooth movement in a rabbit model: RCT. The Angle Orthodontist, 93(4), 476-481. http://dx.doi.org/10.2319/110222-750.1 google scholar
  • Gregory, J. F., 3rd. (1993). Ascorbic acid bioavailability in foods and supplements. Nutrition Reviews, 51(10), 301-303. http://dx.doi.org/10.1111/j.1753-4887.1993.tb03059.x google scholar
  • Hamidi, M. S., Corey, P. N., & Cheung, A. M. (2012). Effects of vitamin E on bone turnover markers among US postmenopausal women. Journal of Bone and Mineral Research, 27(6), 1368-1380. http://dx.doi.org/10.1002/jbmr.1566 google scholar
  • Hargreaves, I. R., & Mantle, D. (2021). COVID-19, Coenzyme Q10 and Selenium. Advances in Experimental Medicine and Biology, 1327, 161-168. http://dx.doi.org/10.1007/978-3-030-71697-4_13 google scholar
  • Herrera, E., & Barbas, C. (2001). Vitamin E: action, metabolism and perspectives. Journal of Physiology and Biochemistry, 57(2), 4356. google scholar
  • Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A Review of Its Effects on Human Health. Foods, 6(10). http://dx.doi.org/10.3390/foods6100092 google scholar
  • Huang, C. H., Chang, R. J., Huang, S. L., & Chen, W. (2003). Dietary vitamin E supplementation affects tissue lipid perox-idation of hybrid tilapia, Oreochromis niloticus x O. aureus. Comparative Biochemistry and Physiology B, 134(2), 265-270. http://dx.doi.org/10.1016/s1096-4959(02)00256-7 google scholar
  • Ishikawa, S., Iwasaki, K., Komaki, M., & Ishikawa, I. (2004). Role of ascorbic acid in periodontal ligament cell dif-ferentiation. Journal of Periodontology, 75(5), 709-716. http://dx.doi.org/10.1902/jop.2004.75.5.709 google scholar
  • Iwami-Morimoto, Y., Yamaguchi, K., & Tanne, K. (1999). Influ-ence of dietary n-3 polyunsaturated fatty acid on experimental tooth movement in rats. The Angle Orthodontist, 69(4), 365-371.http://dx.doi.org/10.1043/00033219 (1999)069<0365:IOD-NPF>2.3.CO;2 google scholar
  • Jacob, R. A., & Sotoudeh, G. (2002). Vitamin C function and sta-tus in chronic disease. Nutrition in Clinical Care, 5(2), 66-74. doi:10.1046/j.1523-5408.2002.00005.x google scholar
  • Jager, A., & Radlanski, R. J. (1991). Alveolar bone remodelling fol-lowing orthodontic tooth movement in aged rats. An animal ex-perimental study. Deutsche Stomatologie, 41, 399-406. google scholar
  • Jiang, Q. (2014). Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease preven-tion and therapy. Free Radical Biology and Medicine, 72, 76-90. http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.035 google scholar
  • Jiang, Y., Luo, W., Wang, B., Wang, X., Gong, P., & Xiong, Y. (2020). Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice. Life Sciences Journal, 246, 117422. http://dx.doi.org/10.1016/j.lfs.2020.117422 google scholar
  • Kabasawa, M., Ejiri, S., Hanada, K., Ozawa, H. (1996). Effect of age on physiologic and mechanically stressed rat alveolar bone: a cytologic and histochemical study. The International Journal of Adult Orthodontics & Orthognathic Surgery, 11, 313-327. google scholar
  • Kacprzak, A., & Strzecki, A. (2018). Methods of accelerat-ing orthodontic tooth movement: A review of contempo-rary literature. Dental and Medical Problems, 55(2), 197-206. http://dx.doi.org/10.17219/dmp/90989 google scholar
  • Kara, M.I., Erciyas, K., Altan, A.B., Ozkurt, M., Ay, S., & İnan, S. (2012). Thymoquinone accelerates new bone formation in the rapid maxillary expansion procedure. Archieves of Oral Biology, 57, 357-363. google scholar
