Research Article


DOI :10.26650/JGEOG2020-806385   IUP :10.26650/JGEOG2020-806385    Full Text (PDF)

A software proposal for determining the prevailing wind direction: PrevailingWindRUB 1.0

Sedat Avcı

Knowing the characteristics of the climatic elements of a place is of great importance in spatial studies. Although not used as often as temperature and precipitation, wind might be used as a guide especially in planning studies. Wind is mostly a horizontal movement. The direction, speed and the frequency of the wind are the three most prominent characteristics. Establishing the prevailing wind direction in terms of angle will provide more realistic results. Rubinstein states that the prevailing wind direction can be determined in degrees based on how often the wind blows from which direction. In the proposed method, the ratio of the directions from which the wind blows to all directions is used. While doing this, considering certain relations with the shares belonging to different directions at the same time makes this method more advantageous over others. In this method, data on calm days are not used. The method shows the second order prevailing wind direction and frequency, if available. The software attached to the article is proposed to determine the prevailing wind direction using the Rubinstein method.

PrevailingWindRUB 1.0

DOI :10.26650/JGEOG2020-806385   IUP :10.26650/JGEOG2020-806385    Full Text (PDF)

Hâkim rüzgâr yönünün belirlenmesi için bir yazılım önerisi: PrevailingWindRUB 1.0

Sedat Avcı

Bir yerin iklim elemanlarına ait özelliklerin bilinmesi, mekânsal çalışmalarda büyük öneme sahiptir. İklim elemanlarından rüzgâr, sıcaklık ve yağış kadar sık kullanılmasa da özellikle planlama çalışmalarında yönlendirici olma özelliğine sahiptir. Genel atmosfer sirkülasyonuna bağlı olarak zemine yakın hava kütlelerinin yer değiştirmesi şeklinde tanımlanan rüzgâr, büyük ölçüde yatay yönde bir harekettir. Rüzgârın yönü, hızı (şiddeti) ve esiş sıklığı (frekansı) en belirgin üç özelliğini oluşturmaktadır. Hâkim rüzgâr yönünün belirlenmesi ve gösteriminde temel olarak rüzgârın hangi yönden kaç kez estiği esas alınmaktadır. Rüzgâr rasatları 8 veya 16 yöne göre ifade edilmektedir. Gerçekte ise hâkim rüzgâr yönü daha farklı olabilir. Hâkim rüzgâr yönünün açı cinsinde ortaya konulması, gerçeğe daha yakın sonuçları yansıtacaktır. Rubinstein, rüzgârın hangi yönden ne kadar sıklıkla estiğini esas alınarak hâkim rüzgâr yönü derece cinsinden belirlenebileceğini ifade etmektedir. Önerilen yöntemde, her yöne ait esme sayılarının toplam içindeki oranı kullanılmaktadır. Bu işlemi yaparken aynı zamanda farklı yönlere ait paylar ile de belli ilişkilerin göz önüne alınması, yöntemi diğer yöntemlere nazaran daha avantajlı hale getirmektedir. Yöntemde sakin günlere ait veriler ise kullanılmamaktadır. Ayrıca varsa ikinci dereceden hâkim rüzgâr yönünü ve frekansını da göstermesi Rubinstein metodunu öne çıkarmaktadır. Makale ekindeki yazılım Rubinstein yöntemiyle hâkim rüzgâr yönünün belirlenmesi için önerilmiştir.

PrevailingWindRUB 1.0


EXTENDED ABSTRACT


Knowing the characteristics of the climatic elements is of great importance in spatial studies. Although it is not used as often temperature and precipitation, wind can be a guide especially in planning studies. Wind is defined as the displacement of air masses close to the ground depending on the general atmospheric circulation and it is mostly a horizontal movement. The direction, speed and frequency of the wind are the three most prominent characteristics. The main representation of prevailing wind direction is based on how many times the wind blows from a certain direction. 

There are various methods for determining the prevailing wind direction. The easiest method is to draw a windmill based on the wind counts. However, wind observations are expressed according to 8 or 16 directions. However, in reality the prevailing wind direction may be different. Determining the prevailing wind direction in terms of angle will reflect more realistic results. Therefore, one of the various methods that have been developed is the geometric method.

The geometric method is based on the formation of a windmill and determining the resultant force of the two branches of the windmill in a clockwise direction starting from the north. In the method, the branches of the windmill must be formed according to a scale proportional to the number of blows. However, this method causes difficulties in showing the directions where the number of blows is very low and it is insufficient to reflect the truth. Therefore, it could not find much use. In determining the prevailing wind directions, the use of formulas is much more common. A formula developed by Lambert is not preferred because its use and the expression of the results are unclear. The formula developed by Rubinstein in determining the prevailing wind direction gives results that are more realistic.

