Research Article


DOI :10.26650/JGEOG2023-1233378   IUP :10.26650/JGEOG2023-1233378    Full Text (PDF)

Air Quality Issues and Settlement Suitability Analysis in Iğdır Central District

Mücahit ÇoşkunHüseyin ŞahinerOnur CanbulatAhmet Öztürk

Air pollution can be a concern during certain seasons, specifically in autumn and winter, in the city center of Iğdır owing to the city’s geomorphological and climatological features. This study aims to examine the spatial and vertical distribution of air pollution in the atmosphere of the city center of Iğdır and identify suitable areas for urban settlement. The results revealed that areas with highest pollution levels were in the city center of Iğdır and in the plain area located north of the city. The geographical conditions, specifically in winter, limit convective air movements, cause inversion, and intensify air pollution. Height of the aerosol layer expresses the upper limit that pollutants can reach in the atmosphere. In the city center of Iğdır, height of the aerosol layer approximately 1000–1100 m, especially in winter. Furthermore, pollutants are trapped between 850 m, which is the average altitude of the city center of Iğdır, and these altitudes causes the pollution to be felt more intensely. A change in the city’s settlement plan (horizontally) cannot address this issue in the longterm as the same air pollution problem will occur again. Thus, settlements should be established at least above 1000–1100 meters, which is the upper level of the aerosol layer in winter, to prevent this issue.

DOI :10.26650/JGEOG2023-1233378   IUP :10.26650/JGEOG2023-1233378    Full Text (PDF)

Iğdır Merkez İlçesinde Hava Kalitesi Sorunu ve Yerleşim Uygunluk Analizi

Mücahit ÇoşkunHüseyin ŞahinerOnur CanbulatAhmet Öztürk

Hava kirliliği sorunu sanayi faaliyetleri olmasa dahi, jeomorfolojik ve klimatolojik özelliklere bağlı olarak belirli mevsimlerde sürekli hale gelebilmektedir. Iğdır merkez ilçesi özellikle sonbahar ve kış mevsimlerinde bu sorunun yaşanmasıyla gündeme gelmektedir. Bu sorunun çözümüne odaklanılan araştırmada, alan kapsamı Iğdır ili ve merkez ilçesi; konu kapsamı ise hava kirliliği ve şehir yerleşim uygunluğu ile sınırlandırılmıştır. Araştırmanın amacı, çalışma alanında hava kirliliğinin atmosferdeki alansal ve dikey dağılışını ortaya koyarak şehir yerleşimine uygun alanları tespit etmektir. Elde edilen sonuçlara göre, Iğdır merkez ilçesinde yerleşmelerin yoğun olduğu alan ve kuzeyindeki ovalık saha, kirliliğin en fazla olduğu yerlerdir. Alandaki coğrafi şartlar; özellikle kış mevsiminde konvektif hava hareketlerini sınırlandırarak inversiyon oluşumuna ve hava kirliliğinin daha yoğun hissedilmesine sebep olmaktadır. Gezegensel sınır tabakasının göstergelerinden biri olan aerosol tabakası yüksekliği, Iğdır merkez ilçesinde özellikle kış mevsiminde 1000-1100 m civarındadır. Kirleticilerin Iğdır merkez ilçesinin ortalama yükseltisi olan 850 m ile bu yükseltiler arasına sıkışmasıyla, alanda kirlilik daha yoğun hissedilmektedir. Şehir yerleşim planında yatay olarak yapılacak bir değişiklik, sahip olunan coğrafi özellikler sebebiyle uzun süreçte yine aynı hava kirliliği sorununun yaşanmasına sebep olacaktır. Bu nedenle olası bir plan değişikliğinde yerleşimlerin, en azından kirletici gazların kış mevsiminde ulaştığı üst seviye olan 1000-1100 m’nin üzerine kurulması aynı sorunların tekrar yaşanmamasını sağlayacaktır.


