Review Article


DOI :10.26650/jchild.2023.1392310   IUP :10.26650/jchild.2023.1392310    Full Text (PDF)

New Therapies on the Horizon for Preventing the Progression of Chronic Kidney Disease in Childhood

Siobhan WagnerIsabella TsoDamien Noone

The purpose of the review is to summarize the current pharmacological management of chronic kidney disease (CKD) in pediatric patients and critically present emerging evidence for the use of mineralocorticoid receptor antagonists and sodium-glucose cotransporter-2 (SGLT2) inhibitors.

Globally, CKD is the 19th leading cause of years of life lost and the current total number of children and adolescents affected with CKD Stages II-V is predicted to exceed 2 million in a global population of 2 billion children. The severity of kidney disease is strongly correlated with the extent of proteinuria. Agents that target the renin-angiotensin-aldosterone-system reduce proteinuria in mild to moderate CKD, slowing disease progression. Recent clinical trials evaluating mineralocorticoid receptor antagonists, such as finerenone and SGLT2 inhibitors, demonstrate similar results. However, additional pediatric clinical trials are necessary to determine their complete therapeutic potential.


PDF View

References

  • A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases - PubMed. Accessed September 8, 2023. https://pubmed.ncbi.nlm.nih. gov/31582227/ google scholar
  • Valenzuela PL, Carrera-Bastos P, Galvez BG, et al. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol. 2021;18(4):251-275. doi:10.1038/S41569-020-00437-9 google scholar
  • de Boer IH, Caramori ML, Chan JCN, et al. Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: evidence-based advances in monitoring and treatment. Kidney Int. 2020;98(4):839-848. doi:10.1016/J.KINT.2020.06.024 google scholar
  • Harambat J, Madden I. What is the true burden of chronic kidney disease in children worldwide? Pediatr Nephrol. 2023;38(5):1389-1393. doi:10.1007/S00467-022-05816-7/TABLES/1 google scholar
  • Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Lond Engl. 2020;395(10225):709-733. doi:10.1016/S0140-6736(20)30045-3 google scholar
  • Centers for Disease Control and Prevention (US), (US) NC for CDP and HP, (US) O on S and H. How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US). Tob Smoke Causes Dis Biol Behav Basis Smok-Attrib Dis Rep Surg Gen. Published online 2010:792. google scholar
  • Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. The Lancet. 2017;389(10075):1238-1252. doi:10.1016/ S0140-6736(16)32064-5 google scholar
  • Carmody JB, Charlton JR. Short-Term Gestation, Long-Term Risk: Prematurity and Chronic Kidney Disease. Pediatrics. 2013;131(6):1168-1179. doi:10.1542/PEDS.2013-0009 google scholar
  • SNYDER S, PENDERGRAPH B. Detection and Evaluation of Chronic Kidney Disease. Am Fam Physician. 2005;72(9):1723-1732. google scholar
  • Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol - Ren Fluid Electrolyte Physiol. 1985;18(3). doi:10.1152/ AJPRENAL.1985.249.3.F324 google scholar
  • Sharma S, Smyth B. From Proteinuria to Fibrosis: An Update on Pathophysiology and Treatment Options. Kidney Blood Press Res. 2021;46(4):411-420. doi:10.1159/000516911 google scholar
  • Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. J Am Soc Nephrol. 2012;23(12):1917-1928. doi:10.1681/ ASN.2012040390 google scholar
  • Cravedi P, Remuzzi G. Pathophysiology of proteinuria and its value as an outcome measure in chronic kidney disease. Br J Clin Pharmacol. 2013;76(4):516. doi:10.1111/BCP.12104 google scholar
  • Fountain JH, Kaur J, Lappin SL. Physiology, Renin Angiotensin System. StatPearls. Published online March 12, 2023. Accessed September 8, 2023. https://www.ncbi.nlm.nih.gov/books/NBK470410/ google scholar
