Research Article


DOI :10.26650/IstanbulJPharm.2024.1424150   IUP :10.26650/IstanbulJPharm.2024.1424150    Full Text (PDF)

Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production

Anwar Salm Kalifa KafoRabia Mrehil ElsalamiMasriana Hassan

Background and Aims: Mitragyna speciosa Korth. is a tropical plant native to Asia with various medicinal properties. This study examined the immunotherapeutic potential of M. speciosa methanolic extract (MSME) against lipopolysaccharide (LPS)- stimulated activation of macrophages via the expression of Toll-like receptor 4 (TLR-4) and CD14 and downstream signalling cascades leading to the activation of nuclear factor kappa B (NF-𝜅B), which potentially affects macrophage immune responses.

Methods: The expression of TLR-4/CD14 and NF-𝜅B genes in macrophages was determined in total RNA by qRT-PCR. Subsequently, the macrophage phagocytic activities and secretion of immune mediators such as reactive oxygen species (ROS) and cytokines were evaluated by fluorescent latex beads uptake assay, 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA), and cytometric bead array, respectively, in LPS-activated RAW264.7 cells.

Results: MSME significantly reduced macrophage-mediating inflammation by inhibiting TLR-4/CD14 signalling and subsequently suppressed the NF-𝜅B expression. Inhibition of TLR-4 by MSME attenuated macrophage phagocytic activity, which consequently reduced the production of ROS and pro-inflammatory cytokines such as IL-6, MCP-1, and TNF-α. Interestingly, MSME significantly increased the production of IL-10, which supports the anti-inflammatory properties of M. speciosa.

Conclusion: Our findings suggest the therapeutic potential of MSME through the suppression of macrophage inflammatory responses mediated by IL-10 secretion. 