EXTENDED ABSTRACT


Air pollution is a well-known factor that affects the natural atmosphere when its concentration reaches a certain level. Additionally, a national act, the Air Quality Assessment and Management Regulation, has been introduced to establish minimum levels for smoke, dust, gas, vapor, and aerosol concentrations in the air (URL 1; URL 2). According to a recent report (THHP, 2021), PM10, PM2.5, SO2, O3, and NO2 values from 98% of 175 stations in Turkey were found to exceed the value (20 µg/m3) defined by the World Health Organization. Moreover, the air quality of some cities is more heavily influenced by urbanization, fossil fuel usage, and topographic and meteorological factors (Çiftçi et al., 2013). In Iğdır, geomorphological structures limit the horizontal movement of air parcels and create an inversion layer (Koç, 2018). However, there has been little quantitative analysis of air quality to guide urban growth in Iğdır. This study aims to address the lack of suitability analysis based on air quality and risk mapping in Iğdır. The suitability of urban growth will be analyzed using Google Earth Engine (GEE) data sets (NO2, SO2, CO, UV aerosol index [UVAI]), O3, Formaldehyde (HCHO), and ABL [Aerosol Boundary Layer]) with the Best–Worst Method (BWM).

Iğdır city center is situated at an average altitude of 850 m. The Iğdır Province is depicted in Figure 1. The Iğdır Plain was formed by the Aras River through alluvial deposition. The prevailing wind direction is over the depression of the Iğdır Plain. Figure 3 shows the frequency of annual winds. The geomorphological structure of the city provides benefits in terms of climate and agriculture.

Data for NO2, SO2, CO, UVAI, O3, HCHO, and ABL were obtained from Sentinel-5P TROPOMI (TROPOspheric monitoring instrument) in the GEE data collection. The data is collected by Landsat, MODIS, NOAA AVHRR, and ALOS remote sensing platforms (Amani et al., 2020). First, pollutant data was correlated to the city center via principal component analysis (PCA) to reveal risk fields. PCA is a linear analysis tool used to reduce a large raw data matrix to only its principal components (Tezbaşaran & Gelbal, 2018; Yi & Latch, 2022). Then, the pollutants were analyzed using one of the multivariate analysis techniques, the BWM. The BWM analysis indicated the suitability for urban growth. The closer the BWM result is to zero, the more reliable the data are (Badri Ahmadi et al., 2017).

The concentrations of six different pollutants were distributed throughout Iğdır. The concentration of NO2 ranged between 0.0000125 and 0.000032 mol/m2 . Figure 4 shows that the concentration is higher in the northern region of the city center and lower in the southern region, where the elevation is higher. SO2 production is typically caused by the use of fossil fuels, and the average concentration ranges between 0.0000219–0.000231 mol/m2 (Figure 4). High levels of SO2 were observed in low-lying areas. The distribution of CO concentrations followed a similar pattern to that of NO2 concentrations, with higher levels in the north and lower levels (0.0207–0.0316 mol/m2 ) in areas with higher elevation (Figure 4). The city center of Iğdır had higher values of HCHO, while the rest of the region exhibited values between 0.0000708 and 0.000131 mol/m2 (Figure 4). Although positive values of the aerosol index resulted in negative health effects, the area of interest did not show positive aerosol index values (−1.23, −0.488), as shown in Figure 4. Tropospheric ozone, which results from reactions with other pollutants in the atmosphere, exhibited a similar trend to NO2 and CO, being lower at higher elevations. Its concentration ranged between 0.1362–0.1394 mol/m2 (Figure 4). Aerosol height varied between 934–3020 m (Figure 10). The plain region of Iğdır represents the lowest aerosol layer height (934–1240 m) . Moreover, the height of the aerosol layer defines the highest level of particles in the atmosphere. Low aerosol layer height increases the risk of pollution evolution. Gaseous pollutants were found to be at their maximum during the winter (Figure 11). The highest wind speed in the region is approximately 1.4 m/s. The lack of wind throughout the year increases the air pollution.

Despite its small population, Iğdır suffers greatly from air pollution. The study shows that the city center and northern part of the plain are affected by pollution the most. Furthermore, height of the aerosol layer indicates the atmospheric vertical boundary for the pollutants. Thus, high pressure (917.8 hPa) in the atmosphere causes the pollutants to accumulate in the plain region. Due to the low temperatures (annual average is 12.2°C and lowest is −3.3°C), an inversion layer forms, thus limiting the movement of pollutants in the region. The air pollution risk map shows the highest risk in the northern part of the plain (Figure 13).

Based on this analysis, it can be inferred that a suitable urban growth area can be selected within the altitude range of 1000 to 1500 meters, as depicted in Figure 14. It is recommended that the settlement be located above the highest measured altitude for inversion and the aerosol layer, which is at 1100 meters (as shown in Figure 15). 