  • Paul M, Mehr AP, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86(3):747-803. doi:10.1152/PHYSREV.00036.2005/ ASSET/IMAGES/LARGE/Z9J0030624020006.JPEG google scholar
  • Cheung AK, Chang TI, Cushman WC, et al. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021;99(3):S1-S87. doi:10.1016/J.KINT.2020.11.003/ATTACHMENT/811C2AB7-6578-41E2-8B89-FD7444CD55 55/MMC1.PDF google scholar
  • Association AD. 11. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes—2021. Diabetes Care. 2021;44(Supplement_1):S151-S167. doi:10.2337/DC21-S011 google scholar
  • Eijkelkamp WBA, Zhang Z, Remuzzi G, et al. Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: Post hoc analysis from the reduction of endpoints in NIDDM with the angiotensin II antagonist losartan (RENAAL) trial. J Am Soc Nephrol. 2007;18(5):1540-1546. doi:10.1681/ASN.2006050445 google scholar
  • Gross O, Beirowski B, Koepke ML, et al. Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome. Kidney Int. 2003;63(2):438-446. doi:10.1046/j.1523-1755.2003.00779.x google scholar
  • Gross O, Schulze-Lohoff E, Koepe ML, et al. Antifibrotic, nephroprotective potential of ACE inhibitor vs AT1 antagonist in a murine model of renal fibrosis. Nephrol Dial Transplant. 2004;19(7):1716-1723. doi:10.1093/NDT/GFH219 google scholar
  • Bomback AS, Klemmer PJ. The incidence and implications of aldosterone breakthrough. Nat Clin Pract Nephrol. 2007;3(9):486-492. doi:10.1038/NCPNEPH0575 google scholar
  • Group TET. Strict Blood-Pressure Control and Progression of Renal Failure in Children. https://doi.org/101056/NEJMoa0902066. 2009;361(17):1639-1650. doi:10.1056/NEJMOA0902066 google scholar
  • Moranne O, Bakris G, Fafin C, Favre G, Pradier C, Esnault VLM. Determinants and changes associated with aldosterone breakthrough after angiotensin II receptor blockade in patients with type 2 diabetes with overt nephropathy. Clin J Am Soc Nephrol. 2013;8(10):1694-1701. doi:10.2215/CJN.06960712/-/ DCSUPPLEMENTAL google scholar
  • Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The Effect of Angiotensin-Converting-Enzyme Inhibition on Diabetic Nephropathy. https://doi.org/101056/NEJM199311113292004. 1993;15(5):69. doi:10.1056/NEJM199311113292004 google scholar
  • Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861-869. doi:10.1056/NEJMoa011161 google scholar
  • Hou FF, Zhang X, Zhang GH, et al. Efficacy and Safety of Benazepril for Advanced Chronic Renal Insufficiency. https://doi. org/101056/NEJMoa053107. 2006;354(2):131-140. doi:10.1056/ NEJMOA053107 google scholar
  • Bhandari S, Mehta S, Khwaja A, et al. Renin-Angiotensin System Inhibition in Advanced Chronic Kidney Disease. N Engl J Med. 2022;387(22):2021-2032. doi:10.1056/NEJMOA2210639/SUPPL_ FILE/NEJMOA2210639_DATA-SHARING.PDF google scholar
  • Fu EL, Evans M, Clase CM, et al. Stopping renin-angiotensin system inhibitors in patients with advanced CKD and risk of adverse outcomes: A nationwide study. J Am Soc Nephrol. 2021;32(2):424-435. doi:10.1681/ASN.2020050682/-/DCSUPPLEMENTAL google scholar
  • Qiao Y, Shin JI, Chen TK, et al. Association Between Renin-Angiotensin System Blockade Discontinuation and All-Cause Mortality Among Persons With Low Estimated Glomerular Filtration Rate. JAMA Intern Med. 2020;180(5):718. doi:10.1001/ JAMAINTERNMED.2020.0193 google scholar
  • Oshima N, Onimaru H, Takechi H, et al. Aldosterone is synthesized in and activates bulbospinal neurons through mineralocorticoid receptors and ENaCs in the RVLM. Hypertens Res 2013 366. 2013;36(6):504-512. doi:10.1038/hr.2012.224 google scholar
  • Nakamura T, Girerd S, Jaisser F, Barrera-Chimal J. Nonepithelial mineralocorticoid receptor activation as a determinant of kidney disease. Kidney Int Suppl. 2022;12(1):12. doi:10.1016/J. KISU.2021.11.004 google scholar
  • Cannavo A, Bencivenga L, Liccardo D, et al. Aldosterone and Mineralocorticoid Receptor System in Cardiovascular Physiology and Pathophysiology. Oxid Med Cell Longev. 2018;2018. doi:10.1155/2018/1204598 google scholar