PDF View

References

  • Ahmad, W., Jantan, I., Kumolosasi, E., Haque, M. A., & Bukhari, S. N. A. (2018). Immunomodulatory effects of Tinospora crispa extract and its major compounds on the immune functions of RAW 264.7 macrophages. International Immunopharmacology, 60, 141-151. https://doi.org/10.1016/j.intimp.2018.04.046 google scholar
  • Annas, S., Mastura Shaik Mossadeq, W., & Abdul Kadir, A. (2020). TROPICAL AGRICULTURAL SCIENCE Antipyretic Effect of Mitragynine and Crude Methanolic Extract of Mitragyna speciosa google scholar
  • Korth. in Mice. Pertanika J. Trop. Agric. Sc, 43(2), 207-216. Retrieved from http://www.pertanika.upm.edu.my/ google scholar
  • Assanangkornchai, S., Muekthong, A., Sam-angsri, N., & Pat-tanasattayawong, U. (2007). The use of Mitragynine speciosa (‘Krathom’), an addictive plant, in Thailand. Substance Use & Misuse, 42(14), 2145-2157. https://doi.org/10.1080/ 10826080701205869 google scholar
  • Atri, C., Guerfali, F. Z., & Laouini, D. (2018). Role of Human Macrophage Polarization in Inflammation during Infectious Dis-eases. International Journal of Molecular Sciences, 19(6), 1801. https://doi.org/10.3390/ijms19061801 google scholar
  • Buckhalter, S., Soubeyrand, E., Ferrone, S. A. E., Rasmussen, D. J., Manduca, J. D., Al-Abdul-Wahid, M. S., . . . Perreault, M. L. (2021). The Antidepressant-Like and Analgesic Effects of Kratom Alkaloids are accompanied by Changes in Low Frequency Oscil-lations but not AFosB Accumulation. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.696461 google scholar
  • Dalmas, E., Tordjman, J., Guerre-Millo, M., & Clement, K. (2012). Macrophages and Inflammation. In Adipose Tissue Biology (pp. 167-193). New York, NY: Springer New York. https://doi.org/10. 1007/978-1-4614-0965-6_6 google scholar
  • Doyle, S. E., O’Connell, R. M., Miranda, G. A., Vaidya, S. A., Chow, E. K., Liu, P. T., . . . Cheng, G. (2004). Toll-like Receptors In-duce a Phagocytic Gene Program through p38. The Journal of Experimental Medicine, 199(1), 81-90. https://doi.org/10.1084/ jem.20031237 google scholar
  • Elisia, I., Pae, H. B., Lam, V., Cederberg, R., Hofs, E., & Krystal, G. (2018). Comparison of RAW264.7, human whole blood and PBMC assays to screen for immunomodulators. Journal of Im-munological Methods, 452, 26-31. https://doi.org/10.1016/j.jim. 2017.10.004 google scholar
  • Feng, G., Laijin, S., Chen, S., Teng, W., Dejian, Z., Yin, C., & Shoudong, G. (2021). In vitro and in vivo immunoregulatory ac-tivity of sulfated fucan from the sea cucumber A. leucoprocta. In-ternational Journal of Biological Macromolecules, 187(March), 931-938. https://doi.org/10.1016/j.ijbiomac.2021.08.008 google scholar
  • Finkel, T. (2011). Signal transduction by reactive oxygen species. Journal of Cell Biology, 194(1), 7-15. https://doi.org/10.1083/ jcb.201102095 google scholar
  • Firmansyah, A., Sundalian, M., & Taufiq, M. (2020). Kratom (Mi-tragyna speciosa Korth) for a New Medicinal: a Review of Phar-macological and Compound Analysis. Biointerface Research in Applied Chemistry, 11(2), 9704-9718. https://doi.org/10.33263/ BRIAC112.97049718 google scholar
  • Franchimont, D., Martens, H., Hagelstein, M.-T., Louis, E., Dewe, W., Chrousos, G. P., . . . Geenen, V. (1999). Tumor Necrosis Factor a Decreases, and Interleukin-10 Increases, the Sensitivity of Hu-man Monocytes to Dexamethasone: Potential Regulation of the Glucocorticoid Receptor. The Journal of Clinical Endocrinology & Metabolism, 84(8), 2834-2839. https://doi.org/10.1210/jcem. 84.8.5931 google scholar
  • Fushimi, T., Okayama, H., Seki, T., Shimura, S., & Shirato, K. (1997). Dexamethasone Suppressed Gene Expression and Production of lnterleukin-10 by Human Peripheral Blood Mononuclear Cells and Monocytes. International Archives of Allergy and Immunology, 112(1), 13-18. https://doi.org/10.1159/000237425 google scholar
  • Gao, W., Xiong, Y., Li, Q., & Yang, H. (2017). Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Dis-eases: A Journey from Molecular to Nano Therapeutics. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00508 google scholar
  • George, G., Shyni, G. L., Abraham, B., Nisha, P., & Raghu, K. G. (2021). Downregulation of TLR4/MyD88/p38MAPK and JAK/STAT pathway in RAW 264.7 cells by Alpinia galanga reveals its beneficial effects in inflammation. Journal of Ethnopharmacology, 275, 114132. https://doi.org/10.1016/j.jep. 2021.114132 google scholar