  • Kale, S., Kocadereli, I., Atilla, P., & Asan, E. (2004). Com-parison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. American Jour-nal of Orthodontics and Dentofacial Orthopedics, 125(5), 607614. http://dx.doi.org/10.1016/j.ajodo.2003.06.002 google scholar
  • Kawamukai, M. (2002). Biosynthesis, bioproduction and novel roles of ubiquinone. Journal of Bioscience Bioengineering, 94(6), 511517. http://dx.doi.org/10.1016/s1389-1723(02)80188-8 google scholar
  • Kazmierczak-Baranska, J., Boguszewska, K., Adamus-Grabicka, A., & Karwowski, B. T. (2020). Two Faces of Vitamin C-Antioxidative and Pro-Oxidative Agent. Nutrients, 12(5). http://dx.doi.org/10.3390/nu12051501 google scholar
  • Krupa, K., Fritzy, K., & Parmar M. (2023, Jan 17). Omega-3 Fatty Acids. In: StatPearls [Web Book] Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK564314/ google scholar
  • Kurklu, M., Yildiz, C., Kose, O., Yurttas, Y., Karacalioglu, O., Serdar, M., & Deveci, S. (2011). Effect of alpha-tocopherol on bone formation during distraction osteogenesis: a rabbit model. Journal of Orthopaedics and Traumatology, 12(3), 153-158. http://dx.doi.org/10.1007/s10195-011-0145-z google scholar
  • Li, X., Li, M., Lu, J., Hu, Y., Cui, L., Zhang, D., & Yang, Y. (2016) Age-related effects on osteoclastic activities after orthodontic tooth movement. Bone and Joint Research. 5(10), 492-499. http://dx.doi.org/10.1302%2F2046-3758.510.BJR-2016-0004.R2 google scholar
  • Litton, S. F. (1974). Orthodontic tooth movement during an ascorbic acid deficiency. American Journal of Or-thodontics and Dentofacial Orthopedics, 65(3), 290-302. http://dx.doi.org/10.1016/s0002-9416(74)90333-9 google scholar
  • Liu, X. C., Wang, X. X., Zhang, L. N., Yang, F., Nie, F. J., & Zhang, J. (2020). Inhibitory effects of resvera-trol on orthodontic tooth movement and associated root re-sorption in rats. Archives of Oral Biology, 111, 104642. http://dx.doi.org/10.1016/j.archoralbio.2019.104642 google scholar
  • Lopez-Lluch, G., Rodriguez-Aguilera, J. C., Santos-Ocana, C., & Navas, P. (2010). Is coenzyme Q a key factor in aging? Mechanisms of Ageing and Development, 131(4), 225-235. http://dx.doi.org/10.1016/j.mad.2010.02.003 google scholar
  • Madian A.M., A. E. M., Haruni N.M., Abdelmajeed S. (2021). The Effect Of Systemic Administration Of Co-Enzyme Q10 On Or-thodontic Relapse In A Rabbıt Model. Alexandria Dental Journal, 46, 197-204. google scholar
  • Malhotra, S., Sawhney, G., & Pandhi, P. (2004). The therapeutic poten-tial of melatonin: a review of the science. Medscape Gen Medicine, 6(2), 46. google scholar
  • Mangels, A. R., Block, G., Frey, C. M., Patterson, B. H., Taylor, P. R., Norkus, E. P., & Levander, O. A. (1993). The bioavailability to humans of ascorbic acid from oranges, or-ange juice and cooked broccoli is similar to that of synthetic ascorbic acid. The Journal of Nutrition, 123(6), 1054-1061. http://dx.doi.org/10.1093/jn/123.6.1054 google scholar
  • Masella, R. S., & Meister, M. (2006). Current concepts in the biology of orthodontic tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics, 129(4), 458-468. http://dx.doi.org/10.1016/j.ajodo.2005.12.013 google scholar