  • Valinsky WC, Touyz RM, Shrier A. Aldosterone, SGK1, and ion channels in the kidney. Clin Sci Lond Engl 1979. 2018;132(2):173. doi:10.1042/CS20171525 google scholar
  • Quinkler M, Zehnder D, Eardley KS, et al. Increased Expression of Mineralocorticoid Effector Mechanisms in Kidney Biopsies of Patients With Heavy Proteinuria. Circulation. 2005;112(10):1435-1443. doi:10.1161/CIRCULATIONAHA.105.539122 google scholar
  • Yoshida Y, Morimoto T, Takaya T, et al. Aldosterone Signaling Associates With p300/GATA4 Transcriptional Pathway During the Hypertrophic Response of Cardiomyocytes. Circ J. 2010;74(1):156-162. doi:10.1253/CIRCJ.CJ-09-0050 google scholar
  • Verma A, Vaidya A, Subudhi S, Waikar SS. Aldosterone in chronic kidney disease and renal outcomes. Eur Heart J. 2022;43(38):3781. doi:10.1093/EURHEARTJ/EHAC352 google scholar
  • Lin S, Li D, Jia J, Zheng Z, Jia Z, Shang W. Spironolactone ameliorates podocytic adhesive capacity via restoring integrin a3 expression in streptozotocin-induced diabetic rats. http:// dx.doi.org/101177/1470320310369603. 2010;11(3):149-157. doi:10.1177/1470320310369603 google scholar
  • Yuan Y, Xu X, Zhao C, et al. The roles of oxidative stress, endoplasmic reticulum stress, and autophagy in aldosterone/mineralocorticoid receptor-induced podocyte injury. Lab Invest. 2015;95:1374-1386. doi:10.1038/labinvest.2015.118 google scholar
  • Cybulsky AV. Endoplasmic reticulum stress in proteinuric kidney disease. Kidney Int. 2010;77(3):187-193. doi:10.1038/KI.2009.389 google scholar
  • Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T. Podocyte as the Target for Aldosterone. Hypertension. 2007;49(2):355-364. doi:10.1161/01.HYP.0000255636.11931.A2 google scholar
  • Sato A, Saruta T, Funder JW. Combination therapy with aldosterone blockade and renin-angiotensin inhibitors confers organ protection. Hypertens Res Off J Jpn Soc Hypertens. 2006;29(4):211-216. doi:10.1291/HYPRES.29.211 google scholar
  • Hostetter TH, Rosenberg ME, Ibrahim HN, Juknevicius I. Aldosterone in progressive renal disease. Semin Nephrol. 2001;21(6):573-579. doi:10.1053/SNEP.2001.26797 google scholar
  • Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Renal Outcomes in Medically and Surgically Treated Primary Aldosteronism. Hypertens Dallas Tex 1979. 2018;72(3):658-666. doi:10.1161/HYPERTENSIONAHA.118.11568 google scholar
  • Monticone S, Sconfienza E, D’Ascenzo F, et al. Renal damage in primary aldosteronism: a systematic review and meta-analysis. J Hypertens. 2020;38(1):3-12. doi:10.1097/HJH.0000000000002216 google scholar
  • Hannemann A, Rettig R, Dittmann K, et al. Aldosterone and glomerular filtration--observations in the general population. BMC Nephrol. 2014;15(1). doi:10.1186/1471-2369-15-44 google scholar
  • Kawashima A, Sone M, Inagaki N, et al. European Journal of Endocrinology Renal impairment is closely associated with plasma aldosterone concentration in patients with primary aldosteronism Clinical Study. Endocrinology. 2019;181. doi:10.1530/EJE-19-0047 google scholar
  • Bloch MJ, Basile JN. Spironolactone is more effective than eplerenone at lowering blood pressure in patients with primary aldosteronism. J Clin Hypertens. 2011;13(8):629-631. doi:10.1111/ J.1751-7176.2011.00495.X google scholar
  • Craft J. Eplerenone (Inspra), a new aldosterone antagonist for the treatment of systemic hypertension and heart failure. Proc Bayl Univ Med Cent. 2004;17(2):217. doi:10.1080/08998280.2004.11927973 google scholar
  • fda, cder. HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use KERENDIA safely and effectively. See full prescribing information for KERENDIA. KERENDIA (finerenone) tablets, for oral use. Accessed September 8, 2023. www.fda.gov/medwatch. google scholar