The Rubinstein method is different from others because it it includes not only the direction of the most blowing wind but also other directions in the calculation and uses the ratio of these numbers in the total. It also highlights the Rubinstein method by showing the second-order wind direction, if any, and determining the percentages of the prevailing wind direction / directions. The most negative aspect of the method is that it is based on the blow number, not the blow time. In the Rubinstein method, long annual average values ​​of the fly directions are used.

Basic of Rubinstein Method: This method is based on the blowing numbers of the wind. Rubinstein states that the number of blows in successive directions must have a certain pattern in order for the prevailing wind to form. For this purpose, first, the percentage of blow numbers belonging to each direction is found. Then, a sequence is created provided that the third term is greater than the first term and the second term is greater than the fourth term, and that the sum of the second and third terms is at least 25%.

The formation of a sequence indicates that there is only one prevailing wind direction. Formation of two sequences indicates there is a second-order wind direction. If no sequence is formed, it means that the prevailing wind direction does not appear. When a sequence is formed, the following formula is used to find the prevailing wind direction from the beginning of the sequence.


The multiplication of the number obtained by 45 shows how many degrees the prevailing wind direction is from the clockwise direction from the beginning of the sequence. The frequency of the prevailing wind direction is;


The program performs these calculations and prints direct results.

Use of PrevailingWindRUB 1.0 software:

Wind data is prepared according to international standards in 16 directions. In the DATA tab, enter the number of blows for each direction in the relevant cells in the table. Rubinstein method calculates according to 8 directions. If your data set belongs to 8 directions, you need to use the table where you can enter values ​​for 8 directions in the relevant part of the same tab. In the RESULT tab, if monthly data is entered, the prevailing monthly, seasonal and annual wind direction is expressed in terms of frequency and angle in percentage. If daily or other period data is entered, there are values for the prevailing wind direction in the row with the entered data.


PDF View

References

  • Allisow, B. P., Drostov, O. A., & Rubinstein, E. (1956). Lerhbuch Der Klimatologie. Berlin: VEB Deutscher Verlag Der Wissenschaften. google scholar
  • Ardel, A., Kurter, A., & Dönmez, Y. (1969). Klimatoloji Tatbikatı. İstanbul: İstanbul Üniversitesi Coğrafya Enstitüsü. google scholar
  • Avcı, M. (1998). Ilgaz dağları ve çevresinin bitki coğrafyası I (Bitki örtüsünün coğrafi şartları). İstanbul Üniversitesi Coğrafya Bölümü Coğrafya Dergisi, 137-216. google scholar
  • Avcı, M. (2016). Ekosistem Coğrafyası. İstanbul: İstanbul Üniversitesi Açık ve Uzaktan Öğretim Fakültesi. google scholar
  • Balley, W. G. (2005). Microclimatology. J. E. Olivier içinde, Encylopedia of World Climatology (s. 486-499). Dordrecht, Berlin, Heidelberg, New York: Springer. google scholar
  • Balling, Jr, R. C., & Cerveny, R. S. (2005). Winds and wind systems. J. E. Oliver (Dü.) içinde, Encyclopedia of World Climatology (s. 813-819). Dordrecht, The Netherlands: Springer. google scholar
  • CWOP-WMO8. (2008). Guide to Meteorological Instruments and Methods of Observation. Geneva: World Meteolorlogical Organization. google scholar
  • Dönmez, Y. (1979). Umumi Klimatoloji ve İklim Çalışmaları. İstanbul: İstanbul Üniversitesi Coğrafya Enstitüsü. google scholar
  • Erinç, S. (1960). Türkiye'de zemine yakın hava tabakalarında hâkim rüzgâr istikametleri ve frekansları. İstanbul Üniversitesi Coğrafya Enstitüsü Dergisi, 1-11. google scholar
  • Erinç, S. (1969). Klimatoloji ve Metodları. İstanbul: İstanbul Üniversitesi Coğrafya Enstitüsü Yayını. google scholar
  • Erol, O. (1999). Genel Klimatoloji. İstanbul: Çantay Kitabevi. google scholar
  • Kaminsky, A. A. (1925). Klimat i pogoda v ravninnoy mestnosti - Klimat Voronezhskoy Gubernii. Leningrad: Novaya Derevnya. google scholar
  • Kämtz, L. F. (1831). Lehrbuch der Meteorologie (Cilt 1). Halle. google scholar
  • Kraght, P. E. (2005). Wind and air velocity measurements. G. D. Considine içinde, Van Nostrand's Scientific Encylopedia. John Wiley and Sons. doi:10.1002/0471743984.vse7534 google scholar
  • Lamb, H. H. (2011). Climate: Present, Past and Future (Cilt 1: Fundemantals and Climate Now). Oxford: Routledge Revivals. google scholar
  • Lambert, M. (1777). Sur Les Observations du Vent. Nouveaux mémoires de l'Académie Royale des Sciences et Belles-Lettres, avec l'histoire (s. 36-41). içinde Berlin: Königliche Akademie der Wissenschaften. google scholar
  • Langreder, W. (2010). Wind resource and site assessment. W. Tong içinde, Wind Power Generation and Wind Turbin Design (s. 49-87). Southanpton, Boston: WIT Press. google scholar
  • Loftness, V. (2005). Architecture and Climate. J. E. Olivier (Dü.) içinde, Encylopedia of Word Climatology (s. 63-77). Dordrecht, Berlin, Heidelberg, New York: Springer. google scholar
  • Mayer, H. (1891). Anleitung zur Bearbeitung meteorologischer Beobachtungen für die Klimatologie. Berlin: Verlag von Julius Springer. google scholar
  • Munro, D. S. (2005). Katabatic (gravity) winds. J. E. Olivier içinde, Encylopedia of World Climatology (s. 440). Dordrecht, Berlin, Heidelberg, New York: Springer . google scholar
  • Olivier, J. E. (2005). Local winds. J. E. Olivier içinde, Encylopedia of World Climatology (s. 467-475). Dordrecht, Berlin, Heidelberg, New York: Springer. google scholar
  • Rubinstein, E. (1926). K metodike klimatoloricheskoy obrabotki iablyudeniy nad vetrom (Zur methodik der klimatologischen Bearbeitung der Wildbeobachtungen). Iav. Tsentr. gidrometeorol. byuro. google scholar
  • Schouw, J. F. (1827). Beiträge Zur Vergleichenden Klimatologie. Kopenhagen: Verlag des Verfasser. google scholar
  • Thompson, R. D., & Perry, A. (1997). Applied Climatology (Principles and Prectice). London ve New York: Routledge. google scholar
  • Tong, W. (2010). Fundamentals of wind energy. W. Tong (Dü.) içinde, Wind Power Generation and Wind Turbin Design (s. 3-48). Southampton, Boston: WIT Press. google scholar
  • Türksoy, F. (2001). Rüzgar verisi ölçümü ve analizi. Rüzgar Enerjisi Sempozyumu (s. 87-103). İzmir: TMMOB, Makina Mühendisleri Odası İzmir Şubesi. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Avcı, S. (2020). A software proposal for determining the prevailing wind direction: PrevailingWindRUB 1.0. Journal of Geography, 0(41), 209-219. https://doi.org/10.26650/JGEOG2020-806385