  • Mata-Granados, J. M., Cuenca-Acebedo, R., Luque de Castro, M. D., & Quesada Gomez, J. M. (2013). Lower vitamin E serum levels are associated with osteoporosis in early postmenopausal women: a cross-sectional study. Journal of Bone and Mineral Metabolism, 31(4), 455-460. http://dx.doi.org/10.1007/s00774-013-0432-2 google scholar
  • Miresmaeili, A., Mollaei, N., Azar, R., Farhadian, N., & Mani Kashani, K. (2015). Effect of Dietary Vitamin C on Orthodontic Tooth Movement in Rats. Journal of Dental Medicine (Tehran), 12(6), 409-413. google scholar
  • Mironczuk-Chodakowska, I., Witkowska, A. M., & Zujko, M. E. (2018). Endogenous non-enzymatic antioxidants in the human body. Advances in Medical Sciences, 63(1), 68-78. http://dx.doi.org/10.1016/j.advms.2017.05.005 google scholar
  • Monsen, E. R. (2000). Dietary reference intakes for the antioxi-dant nutrients: vitamin C, vitamin E, selenium, and carotenoids. Journal of American Dietetic Association, 100(6), 637-640. http://dx.doi.org/10.1016/S0002-8223(00)00189-9 google scholar
  • Mori, T. A., & Beilin, L. J. (2004). Omega-3 fatty acids and inflammation. Current Atherosclerosis Reports, 6(6), 461-467. http://dx.doi.org/10.1007/s11883-004-0087-5 google scholar
  • Motoji, H., To, M., Hidaka, K., & Matsuo, M. (2020). Vitamin C and eggshell membrane facilitate orthodontic tooth movement and induce histological changes in the peri-odontal tissue. Journal of Oral Biosciences, 62(1), 80-87. http://dx.doi.org/10.1016/j.job.2020.01.006 google scholar
  • NIH (2021, March 26). National Institues of Health Office of Dietary Supplements, Vitamin E [Web]. Retrieved from https://ods.od.nih.gov/factsheets/VitaminE-HealthProfessional/ google scholar
  • NIH (2023, Feb 15). National Institues of Health Office of Dietary Supplements, Omega-3 Fatty Acids [Web]. Re-trieved from http://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/ google scholar
  • Nur Azlina, M. F., & Nafeeza, M. I. (2008). Tocotrienol and alpha-tocopherol reduce corticosterone and noradrenalin levels in rats exposed to restraint stress. Die Pharmazie, 63(12), 890-892. google scholar
  • Ogrenim, G., Cesur, M. G., Onal, T., Kara, M., Sirin, F. B., Yal-cin, G. D., & Inan, S. (2019). Influence of omega-3 fatty acid on orthodontic tooth movement in rats: A biochemi-cal, histological, immunohistochemical and gene expression study. Orthodontics & Craniofacial Research, 22(1), 24-31. http://dx.doi.org/10.1111/ocr.12253 google scholar
  • Okubo, N., Ishikawa, H., Sano, R., Shimazu, Y., & Takeda, M. (2020). Effect of resveratrol on the hyperexcitability of nociceptive neu-rons associated with ectopic hyperalgesia induced by experimen-tal tooth movement. European Journal of Oral Sciences, 128(4), 275-283. http://dx.doi.org/10.1111/eos.12722 google scholar
  • Ozdemir, M., Ilhan, A., Gorucu-Coskuner, H., Taner, T., & Bil-gic, P. (2021). Assessment of food consumption changes in adolescents during orthodontic treatment. American Journal of Orthodontics and Dentofacial Orthopedics, 159(5), 604-612. http://dx.doi.org/10.1016/j.ajodo.2019.11.023 google scholar
  • Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., . . . Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. http://dx.doi.org/10.1155/2017/8416763 google scholar
  • Ramirez-Garza, S. L., Laveriano-Santos, E. P., Marhuenda-Munoz, M., Storniolo, C. E., Tresserra-Rimbau, A., Vallverdu-Queralt, A., & Lamuela-Raventos, R. M. (2018). Health Effects of Resver-atrol: Results from Human Intervention Trials. Nutrients, 10(12). http://dx.doi.org/10.3390/nu10121892 google scholar