  • Bramlage P, Swift SL, Thoenes M, Minguet J, Ferrero C, Schmieder RE. Non-steroidal mineralocorticoid receptor antagonism for the treatment of cardiovascular and renal disease. Eur J Heart Fail. 2016;18(1):28-37. doi:10.1002/EJHF.444 google scholar
  • Kolkhof P, Delbeck M, Kretschmer A, et al. Finerenone, a Novel Selective Nonsteroidal Mineralocorticoid Receptor Antagonist Protects From Rat Cardiorenal Injury. J Cardiovasc Pharmacol. 2014;64(1):69. doi:10.1097/FJC.0000000000000091 google scholar
  • Heinig R, Gerisch M, Engelen A, Nagelschmitz J, Loewen S. Pharmacokinetics of the Novel, Selective, Non-steroidal Mineralocorticoid Receptor Antagonist Finerenone in Healthy Volunteers: Results from an Absolute Bioavailability Study and Drug-Drug Interaction Studies In Vitro and In Vivo. Eur J Drug Metab Pharmacokinet. 2018;43(6):715-727. doi:10.1007/S13318-018-0483-9 google scholar
  • Gerisch M, Heinig R, Engelen A, et al. Biotransformation of Finerenone, a Novel Nonsteroidal Mineralocorticoid Receptor Antagonist, in Dogs, Rats, and Humans, In Vivo and In Vitro. Drug Metab Dispos Biol Fate Chem. 2018;46(11):1546-1555. doi:10.1124/DMD.118.083337 google scholar
  • Haller H, Bertram A, Stahl K, Menne J. Finerenone: a New Mineralocorticoid Receptor Antagonist Without Hyperkalemia: an Opportunity in Patients with CKD? Curr Hypertens Rep. 2016;18(5). doi:10.1007/S11906-016-0649-2 google scholar
  • Hirohama D, Nishimoto M, Ayuzawa N, et al. Activation of Rac1-Mineralocorticoid Receptor Pathway Contributes to Renal Injury in Salt-Loaded db/db Mice. Hypertens Dallas Tex 1979. 2021;78(1):82-93. doi:10.1161/HYPERTENSIONAHA.121.17263 google scholar
  • Droebner K, Pavkovic M, Grundmann M, et al. Direct Blood Pressure-Independent Anti-Fibrotic Effects by the Selective Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone in Progressive Models of Kidney Fibrosis. Am J Nephrol. 2021;52(7):588-601. doi:10.1159/000518254 google scholar
  • Bakris GL, Agarwal R, Anker SD, et al. Design and Baseline Characteristics of the Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease Trial. Am J Nephrol. 2019;50(5):333-344. doi:10.1159/000503713 google scholar
  • Ruilope LM, Agarwal R, Anker SD, et al. Design and Baseline Characteristics of the Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease Trial. Am J Nephrol. 2019;50(5):345-356. doi:10.1159/000503712 google scholar
  • Bakris GL, Agarwal R, Anker SD, et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med. 2020;383(23):2219-2229. doi:10.1056/NEJMOA2025845 google scholar
  • Pitt B, Filippatos G, Agarwal R, et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N Engl J Med. 2021;385(24):2252-2263. doi:10.1056/NEJMOA2110956 google scholar
  • Kintscher U, Bakris GL, Kolkhof P. Novel non-steroidal mineralocorticoid receptor antagonists in cardiorenal disease. Br J Pharmacol. 2022;179(13):3220-3234. doi:10.1111/BPH.15747 google scholar
  • Bayer. A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Multicenter Phase 3 Study to Investigate the Efficacy and Safety of FInerenone, in Addition to Standard of Care, on the Progression of Kidney Disease in Patients With Non-Diabetic Chronic Kidney Disease. clinicaltrials.gov; 2023. Accessed September 7, 2023. https://clinicaltrials.gov/study/NCT05047263 google scholar
  • Bayer. A 6-Month Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy, Safety and PK/PD of an Age-and Body Weight-Adjusted Oral Finerenone Regimen, in Addition to an ACEI or ARB, for the Treatment of Children, 6 Months to <18 Years of Age, With Chronic Kidney Disease and Proteinuria. clinicaltrials.gov; 2023. Accessed September 7, 2023. https:// clinicaltrials.gov/study/NCT05196035 google scholar