PDF View

References

  • Akyürek, Ö., Arslan, O., & Karademir, A. (2013). SO ve PM10 Hava kirliliği Parametrelerinin CBS İle Konumsal Analizi: Kocaeli Örneği. TMMOB Coğraf Bilgi Sistemleri Kongresi, Ankara, 1-12. google scholar
  • Altıkat, A. (2020). Iğdır İli partiküler kirlilik düzeyi ve partiküler kirliliğin diğer kirleticiler ile ilişkileri. Journal of the Institute of Science and Technology, 10(2), 878-887. https://doi.org/10.21597/ jist.630541 google scholar
  • Altıkat, A. (2019). Mikroklima Özelliğine Sahip İklim Koşullarında Meteorolojik Verilerle İlişkili Partiküler Kirlilik (PM10) Karakteristikleri: Iğdır Örneği. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(3), 1315-1328. https://doi.org/10.18185/ erzifbed.490505 google scholar
  • Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., ve Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326-5350. https://doi.org/10.1109/JSTARS.2020.3021052 google scholar
  • Argun, Y. A., Tırınk, S., & Bayram, T. (2019). Effect of Urban Factors on Air Pollution of Igdır. Black Sea Journal ofEngineering and Science, 2(4), 126-130. https://doi.org/10.34248/bsengineering.561588 google scholar
  • Atalay, İ. E., & Neslihanoğlu, S. (2021). Türkiye’deki İllerin Partikül Madde (PM10) Miktarının Değerlendirilmesi ve R Programlama Dili ile Görselleştirilmesi. Doğal Afetler ve Çevre Dergisi, 90(222), 354-361. https://doi.org/10.21324/dacd.882682 google scholar
  • Aydoğdu, M., & Bakırcı, M. (2021). LUCIS Modeliyle Tekirdağ Şehrinin Yerleşme Uygunluk Analizi. Journal of Geography, 0(42). https://doi.org/10.26650/JGEOG2020-814846 google scholar
  • Badri Ahmadi, H., Kusi-Sarpong, S., & Rezaei, J. (2017). Assessing the social sustainability of supply chains using Best Worst Method. Resources, Conservation and Recycling, 126, 99-106. https://doi. org/https://doi.org/10.1016/j.resconrec.2017.07.020 google scholar
  • Castagna, A., Mascheroni, E., Fustinoni, S., & Montirosso, R. (2022). Air pollution and neurodevelopmental skills in preschool- and school-aged children: A systematic review. Neuroscience & Biobehavioral Reviews, 136, 104623. https://doi.org/https://doi. org/10.1016/j.neubiorev.2022.104623 google scholar
  • Chen, J. (2014). GIS-based multi-criteria analysis for land use suitability assessment in City of Regina. Environmental Systems Research 2014 3:1, 3(1), 1-10. https://doi.org/10.1186/2193-2697-3-13 google scholar
  • Cindoruk, S. S. (2018). Havadaki No ve No2 Parametrelerinin Marmara Temiz Hava Merkezi Ölçümleri Kapsamında İncelenmesi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(2), 600611. https://doi.org/10.28948/ngumuh.443194 google scholar
  • Çelik, M. A., Kopar, İ., Bayram, H. (2018). Doğu Anadolu Bölgesi’nin Mevsimlik Kuraklık Analizi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Eylül, 22(3), 1741-1761. google scholar
  • Çiftçi, Ç., Dursun, Ş., Levend, S., & Kunt, F. (2013). Topoğrafik yapı, iklim şartları ve kentleşmenin Konya’da hava hirliliğine etkisi. European Journal ofScience and Technology, 1(1), 19-24. google scholar
  • Değerliyurt, M. (2014). Settlement Suitability Analysis of Local Ground Characteristics in Iskenderun: A Case Study. Procedia - Social and Behavioral Sciences, 120, 637-644. https://doi.org/10.1016/J. SBSPRO.2014.02.144 google scholar
  • Eraybar, S., Yüksel, M., Atmaca, S., Aygün, H., Engindeniz, Z., Kaya, H., & Bağlı, B. S. (2021). Karbonmonoksit Zehirlenmesinde Hiperbarik Oksijen Tedavisinin Acil Servis İşleyişindeki Yeri. Anatolian Journal of Emergency Medicine, 4(4), 138-142. https:// doi.org/10.54996/anatolianjem.843363 google scholar
  • Feng, X., Wei, S., & Wang, S. (2020). Temperature inversions in the atmospheric boundary layer and lower troposphere over the Sichuan Basin, China: Climatology and impacts on air pollution. Science of The Total Environment, 726, 138579. https://doi.org/https://doi. org/10.1016/j.scitotenv.2020.138579 google scholar
  • Graaf, M. De, Stammes, P., Torres, O., & Koelemeijer, R. B. A. (2005). Absorbing Aerosol Index: Sensitivity analysis, application to GOME and comparison with TOMS. J. Geophys. Res, 110, 1-19. https://doi.org/10.1029/2004JD005178 google scholar