AMA

Avcı S. A software proposal for determining the prevailing wind direction: PrevailingWindRUB 1.0. Journal of Geography. 2020;0(41):209-219. https://doi.org/10.26650/JGEOG2020-806385


ABNT

Avcı, S. A software proposal for determining the prevailing wind direction: PrevailingWindRUB 1.0. Journal of Geography, [Publisher Location], v. 0, n. 41, p. 209-219, 2020.


Chicago: Author-Date Style

Avcı, Sedat,. 2020. “A software proposal for determining the prevailing wind direction: PrevailingWindRUB 1.0.” Journal of Geography 0, no. 41: 209-219. https://doi.org/10.26650/JGEOG2020-806385


Chicago: Humanities Style

Avcı, Sedat,. A software proposal for determining the prevailing wind direction: PrevailingWindRUB 1.0.” Journal of Geography 0, no. 41 (May. 2024): 209-219. https://doi.org/10.26650/JGEOG2020-806385


Harvard: Australian Style

Avcı, S 2020, 'A software proposal for determining the prevailing wind direction: PrevailingWindRUB 1.0', Journal of Geography, vol. 0, no. 41, pp. 209-219, viewed 17 May. 2024, https://doi.org/10.26650/JGEOG2020-806385


Harvard: Author-Date Style

Avcı, S. (2020) ‘A software proposal for determining the prevailing wind direction: PrevailingWindRUB 1.0’, Journal of Geography, 0(41), pp. 209-219. https://doi.org/10.26650/JGEOG2020-806385 (17 May. 2024).


MLA

Avcı, Sedat,. A software proposal for determining the prevailing wind direction: PrevailingWindRUB 1.0.” Journal of Geography, vol. 0, no. 41, 2020, pp. 209-219. [Database Container], https://doi.org/10.26650/JGEOG2020-806385


Vancouver

Avcı S. A software proposal for determining the prevailing wind direction: PrevailingWindRUB 1.0. Journal of Geography [Internet]. 17 May. 2024 [cited 17 May. 2024];0(41):209-219. Available from: https://doi.org/10.26650/JGEOG2020-806385 doi: 10.26650/JGEOG2020-806385


ISNAD

Avcı, Sedat. A software proposal for determining the prevailing wind direction: PrevailingWindRUB 1.0”. Journal of Geography 0/41 (May. 2024): 209-219. https://doi.org/10.26650/JGEOG2020-806385



TIMELINE


Submitted06.10.2020
Accepted13.12.2020
Published Online30.12.2020

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.