  • Bayer. An 18-Month, Open-Label, Single-Arm Safety Extension Study of an Age-and Bodyweight-Adjusted Oral Finerenone Regimen, in Addition to an ACEI or ARB, for the Treatment of Children and Young Adults From 1 to 18 Years of Age With Chronic Kidney Disease and Proteinuria. clinicaltrials.gov; 2023. Accessed September 7, 2023. https://clinicaltrials.gov/study/NCT05457283 google scholar
  • Alicic RZ, Johnson EJ, Tuttle KR. SGLT2 Inhibition for the Prevention and Treatment of Diabetic Kidney Disease: A Review. Am J Kidney Dis Off J Natl Kidney Found. 2018;72(2):267-277. doi:10.1053/J. AJKD.2018.03.022 google scholar
  • Brown E, Heerspink HJL, Cuthbertson DJ, Wilding JPH. SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications. Lancet Lond Engl. 2021;398(10296):262-276. doi:10.1016/S0140-6736(21)00536-5 google scholar
  • Bailey CJ, Day C, Bellary S. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Curr Diab Rep. 2022;22(1):39-52. doi:10.1007/S11892-021-01442-Z/FIGURES/3 google scholar
  • Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019;380(24):2295-2306. doi:10.1056/NEJMOA1811744/SUPPL_ FILE/NEJMOA1811744_DATA-SHARING.PDF google scholar
  • Vallon V, Verma S. Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Httpsdoiorg101146annurev-Physiol-031620-095920. 2021;83:503-528. doi:10.1146/ANNUREV-PHYSIOL-031620-095920 google scholar
  • Bailey CJ, Day C, Bellary S. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Curr Diab Rep. 2022;22(1):39-52. doi:10.1007/S11892-021-01442-Z/FIGURES/3 google scholar
  • Komala MG, Panchapakesan U, Pollock C, Mather A. Sodium glucose cotransporter 2 and the diabetic kidney. Curr Opin Nephrol Hypertens. 2013;22(1):113-119. doi:10.1097/ MNH.0B013E32835A17AE google scholar
  • Bailey CJ. Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes Metab. 2019;21(6):1291-1298. doi:10.1111/ dom.13670 google scholar
  • Chertow GM, Correa-Rotter R, Vart P, et al. Effects of Dapagliflozin in Chronic Kidney Disease, With and Without Other Cardiovascular Medications: DAPA-CKD Trial. J Am Heart Assoc. 2023;12(9):e028739. doi:10.1161/JAHA.122.028739 google scholar
  • Heerspink HJL, Stefânsson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020;383(15):1436-1446. doi:10.1056/NEJMOA2024816/SUPPL_ FILE/NEJMOA2024816_DATA-SHARING.PDF google scholar
  • Cherney DZI, Dekkers CCJ, Barbour SJ, et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol. 2020;8(7):582-593. doi:10.1016/S2213-8587(20)30162-5 google scholar
  • Liu J, Cui J, Fang X, et al. Efficacy and Safety of Dapagliflozin in Children With Inherited Proteinuric Kidney Disease: A Pilot Study. Kidney Int Rep. 2021;7(3):638-641. doi:10.1016/j.ekir.2021.12.019 google scholar
  • Empagliflozin in Patients with Chronic Kidney Disease | NEJM. Accessed September 8, 2023. https://www.nejm.org/doi/10.1056/ NEJMoa2204233 google scholar
  • Kraus BJ, Weir MR, Bakris GL, et al. Characterization and implications of the initial estimated glomerular filtration rate “dip” upon sodium-glucose cotransporter-2 inhibition with empagliflozin in the EMPA-REG OUTCOME trial. Kidney Int. 2021;99(3):750-762. doi:10.1016/J.KINT.2020.10.031 google scholar
  • Perkovic V, de Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6(9):691-704. doi:10.1016/S2213-8587(18)30141-4 google scholar
  • Mende CW. Chronic Kidney Disease and SGLT2 Inhibitors: A Review of the Evolving Treatment Landscape. Adv Ther. 2022;39(1):148-164. doi:10.1007/S12325-021-01994-2/TABLES/3 google scholar
  • Beng-Ongey H, Robinson JS, Moxey-Mims M. Chronic kidney disease emerging trends in children and what to do about it. J Natl Med Assoc. 2022;114(3S2):S50-S55. doi:10.1016/J. JNMA.2022.05.002 google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Wagner, S., Tso, I., & Noone, D. (2023). New Therapies on the Horizon for Preventing the Progression of Chronic Kidney Disease in Childhood. Journal of Child, 23(4), 369-378. https://doi.org/10.26650/jchild.2023.1392310