  • Guo, Y., Wang, S., Zhu, J., Zhang, R., Gao, S., Saiz-Lopez, A., & Zhou, B. (2021). Atmospheric formaldehyde, glyoxal and their relations to ozone pollution under low- and high-NOx regimes in summertime Shanghai, China. Atmospheric Research, 258, 105635. https://doi. org/https://doi.org/10.1016/j.atmosres.2021.105635 google scholar
  • Guo, Q., Wu, D., Yu, C., Wang, T., Ji, M., & Wang, X. (2022). Impacts of meteorological parameters on the occurrence of air pollution episodes in the Sichuan basin. Journal of Environmental Sciences, 114, 308321. https://doi.org/https://doi.org/10.1016/j.jes.2021.09.006 google scholar
  • Güçük, C., Şahin, E., Bektaş, M., Aras, E., Çinicioğlu, R., & Domaç, Z. (2019). Evaluation ofPM10 behaviour in Iğdır. 1(1), 1-11. google scholar
  • Hu, M., Wang, Y., Wang, S., Jiao, M., Huang, G., & Xia, B. (2021). Spatial-temporal heterogeneity of air pollution and its relationship with meteorological factors in the Pearl River Delta, China. Atmospheric Environment, 254, 118415. https://doi.org/https://doi. org/10.1016/j.atmosenv.2021.118415 google scholar
  • IQAir. (2021). 2021 World Air Quality Report Region& City PM2.5 Ranking. Erişim adresi: https://www.iqair.com/world-most-polluted-cities/world-air-quality-report-2021-en.pdf. google scholar
  • Jollife, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065). https://doi.org/10.1098/RSTA.2015.0202 google scholar
  • Karaoğlu, M. & Çelim Ş. (2018). Doğu Anadolu Bölgesi ve Iğdır’ın jeolojisi ve toprak özellikleri. Journal ofAgriculture, 1(1), 14-26. google scholar
  • Karaoğlu, M. (2011). Zirai meteorolojik açıdan Iğdır iklim etüdü. Iğdır Üni. Fen Bilimleri Enst. Der., 1(1), 97-104. google scholar
  • Kaya, F. (2015). Iğdır İlinin idari coğrafya analizi. Journal of International Social Research, 8(41), 703. https://doi.org/10.17719/ jisr.20154115051 google scholar
  • Kazemi, H., & Akinci, H. (2018). A land use suitability model for rainfed farming by Multi-criteria Decision-making Analysis (MCDA) and Geographic Information System (GIS). Ecological Engineering, 116, 1-6. https://doi.Org/10.1016/J.ECOLENG.2018.02.021 google scholar
  • Kibar, H., Kibar, B., & Sürmen, M. (2014). Sıcaklık ve yağış değişiminin Iğdır İlinde bitkisel ürün deseni üzerine etkileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, C. 11(1), 11-24. google scholar
  • Koç, A. (2018). Kentsel Alan Kullanımlarının Zamansal Değişimlerinin Hava Kirliliği Üzerindeki Etkisi The Effect of Time-Changing of Urban Areas on Air Pollution. Kent Akademisi Dergisi, 11(4), 609617. google scholar
  • Koç, A., & Koç, Ç. (2018). An Assessment Through Relationship Between Air Pollution and Climatic Parameters in City of Igdır. Kent Akademisi Dergisi, 11(1), 1-10. google scholar
  • Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., & Bates, K. H. (2019). Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 422-427. https://doi. org/10.1073/pnas.1812168116 google scholar
  • Mutanga, O., & Kumar, L. (2019). Google earth engine applications. Remote Sensing, 11(5), 11-14. https://doi.org/10.3390/rs11050591 google scholar
  • Mutlu, A. (2018). Sanayi Kaynaklı Karbonmonoksit Salınımlarının Aermod Dağılım Modeli ile İncelenmesi. Uludağ University Journal of The Faculty of Engineering, 23(2), 275-286. https://doi. org/10.17482/uumfd.398123 google scholar
  • Özcan, H. K., Şahin, Ü., Bayat, C., & Uçan, O. N. (2008). İstanbul İli Troposferik Ozon (O3) Konsantrasyonlarının Hücresel Yapay Sinir Ağı Yöntemiyle Modellenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 21(2), 239-245. google scholar
  • Ozsahin, E., Ozdes, M., Smith, A. C., & Yang, D. (2022). Remote Sensing and GIS-Based Suitability Mapping of Termite Habitat in the African Savanna: A Case Study of the Lowveld in Kruger National Park. Land 2022, Vol. 11, Page 803, 11(6), 803. https://doi. org/10.3390/LAND11060803 google scholar