  • Ren, Y., Kuijpers-Jagtman, A. M., & Maltha, J. C. (2005). Immuno-histochemical evaluation of osteoclast recruitment during experi-mental tooth movement in young and adult rats. Archieves of Oral Biology 50, 1032-1039. google scholar
  • Salomao, M. F., Reis, S. R., Vale, V. L., Machado, C. V., Meyer, R., & Nascimento, I. L. (2014). Immunolocalization of FGF-2 and VEGF in rat periodontal ligament during experimental tooth movement. Dental Press Journal of Orthodontics, 19(3), 67-74. http://dx.doi.org/10.1590/2176-9451.19.3.067-074.oar google scholar
  • Samita, Verma, S. K., Sharma, V. K., Moinuddin, & Ahad, A. (2022). Effect of 1% curcumin gel on myeloperoxidase activity in GCF and periodontal status in the initial phase of orthodon-tic tooth movement. Journal of Orthodontic Science, 11, 55. http://dx.doi.org/10.4103/jos.jos_143_21 google scholar
  • Schroder, A., Alefeld, A., Forneck, A., Spanier, G., Deschner, J., Proff, P., & Kirschneck, C. (2022). Impact of mela-tonin on periodontal ligament fibroblasts during mechanical strain. European Journal of Orthodontics, 44(6), 659-668. http://dx.doi.org/10.1093/ejo/cjac013 google scholar
  • Seong, C., Chen, P. J., Kalajzic, Z., Mehta, S., Sharma, A., Nanda, R., . . . Dutra, E. H. (2022). Vitamin E enriched diet increases the rate of orthodontic tooth movement. American Journal of Or-thodontics and Dentofacial Orthopedics, 161(5), 687-697 e683. google scholar
  • Shi, W. Q., Liu, J., Cao, Y., Zhu, Y. Y., Guan, K., & Chen, Y. M. (2016). Association of dietary and serum vitamin E with bone mineral density in middle-aged and elderly Chinese adults: a cross-sectional study. British Journal of Nutrition, 115(1), 113-120. http://dx.doi.org/10.1017/S0007114515004134 google scholar
  • Shoji-Matsunaga, A., Ono, T., Hayashi, M., Takayanagi, H., Moriyama, K., & Nakashima, T. (2017). Osteocyte reg-ulation of orthodontic force-mediated tooth movement via RANKL expression. Scientifict Reports, 7(1), 8753. http://dx.doi.org/10.1038/s41598-017-09326-7 google scholar
  • Sood, B. & Keenaghan, M. (2022, Jan 19). Coenzym Q10. In: StatPearls [Web Book] Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK531491/ google scholar
  • Sotler, R., Poljsak, B., Dahmane, R., Jukic, T., Pavan Jukic, D., Rotim, C., . . . Starc, A. (2019). Prooxidant Activities of Antioxidants and Their Impact on Health. Acta Clinica Croatica, 58(4), 726-736. http://dx.doi.org/10.20471/acc.2019.58.04.20 google scholar
  • Sufarnap, E., Ilyas, S., Sofyanti, E., Siregar, D., Lindawati, Y., No-valia, T., & Kurnianingsih, H. (2021). Vitamin E supplementa-tion reduces stress levels from orthodontic force in Wistar rats (Rattus norvegicus). The Saudi Dental Journal, 33(8), 912-916. http://dx.doi.org/10.1016/j.sdentj.2021.09.004 google scholar
  • Sufarnap, E., Siregar, D., & Lindawati, Y. (2020). Effect of vitamin E supplementation on orthodontic tooth movement in Wistar rats: a prelimary study. F1000Res, 9, 1093. http://dx.doi.org/10.12688/f1000research.25709.3 google scholar
  • Sun, D., Krishnan, A., Zaman, K., Lawrence, R., Bhattacharya, A., & Fernandes, G. (2003). Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. Journal of Bone and Mineral Research, 18(7), 1206-1216. http://dx.doi.org/10.1359/jbmr.2003.18.7.1206 google scholar