  • Gu, B. J., Sun, C., Fuller, S., Skarratt, K. K., Petrou, S., & Wiley, James. S. (2014). A quantitative method for measuring innate phagocyto-sis by human monocytes using real-time flow cytometry. Cytome-try Part A, 85(4), 313-321. https://doi.org/10.1002/cyto.a.22400 google scholar
  • Jansen, K. L. R., & Prast, C. J. (1988). Psychoactive Properties of Mitragynine (Kratom). Journal of Psychoactive Drugs, 20(4), 455-457. https://doi.org/10.1080/02791072.1988.10472519 google scholar
  • Jantan, I., Ilangkovan, M., Yuandani, & Mohamad, H. F. (2014). Cor-relation between the major components of Phyllanthus amarus and Phyllanthus urinaria and their inhibitory effects on phagocytic ac-tivity of human neutrophils. BMC Complementary and Alternative Medicine, 14(1), 429. https://doi.org/10.1186/1472-6882-14-429 google scholar
  • Juanda, E., Andayani, S., & Maftuch, M. (2019). Phytochemical Screening and Antibacterial Activity of Kratom Leaf (Mitrag-yna speciosa Korth.) Against Aeromonas hydrophilla. The Journal of Experimental Life Sciences, 9(3), 155-158. https://doi.org/10. 21776/ub.jels.2019.009.03.02 google scholar
  • Kafo, A. S. K., Elsalami, R. M. A., Zailan, N. F. Z., Mahayidin, H., Ramasamy, R., Zaidan, U. H., & Hassan, M. (2023). Effects of Mi-tragyna Speciosa (Korth.) on macrophage immune responses. Cur-rent Trends in Biotechnology and Pharmacy, 17(4A), 121-130. https://doi.org/10.5530/ctbp.2023.4s.99 google scholar
  • Kafo, A. S. K., Mahayidin, H., Zailan, N. F. Z., Zaidan, U. H., Syed Azhar, S. N. A., Ramasamy, R., & Hassan, M. (2023). Isolation of Phytochemical and Pharmacological Bioactive Com-pounds From Mitragyna speciosa (Korth.): A Scoping Review. Malaysian Journal of Medicine and Health Sciences, 19(s16), 38-47. https://doi.org/10.47836/mjmhs.19.s16.7 google scholar
  • Kawasaki, T., & Kawai, T. (2014). Toll-Like Receptor Signaling Path-ways. Frontiers in Immunology, 5. https://doi.org/10.3389/fimmu. 2014.00461 google scholar
  • Kim, E.-A., Kim, S.-Y., Ye, B.-R., Kim, J., Ko, S.-C., Lee, W. W., . . . Heo, S.-J. (2018). Anti-inflammatory effect of Apo-9-fucoxanthinone via inhibition of MAPKs and NF-kB signaling pathway in LPS-stimulated RAW 264.7 macrophages and ze-brafish model. International Immunopharmacology, 59, 339-346. https://doi.org/10.1016/j.intimp.2018.03.034 google scholar
  • Kruegel, A. C., Uprety, R., Grinnell, S. G., Langreck, C., Pekarskaya, E. A., Le Rouzic, V., . . . Sames, D. (2019). 7-Hydroxymitragynine Is an Active Metabolite of Mitragynine and a Key Mediator of Its Analgesic Effects. ACS Central Science, 5(6), 992-1001. https: //doi.org/10.1021/acscentsci.9b00141 google scholar
  • Liao, J., Xie, X., Wang, W., Gao, Y., Cai, Y., Peng, J., . . . Wang, L. (2021). Anti-inflammatory Activity of Essential Oil from Leaves of Blumea balsamifera (L.) DC through Inhibiting TLR4/NF-kB Signaling Pathways and NLRP3 Inflammasome Activation in LPS-induced RAW264.7 Macrophage Cells. Journal of Essen-tial Oil Bearing Plants, 24(2), 160-176. https://doi.org/10.1080/ 0972060X.2021.1912645 google scholar
  • Limtrakul, P., Yodkeeree, S., Pitchakarn, P., & Punfa, W. (2015). Sup-pression of Inflammatory Responses by Black Rice Extract in RAW 264.7 Macrophage Cells via Downregulation of NF-kB and AP-1 Signaling Pathways. Asian Pacific Journal of Cancer Prevention, 16(10), 4277-4283. https://doi.org/10.7314/APJCP. 2015.16.10.4277 google scholar
  • Liu, Y., Chen, W., Zheng, F., Yu, H., & Wei, K. (2022). Xanthatin Alleviates LPS-Induced Inflammatory Response in RAW264.7 Macrophages by Inhibiting NF-kB, MAPK and STATs Activation. Molecules, 27(14), 4603. https://doi.org/10.3390/molecules27144603 google scholar
  • Meng, Z., Yan, C., Deng, Q., Gao, D., & Niu, X. (2013). Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-kB pathways. Acta Pharmacologica Sinica, 34(7), 901-911. https://doi.org/10. 1038/aps.2013.24 google scholar
  • Parthasarathy, S., Bin Azizi, J., Ramanathan, S., Ismail, S., Sasid-haran, S., Said, M. I. Mohd., & Mansor, S. M. (2009). Eval-uation of Antioxidant and Antibacterial Activities of Aqueous, Methanolic and Alkaloid Extracts from Mitragyna Speciosa (Ru-biaceae Family) Leaves. Molecules, 14(10), 3964-3974. https: //doi.org/10.3390/molecules14103964 google scholar