  • Parry, J. A., Ganaie, S. A., & Sultan Bhat, M. (2018). GIS based land suitability analysis using AHP model for urban services planning in Srinagar and Jammu urban centers of J&K, India. Journal of Urban Management, 7(2), 46-56. https://doi.org/10.1016/J.JUM.2018.05.002 google scholar
  • Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega (United Kingdom), 53, 49-57. https://doi.org/10.1016/j. omega.2014.11.009 google scholar
  • Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega (United Kingdom), 64, 126-130. https://doi.org/10.1016/j.omega.2015.12.001 google scholar
  • Sahin, F., Kara, M. K., Koc, A., & Sahin, G. (2020). Multi-criteria decision-making using GIS-AHP for air pollution problem in Igdır Province/Turkey. Environmental Science and Pollution Research, 27(29), 36215-36230. https://doi.org/10.1007/s11356-020-09710-3 google scholar
  • Schultz, M. G., Jacob, D. J., Wang, Y., Logan, J. A., Atlas, E. L., Blake, D. R., Blake, N. J., Bradshaw, J. D., Browell, E. V., Fenn, M. A., Flocke, F., Gregory, G. L., Heikes, B. G., Sachse, G. W., Sandholm, google scholar
  • S. T., Shetter, R. E., Singh, H. B., ve Talbot, R. W. (1999). On the origin of tropospheric ozone and NOx over the tropical South Pacific. Journal of Geophysical Research Atmospheres, 104(D5), 5829-5843. https://doi.org/10.1029/98JD02309 google scholar
  • Sümer, G. Ç. (2014). Hava Kirliği Kontrolü: Türkiye’de Hava Kirliliğini Önlemeye Yönelik Yasal Düzenlemelerin ve Örgütlenmelerin İncelenmesi. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 13(13), 37-37. https://doi.org/10.18092/ulikidince.232135 google scholar
  • Şahin, F., Işık, G., Şahin, G., & Kara, M. K. (2020). Estimation of PM10 levels using feed forward neural networks in Igdir, Turkey. Urban Climate, 34, 100721. https://doi.org/https://doi.org/10.1016/j. uclim.2020.100721 google scholar
  • Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164(January), 152-170. https://doi.org/10.1016/j.isprsjprs.2020.04.001 google scholar
  • Taşdemir, İ., & Kaya, Ş. (2015). Yerleşim Alanı Uygunluk Analizi: Lucıs Model. Türkiye Ulusal Fotogrametri Ve Uzaktan Algılama Birliği Vııı.Sempozyumu. Erişim adresi: https://www.academia. edu/42615417/YERLEŞİM_ALANI_UYGUNLUK_ANALİZİ_ LUCIS_MODEL google scholar
  • Tezbaşaran, E., & Gelbal, S. (2018). Temel Bileşenler Analizi ve Yapay Sinir Ağı Modellerinin Ölçek Geliştirme Sürecinde Kullanılabilirliğinin İncelenmesi. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 14(1), 225-252. google scholar
  • THHP. (2021). Kara Rapor 2021 Hava Kirliliği ve Sağlık Etkileri. Erişim adresi: https://www.temizhavahakki.com//wp-content/ uploads/2021/09/KaraRapor2021.pdf google scholar
  • URL 1. (2022, 6 Haziran). Erişim adresi: https://www.mevzuat.gov.tr/uat?MevzuatNo=12188&MevzuatTur=7&MevzuatTertip=5 google scholar
  • URL 2. (2022, 6 Haziran). Erişim adresi: https://havakalitesi.ibb.gov.tr/ Icerik/mevzuat google scholar
  • URL 3. (2022, 6 Haziran). Erişim adresi: https://www.who.int/health-topics/air-pollution#tab=tab_1 google scholar
  • URL 4. (2022, 6 Haziran). Erişim adresi: https://developers.google. com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_ L3_AER_AI#description google scholar
  • URL 5. (2022, 6 Haziran). Erişim adresi: https://developers.google. com/earth-engine/datasets/catalog/sentinel-5p google scholar
  • URL 6. (2022, 6 Haziran). Erişim adresi: https://www.esa.int/Applications/ Observing_the_Earth/Copernicus/Sentinel-5P#:~:text=The%20 mission,our%20health%20and%20our%20climate google scholar
  • URL 7. (2022, 6 Haziran). Erişim adresi: https://developers.google. com/earth-engine/datasets/catalog/sentinel-5p google scholar
  • URL 8. (2022, 6 Haziran). Erişim adresi: https://developers.google. com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_ L3_NO2#description google scholar
  • URL 9. (2022, 6 Haziran). Erişim adresi: https://developers.google. com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_ L3SO2#bands google scholar
  • URL 10. (2022, 6 Haziran). Erişim adresi: https://developers.google. com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_ L3_CO#description google scholar
