Research Article


DOI :10.26650/JGEOG2020-0047   IUP :10.26650/JGEOG2020-0047    Full Text (PDF)

Determination of Soil Loss Based on the TanDEM-X12m. Digital Elevation Model

Aydoğan AvcıoğluCihan BayrakdarErol SarıTuğçe Nagihan Arslan Kaya

Soil is one of the most important natural resources in the world. Determination of soil degradation has been widely attempted all over the world in the last 50 years. This study provides a perspective of comparing the digital elevation model (DEM) in terms of the Revised Universal Soil Loss Equation (RUSLE) model, which calculates soil loss in Mountain Karadağ - Akçay Basin. RUSLE comprises the topographic (LS), climatic (R), vegetation (C), soil (K), and support practice (P) parameters. To evaluate soil loss in the Akçay Basin, TanDEM-X12m. DEM was used and compared with ALOS12.5m and SRTM30m. DEM. Distribution of soil loss has a positive correlation with slope degree (R2 = 0.62) and rainfall and runoff factor (R). As the elevation increases in the short range (15 km) from south to north in Akçay Basin, the rainfall and runoff increase together with elevation. The tributaries of the trunk river (Akçay) were characterized by a narrow and incised V-shaped valley, and this gave rise to increase in the LS factor in the short range. This phenomenon shows that the LS factor is one of the most important factors with regard to triggering factors. According to the TanDEM-X12m-based DEM, the mean annual soil loss is 28 ton ha−1 ya−1 from the basin.

DOI :10.26650/JGEOG2020-0047   IUP :10.26650/JGEOG2020-0047    Full Text (PDF)

TanDEM-X12m Sayısal Yükselti Verisine Dayalı Toprak Erozyonu Tespiti (Rusle)

Aydoğan AvcıoğluCihan BayrakdarErol SarıTuğçe Nagihan Arslan Kaya

Toprak dünya üzerinde en önemli doğal kaynaklardan biridir. Son elli yıl içerisinde toprağın degradasyonunu belirleme adına dünya çapında yoğun bir çaba sarf edilmektedir. Bu çalışma da Karadağ’ın (Fethiye) güneyinde Akçay Havzası’nda RUSLE yöntemi ile toprak kaybını hesaplayan ve Sayısal Yükselti Modeli (SYM) verilerini yöntem kapsamında karşılaştıran bir bakış açısı ortaya koymaktadır. RUSLE yöntemi, topoğrafik (LS), iklimsel (R), bitki örtüsü (C), toprak erodobilite (K), toprak koruma yöntemleri (P) gibi parametreleri esas alarak çalışma Coğrafi Bilgi Sistemleri (CBS) yardımıyla alanda meydana gelen toprak kaybını tespit edebilmektedir. Akçay Havzası’nda toprak kaybını elde edebilmek adına, TanDEM-X12m SYM verisi kullanılmıştır, ALOS12.5m ve SRTM30m SYM verileri ile de karşılaştırılmıştır. Toprak kaybının alansal dağılımı, eğim dereceleri (r=0.62) ve R faktör ile pozitif bir ilişkiye sahiptir. Akçay Havzası’nda güneyden kuzeye kısa mesafede (15 km) yükselti arttıkça, yağış ve akış bununla beraber artmaktadır. Akçay Havzası dar ve derince yarılmış V şekilli vadilerle karakterize olmaktadır ve bu durum sonucunda, LS faktörün kısa mesafede artması, erozyonu hazırlayıcı en önemli faktör olduğunu göstermektedir. Yapılan bu çalışmayla beraber, TanDEM-X12m SYM verisinden üretilen sonuçlara göre çalışma alanında ortalama 28 ton ha-1 yıl-1 toprak kaybı meydana geldiği tespit edilmiştir. 


EXTENDED ABSTRACT


Soil as a critical element is an inalienable natural source for humankind. Especially after the industrial revolution, anthropogenic effects on soil were intensely observed. Moreover, the soil erosion rate increased progressively in the last century. For sustainable agricultural activities, evaluation of the soil loss rate is crucial. A couple of models based on Geographical Information System (GIS) (USLE, RUSLE, WEPP, EUROSEM) can calculate soil loss in t ha−1 year−1. Although these models have vulnerabilities, they still can provide general information about the distribution and amount of soil loss. These models integrate topography (DEM), soil, climate, land use, and land cover variables. 