  • Qi, Z., Yin, F., Lu, L., Shen, L., Qi, S., Lan, L., . . . Yin, Z. (2013). Baicalein reduces lipopolysaccharide-induced inflamma-tion via suppressing JAK/STATs activation and ROS production. Inflammation Research, 62(9), 845-855. https://doi.org/10.1007/ s00011-013-0639-7 google scholar
  • Ryu, J. H., Sung, J., Xie, C., Shin, M.-K., Kim, C.-W., Kim, N.-G., . . . Kang, D. (2016). Aplysia kurodai -derived glycosaminoglycans increase the phagocytic ability of macrophages via the activation of AMP-activated protein kinase and cytoskeletal reorganization in RAW264.7 cells. Journal of Functional Foods, 27, 122-130. https://doi.org/10.1016/j.jff.2016.08.059 google scholar
  • Shaik Mossadeq, W. M., Sulaiman, M. R., Tengku Mohamad, T. A., Chiong, H. S., Zakaria, Z. A., Jabit, M. L., . . . Israf, D. A. (2009). Anti-inflammatory and antinociceptive effects of Mitrag-yna speciosa Korth methanolic extract. Medical Principles and Practice, 18(5), 378-384. https://doi.org/10.1159/000226292 google scholar
  • Shin, K.-M., Kim, Y.-H., Park, W.-S., Kang, I., Ha, J., Choi, J.-W., . . . Lee, K.-T. (2004). Inhibition of Methanol Extract from the Fruits of Kochia scoparia on Lipopolysaccharide-Induced Nitric Oxide, Prostagladin E2, and Tumor Necrosis Factor-.ALPHA. Production from Murine Macrophage RAW 264.7 Cells. Bi-ological and Pharmaceutical Bulletin, 27(4), 538-543. https: //doi.org/10.1248/bpb.27.538 google scholar
  • Sornsenee, P., Chimplee, S., & Romyasamit, C. (2023). Evaluation of Antibacterial, Antibiofilm, Antioxidant, and Anti-Inflammatory Activities of Kratom Leaves (Mitragyna speciosa) Fermen-tation Supernatant Containing Lactobacillus rhamnosus GG. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/ s12602-023-10142-x google scholar
  • Srisuwan, S., Tongtawe, P., Srimanote, P., & Voravuthikunchai, S. P. (2014). Rhodomyrtone modulates innate immune responses of THP-1 monocytes to assist in clearing methicillin-resistant Staphylococcus aureus. PLoS ONE, 9(10), 1-11. https://doi.org/ 10.1371/journal.pone.0110321 google scholar
  • Tan, W. S., Arulselvan, P., Karthivashan, G., & Fakurazi, S. (2015). Moringa oleifera flower extract suppresses the activation of inflam-matory mediators in lipopolysaccharide-stimulated RAW 264.7 macrophages via NF-kB pathway. Mediators of Inflammation, 2015(1). https://doi.org/10.1155/2015/720171 google scholar
  • Tohar, N., Shilpi, J. A., Sivasothy, Y., Ahmad, S., & Awang, K. (2019). Chemical constituents and nitric oxide inhibitory ac-tivity of supercritical carbon dioxide extracts from Mitragyna speciosa leaves. Arabian Journal of Chemistry, 12(3), 350-359. https://doi.org/10.1016/j.arabjc.2016.09.005 google scholar
  • Utar, Z., Majid, M. I. A., Adenan, M. I., Jamil, M. F. A., & Lan, T. M. (2011). Mitragynine inhibits the COX-2 mRNA expression and prostaglandin E2 production induced by lipopolysaccharide in RAW264.7 macrophage cells. Journal of Ethnopharmacology, 136(1), 75-82. https://doi.org/10.1016/j.jep.2011.04.011 google scholar
  • Wang, N., Xu, C., Li, N., Wang, F., Wang, F., Li, Z., . . . Zhang, G. (2022). Synergistic anti-inflammatory effects of resveratrol and vitamin E in lipopolysaccharide-induced RAW264.7 cells. Food Science and Technology, 42. https://doi.org/10.1590/fst.24122 google scholar
  • Wang, Y., Smith, W., Hao, D., He, B., & Kong, L. (2019). M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. International Immunopharmacology, 70, 459-466. https://doi.org/10.1016/j.intimp.2019.02.050 google scholar
  • Wickramasinghe, R., Kumara, R. R., De Silva, E. D., Ratnasooriya, W. D., & Handunnetti, S. (2014). Inhibition of phagocytic and intracellular killing activity of human neutrophils by aqueous and methanolic leaf extracts of Ixora coccinea. Journal of Ethnopharmacology, 153(3), 900–907. https://doi.org/10.1016/j.jep.2014.03.064 google scholar
  • Zailan, N. F. Z., Sarchio, S. N. E., & Hassan, M. (2022). Evaluation of Phytochemical Composition, Antioxidant and anti-Diabetic Activities of Mitragyna speciosa Methanolic Extract (MSME). Malaysian Journal of Medicine and Health Sciences, 18(s21), 93-100. https://doi.org/10.47836/mjmhs.18.s21.15 google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Kafo, A.S., Elsalami, R.M., & Hassan, M. (2024). Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production. İstanbul Journal of Pharmacy, 54(3), 350-358. https://doi.org/10.26650/IstanbulJPharm.2024.1424150