  • Unlu, A., Nayir, E., Dogukan Kalenderoglu, M., Kirca, O., & Ozdogan, M. (2016). Curcumin (Turmeric) and cancer. Journal of Balkan Union of Oncology, 21(5), 1050-1060. google scholar
  • Uysal, T., Amasyali, M., Olmez, H., Enhos, S., Karslioglu, Y., & Gunhan, O. (2011). Effect of vitamin C on bone for-mation in the expanded inter-premaxillary suture. Early bone changes. Journal of Orofacial Orthopedics, 72(4), 290-300. http://dx.doi.org/10.1007/s00056-011-0034-3 google scholar
  • Van den Berg, G. J., Yu, S., Lemmens, A. G., & Beynen, A. C. (1994). Dietary ascorbic acid lowers the concentration of soluble copper in the small intestinal lumen of rats. British Journal of Nutrition, 71(5), 701-707. http://dx.doi.org/10.1079/bjn19940177 google scholar
  • van Tits, L. J., Demacker, P. N., de Graaf, J., Hak-Lemmers, H. L., & Stalenhoef, A. F. (2000). alpha-tocopherol supplementation de-creases production of superoxide and cytokines by leukocytes ex vivo in both normolipidemic and hypertriglyceridemic individu-als. The American Journal of Clinical Nutrition, 71(2), 458-464. http://dx.doi.org/10.1093/ajcn/71.2.458 google scholar
  • Varela-Lopez, A., Giampieri, F., Battino, M., & Quiles, J. L. (2016). Coenzyme Q and Its Role in the Di-etary Therapy against Aging. Molecules, 21(3), 373. http://dx.doi.org/10.3390/molecules21030373 google scholar
  • Verna, C., Zaffe, D., & Siciliani, G. (1999). Histomorphometric study of bone reactions during orthodontic tooth movement in rats. Bone, 24(4), 371-379. http://dx.doi.org/10.1016/s8756-3282(99)00009-5 google scholar
  • Virtamo, J., Pietinen, P., Huttunen, J. K., Korhonen, P., Malila, N., Virtanen, M. J., . . . Group, A. S. (2003). Incidence of cancer and mortality following alpha-tocopherol and beta-carotene supple-mentation: a postintervention follow-up. JAMA İnternal Medicine, 290(4), 476-485. http://dx.doi.org/10.1001/jama.290.4.476 google scholar
  • Xia, N., Daiber, A., Forstermann, U., & Li, H. (2017). An-tioxidant effects of resveratrol in the cardiovascular sys-tem. British Journal of Pharmacology, 174(12), 1633-1646. http://dx.doi.org/10.1111/bph.13492 google scholar
  • Xu, H., Watkins, B. A., & Seifert, M. F. (1995). Vitamin E stim-ulates trabecular bone formation and alters epiphyseal cartilage morphometry. Calcified Tissue International, 57(4), 293-300. http://dx.doi.org/10.1007/BF00298885 google scholar
  • Yalcin Bahat, P., Ayhan, I., Ureyen Ozdemir, E., Inceboz, U., & Oral, E. (2022). Dietary supplements for treatment of endometriosis: A review. Acta Biomedica, 93(1), e2022159. http://dx.doi.org/10.23750/abm.v93i1.11237 google scholar
  • Yang, L., Wang, H., Song, S., Xu, H., Chen, Y., Tian, S., . . . Zhang, Q. (2022). Systematic Understanding of Anti-Aging Effect of Coenzyme Q10 on Oocyte Through a Network Pharmacology Approach. Frontiers in Endocrinology (Lausanne), 13, 813772. http://dx.doi.org/10.3389/fendo.2022.813772 google scholar
  • Zhang, J., Hu, X., & Zhang, J. (2017). Associations between serum vitamin E concentration and bone mineral density in the US el-derly population. Osteoporosis International, 28(4), 1245-1253. http://dx.doi.org/10.1007/s00198-016-3855-5 google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Bilici Geçer, R., Özhan, G., & Dursun, D. (2023). Antioxidant supplements: Positive or negative actors in orthodontic treatment. İstanbul Journal of Pharmacy, 53(3), 358-367. https://doi.org/10.26650/IstanbulJPharm.2023.1329006