  • URL 11. (2022, 6 Haziran). Erişim adresi: https://developers.google. com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_ L3_O3#description google scholar
  • URL 12. (2022, 6 Haziran). Erişim adresi: https://developers.google. com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_ L3_AER_LH?hl=en#bands google scholar
  • URL 13. (2022, 6 Haziran). Erişim adresi: https://developers.google.com/ earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_HCHO google scholar
  • URL 14. (2022, 6 Haziran). Erişim adresi: https://developers.google. com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_ L3_AER_AI#description google scholar
  • Utami, W., Rahmat, A., Sialagan, B. H., Exaudia, S., & Turnip, A. L. (2021). Settlement Suitability Analysis Based on the Catastrophic Eruption of Sinabung. IOP Conference Series: Earth and Environmental Science, 884(1), 012056. https://doi.org/10.1088/1755-1315/884/1/012056 google scholar
  • Vazquez Santiago, J., Inoue, K., & Tonokura, K. (2021). Diagnosis of ozone formation sensitivity in the Mexico City Metropolitan Area using HCHO/NO2 column ratios from the ozone monitoring instrument. Environmental Advances, 6, 100138. https://doi.org/ https://doi.org/10.1016/j.envadv.2021.100138 google scholar
  • Wag, J., Huang, K., Feng, G., & Song, J. (2021). Analysis of winter formaldehyde and volatile organic compound pollution characteristics of residential kitchens in severe cold regions of northeast China. Indoor andBuiltEnvironment, 30(8), 1226-1243. https://doi.org/10.1177/1420326X20937462 google scholar
  • Wallace, J., Corr, D., & Kanaroglou, P. (2010). Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys. Science of The Total Environment, 408(21), 50865096. https://doi.org/https://doi.org/10.1016/j.scitotenv.2010.06.020 google scholar
  • Wen, W., Ma, X., Tang, Y., Wei, P., Wang, J., & Guo, C. (2020). The impacts of meteorology on source contributions of air pollution in winter in Beijing, 2015-2017 changes. Atmospheric Pollution Research, 11(11), 1953-1962. https://doi.org/https://doi.org/10.1016/j.apr.2020.07.029 google scholar
  • WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization. Erişim adresi: https://www.who.int/publications/i/item/9789240034228 google scholar
  • WHO. (2006). Air Quality Guidelines Global Update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Kopenhag. Erişim adresi: https://apps.who.int/iris/bitstream/handle/10665/107823/97892 89021920-eng.pdf?sequence=1&isAllowed=y google scholar
  • Yaltı, S., & Aksu, H. (2019). Drought analysis of Iğdır Turkey. Turkish Journal of Agriculture - Food Science and Technology, 7, 2227. https://doi.org/10.24925/turjaf.v7i12.2227-2232.3004 google scholar
  • Yang N., Yang L., Xu F., Han X., Liu B., Zheng N., Li Y., Bai Y., Li L., & Wang J. (2022). Vehicle Emission Changes in China under Different Control Measures over Past Two Decades. Sustainability, 14(24), 16367. https://doi.org/10.3390/su142416367 google scholar
  • Yi, X., & Latch, E. K. (2022). Nonrandom missing data can bias Principal Component Analysis inference of population genetic structure. Molecular Ecology Resources, 22(2), 602-611. https:// doi.org/10.1111/1755-0998.13498 google scholar
  • Zhang, Z. F., Zhang, X., Zhang, X. ming, Liu, L. Y., Li, Y. F., & Sun, W. (2020). Indoor occurrence and health risk of formaldehyde, toluene, xylene and total volatile organic compounds derived from an extensive monitoring campaign in Harbin, a megacity of China. Chemosphere, 250, 126324. https://doi.org/10.1016/j.chemosphere.2020.126324 google scholar
  • Zorlu, K., & Tıkansak Karadayı, T. (2020). İç Mekân Hava Kalitesinde Yapı Malzemelerinin Rolü. Sinop Üniversitesi Fen Bilimleri Dergisi, 5(2), 193-211. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Çoşkun, M., Şahiner, H., Canbulat, O., & Öztürk, A. (2023). Air Quality Issues and Settlement Suitability Analysis in Iğdır Central District. Journal of Geography, 0(47), 45-59. https://doi.org/10.26650/JGEOG2023-1233378