AMA

Wagner S, Tso I, Noone D. New Therapies on the Horizon for Preventing the Progression of Chronic Kidney Disease in Childhood. Journal of Child. 2023;23(4):369-378. https://doi.org/10.26650/jchild.2023.1392310


ABNT

Wagner, S.; Tso, I.; Noone, D. New Therapies on the Horizon for Preventing the Progression of Chronic Kidney Disease in Childhood. Journal of Child, [Publisher Location], v. 23, n. 4, p. 369-378, 2023.


Chicago: Author-Date Style

Wagner, Siobhan, and Isabella Tso and Damien Noone. 2023. “New Therapies on the Horizon for Preventing the Progression of Chronic Kidney Disease in Childhood.” Journal of Child 23, no. 4: 369-378. https://doi.org/10.26650/jchild.2023.1392310


Chicago: Humanities Style

Wagner, Siobhan, and Isabella Tso and Damien Noone. New Therapies on the Horizon for Preventing the Progression of Chronic Kidney Disease in Childhood.” Journal of Child 23, no. 4 (May. 2024): 369-378. https://doi.org/10.26650/jchild.2023.1392310


Harvard: Australian Style

Wagner, S & Tso, I & Noone, D 2023, 'New Therapies on the Horizon for Preventing the Progression of Chronic Kidney Disease in Childhood', Journal of Child, vol. 23, no. 4, pp. 369-378, viewed 2 May. 2024, https://doi.org/10.26650/jchild.2023.1392310


Harvard: Author-Date Style

Wagner, S. and Tso, I. and Noone, D. (2023) ‘New Therapies on the Horizon for Preventing the Progression of Chronic Kidney Disease in Childhood’, Journal of Child, 23(4), pp. 369-378. https://doi.org/10.26650/jchild.2023.1392310 (2 May. 2024).


MLA

Wagner, Siobhan, and Isabella Tso and Damien Noone. New Therapies on the Horizon for Preventing the Progression of Chronic Kidney Disease in Childhood.” Journal of Child, vol. 23, no. 4, 2023, pp. 369-378. [Database Container], https://doi.org/10.26650/jchild.2023.1392310


Vancouver

Wagner S, Tso I, Noone D. New Therapies on the Horizon for Preventing the Progression of Chronic Kidney Disease in Childhood. Journal of Child [Internet]. 2 May. 2024 [cited 2 May. 2024];23(4):369-378. Available from: https://doi.org/10.26650/jchild.2023.1392310 doi: 10.26650/jchild.2023.1392310


ISNAD

Wagner, Siobhan - Tso, Isabella - Noone, Damien. New Therapies on the Horizon for Preventing the Progression of Chronic Kidney Disease in Childhood”. Journal of Child 23/4 (May. 2024): 369-378. https://doi.org/10.26650/jchild.2023.1392310



TIMELINE


Submitted11.12.2023
Accepted14.12.2023
Published Online20.12.2023

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.