AMA

Bilici Geçer R, Özhan G, Dursun D. Antioxidant supplements: Positive or negative actors in orthodontic treatment. İstanbul Journal of Pharmacy. 2023;53(3):358-367. https://doi.org/10.26650/IstanbulJPharm.2023.1329006


ABNT

Bilici Geçer, R.; Özhan, G.; Dursun, D. Antioxidant supplements: Positive or negative actors in orthodontic treatment. İstanbul Journal of Pharmacy, [Publisher Location], v. 53, n. 3, p. 358-367, 2023.


Chicago: Author-Date Style

Bilici Geçer, Rümeysa, and Gül Özhan and Derya Dursun. 2023. “Antioxidant supplements: Positive or negative actors in orthodontic treatment.” İstanbul Journal of Pharmacy 53, no. 3: 358-367. https://doi.org/10.26650/IstanbulJPharm.2023.1329006


Chicago: Humanities Style

Bilici Geçer, Rümeysa, and Gül Özhan and Derya Dursun. Antioxidant supplements: Positive or negative actors in orthodontic treatment.” İstanbul Journal of Pharmacy 53, no. 3 (Apr. 2024): 358-367. https://doi.org/10.26650/IstanbulJPharm.2023.1329006


Harvard: Australian Style

Bilici Geçer, R & Özhan, G & Dursun, D 2023, 'Antioxidant supplements: Positive or negative actors in orthodontic treatment', İstanbul Journal of Pharmacy, vol. 53, no. 3, pp. 358-367, viewed 28 Apr. 2024, https://doi.org/10.26650/IstanbulJPharm.2023.1329006


Harvard: Author-Date Style

Bilici Geçer, R. and Özhan, G. and Dursun, D. (2023) ‘Antioxidant supplements: Positive or negative actors in orthodontic treatment’, İstanbul Journal of Pharmacy, 53(3), pp. 358-367. https://doi.org/10.26650/IstanbulJPharm.2023.1329006 (28 Apr. 2024).


MLA

Bilici Geçer, Rümeysa, and Gül Özhan and Derya Dursun. Antioxidant supplements: Positive or negative actors in orthodontic treatment.” İstanbul Journal of Pharmacy, vol. 53, no. 3, 2023, pp. 358-367. [Database Container], https://doi.org/10.26650/IstanbulJPharm.2023.1329006


Vancouver

Bilici Geçer R, Özhan G, Dursun D. Antioxidant supplements: Positive or negative actors in orthodontic treatment. İstanbul Journal of Pharmacy [Internet]. 28 Apr. 2024 [cited 28 Apr. 2024];53(3):358-367. Available from: https://doi.org/10.26650/IstanbulJPharm.2023.1329006 doi: 10.26650/IstanbulJPharm.2023.1329006


ISNAD

Bilici Geçer, Rümeysa - Özhan, Gül - Dursun, Derya. Antioxidant supplements: Positive or negative actors in orthodontic treatment”. İstanbul Journal of Pharmacy 53/3 (Apr. 2024): 358-367. https://doi.org/10.26650/IstanbulJPharm.2023.1329006



TIMELINE


Submitted18.07.2023
Accepted21.08.2023
Published Online03.10.2023

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.