AMA

Çoşkun M, Şahiner H, Canbulat O, Öztürk A. Air Quality Issues and Settlement Suitability Analysis in Iğdır Central District. Journal of Geography. 2023;0(47):45-59. https://doi.org/10.26650/JGEOG2023-1233378


ABNT

Çoşkun, M.; Şahiner, H.; Canbulat, O.; Öztürk, A. Air Quality Issues and Settlement Suitability Analysis in Iğdır Central District. Journal of Geography, [Publisher Location], v. 0, n. 47, p. 45-59, 2023.


Chicago: Author-Date Style

Çoşkun, Mücahit, and Hüseyin Şahiner and Onur Canbulat and Ahmet Öztürk. 2023. “Air Quality Issues and Settlement Suitability Analysis in Iğdır Central District.” Journal of Geography 0, no. 47: 45-59. https://doi.org/10.26650/JGEOG2023-1233378


Chicago: Humanities Style

Çoşkun, Mücahit, and Hüseyin Şahiner and Onur Canbulat and Ahmet Öztürk. Air Quality Issues and Settlement Suitability Analysis in Iğdır Central District.” Journal of Geography 0, no. 47 (May. 2024): 45-59. https://doi.org/10.26650/JGEOG2023-1233378


Harvard: Australian Style

Çoşkun, M & Şahiner, H & Canbulat, O & Öztürk, A 2023, 'Air Quality Issues and Settlement Suitability Analysis in Iğdır Central District', Journal of Geography, vol. 0, no. 47, pp. 45-59, viewed 6 May. 2024, https://doi.org/10.26650/JGEOG2023-1233378


Harvard: Author-Date Style

Çoşkun, M. and Şahiner, H. and Canbulat, O. and Öztürk, A. (2023) ‘Air Quality Issues and Settlement Suitability Analysis in Iğdır Central District’, Journal of Geography, 0(47), pp. 45-59. https://doi.org/10.26650/JGEOG2023-1233378 (6 May. 2024).


MLA

Çoşkun, Mücahit, and Hüseyin Şahiner and Onur Canbulat and Ahmet Öztürk. Air Quality Issues and Settlement Suitability Analysis in Iğdır Central District.” Journal of Geography, vol. 0, no. 47, 2023, pp. 45-59. [Database Container], https://doi.org/10.26650/JGEOG2023-1233378


Vancouver

Çoşkun M, Şahiner H, Canbulat O, Öztürk A. Air Quality Issues and Settlement Suitability Analysis in Iğdır Central District. Journal of Geography [Internet]. 6 May. 2024 [cited 6 May. 2024];0(47):45-59. Available from: https://doi.org/10.26650/JGEOG2023-1233378 doi: 10.26650/JGEOG2023-1233378


ISNAD

Çoşkun, Mücahit - Şahiner, Hüseyin - Canbulat, Onur - Öztürk, Ahmet. Air Quality Issues and Settlement Suitability Analysis in Iğdır Central District”. Journal of Geography 0/47 (May. 2024): 45-59. https://doi.org/10.26650/JGEOG2023-1233378



TIMELINE


Submitted13.01.2023
Accepted20.07.2023
Published Online05.01.2024

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.