AMA

Kafo A S, Elsalami R M, Hassan M. Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production. İstanbul Journal of Pharmacy. 2024;54(3):350-358. https://doi.org/10.26650/IstanbulJPharm.2024.1424150


ABNT

Kafo, A.S.; Elsalami, R.M.; Hassan, M. Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production. İstanbul Journal of Pharmacy, [Publisher Location], v. 54, n. 3, p. 350-358, 2024.


Chicago: Author-Date Style

Kafo, Anwar Salm Kalifa, and Rabia Mrehil Elsalami and Masriana Hassan. 2024. “Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production.” İstanbul Journal of Pharmacy 54, no. 3: 350-358. https://doi.org/10.26650/IstanbulJPharm.2024.1424150


Chicago: Humanities Style

Kafo, Anwar Salm Kalifa, and Rabia Mrehil Elsalami and Masriana Hassan. Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production.” İstanbul Journal of Pharmacy 54, no. 3 (Mar. 2025): 350-358. https://doi.org/10.26650/IstanbulJPharm.2024.1424150


Harvard: Australian Style

Kafo, AS & Elsalami, RM & Hassan, M 2024, 'Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production', İstanbul Journal of Pharmacy, vol. 54, no. 3, pp. 350-358, viewed 14 Mar. 2025, https://doi.org/10.26650/IstanbulJPharm.2024.1424150


Harvard: Author-Date Style

Kafo, A.S. and Elsalami, R.M. and Hassan, M. (2024) ‘Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production’, İstanbul Journal of Pharmacy, 54(3), pp. 350-358. https://doi.org/10.26650/IstanbulJPharm.2024.1424150 (14 Mar. 2025).


MLA

Kafo, Anwar Salm Kalifa, and Rabia Mrehil Elsalami and Masriana Hassan. Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production.” İstanbul Journal of Pharmacy, vol. 54, no. 3, 2024, pp. 350-358. [Database Container], https://doi.org/10.26650/IstanbulJPharm.2024.1424150


Vancouver

Kafo AS, Elsalami RM, Hassan M. Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production. İstanbul Journal of Pharmacy [Internet]. 14 Mar. 2025 [cited 14 Mar. 2025];54(3):350-358. Available from: https://doi.org/10.26650/IstanbulJPharm.2024.1424150 doi: 10.26650/IstanbulJPharm.2024.1424150


ISNAD

Kafo, AnwarSalm Kalifa - Elsalami, RabiaMrehil - Hassan, Masriana. Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production”. İstanbul Journal of Pharmacy 54/3 (Mar. 2025): 350-358. https://doi.org/10.26650/IstanbulJPharm.2024.1424150



TIMELINE


Submitted24.01.2024
Accepted14.07.2024
Published Online30.12.2024

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.