The topography of Turkey has been shaped under control Mediterranean and Continental climate and it has suffered from soil erosion. Southern Turkey, where the Taurus mountain belt lies, is characterized by high relief, which accelerates gravitational-related external processes. This region is also open for the warm-humid front from the Mediterranean sea, and these fronts have become conducive to orographic rainfall when reaching to the Taurus. This process also causes a high amount of sediment transportation along with surface runoff. So, these two variables (relief and climate) for erosion are epicenters of this study. As relief (slope) affects directly on erosion, DEM accuracy and resolution also play a crucial role in the asses of the topographic variables for soil loss models. As the DEM resolution increased, the performance of the DEM capability increased. From this point of view, in this study, we assessed the soil loss of the Akçay Basin located at Western Taurus Karadağ Mountain of the south-face, using Revised Universal Soil Loss Equation (RUSLE). Together with soil loss in the study area, DEM comparison was made between TanDEM-X12m., ALOS12.5m., and SRTM30m. DEMs in respect of the RUSLE method.

The study area differs from other areas (mostly located in the agricultural or gently slope regions) applied the RUSLE method while it’s located in the mountainous terrain. Akçay Basin has relief more than 1800m. in the short range (15 km.) and narrow-steep valleys and canyons. From the climate viewpoint study, the area is characterized by the Mediterranean climate (average annual temp. 18.38°C and annual 862.3 mm. precipitation), and orographic rainfall is also determined in the area. The lithology of the basin mainly composes of chert-limestone and dolomite.

The RUSLE model comprises five parameters that control soil loss. These are Rainfall and Runoff Erosivity Factor (R), Soil Erodobility Factor (12 samples taken), (C) Landuse and Landcover Factor (CORINE 2012 used), (LS) Slope Lenght and Steepness Factor, and (P) Support Practices. All of these parameters were calculated in the ArcGIS 10.4.1, SAGA GIS 7.2.0, and converted to factor maps; finally, the potential soil loss map was achieved. The LS factor was produced using TanDEM-X12m. DEM and then DEMs were compared utilizing the slope values of each DEM’s slope values and validated with Unmanned Aerial Vehicle (UAV)-based DEM 1m.- resolution.

According to the research conducted on soil loss by using RUSLE, factor maps and the final distribution of potential erosion loss map were created. In the study area, the R factor ranged from 403 to 601 t ha−1 year−1, and the K factor values were between 0.010 and 0.079 t ha−1 year−1. Within the C factor, 14 types of CORINE classes were determined (43%, mostly 323 Sclerophyllous vegetation and transitional woodland shrub). The LS factor values range from 0 to 174, and support practices are not observed in the area. Distribution of the potential soil loss focuses on high LS and R values, and the amount of soil loss is 0–167 t ha−1 year−1.

In conclusion, it is determined that soil loss occurs in relief and climate control in the study area and according to the comparison result of DEM’s TanDEM-X12m., represents the topography more accurately than the others.


PDF View

References

  • Abız, B. (2014). Kahramanmaraş Halfali Deresi Yağiş Havzasinda Uzaktan Algilama Teknikleri Ve Rusle Yöntemi Kullanilarak Erozyon Risk Haritasinin Oluşturulmasi. (Yüksek Lisans Tezi). Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş. google scholar
  • Akay, S. S., Ozcan, O., & Sen, O. L. (2019). Modeling morphodynamic processes in a meandering river with unmanned aerial vehicle-based measurements. Journal of Applied Remote Sensing. google scholar
  • Angeli, L. (2004). Alutazione del rischio erosione applicazioni del modello RUSLE.Centro Ricerche Erosione Suolo. Centro Ricerche Erosione Suolo. google scholar
  • Ardel, A. Kurter, A., Dönmez, Y. (1969). Klimatoloji Tatbikatı. İstanbul: İÜ Yay. No: 1123. Bayrakdar, C., Çılğın, Z., & Sarış, F. (2017). Karadağ’da Pleyistosen Buzullaşmaları, Batı Toroslar, 3Türkiye. Türkiye Jeoloji Bülteni. google scholar
  • Bakker, M. G. (2008). The response of soil erosion and sediment export to land-use change infour areas of Europe: the importance of landscape pattern. Geomorphology. google scholar
  • Bayrakdar, C., Çılğın, Z., & Keserci, F. (2020). Traces of late quaternary glaciations and paleoclimatic interpretation of Mount Akdağ (Alanya, 2451 m), Southwest Turkey. Mediterranean Geoscience Reviews, 135–151. google scholar
  • Cürebal, İ., & Ekinci, D. (2006). Kızılkeçili Deresi Havzasında CBS Tabanlı Rusle (3d) Yöntemiyle Erozyon Analizi. Türk Coğrafya Dergisi. google scholar
  • ÇEM. (2018). DEMİS Türkiye Su Erozyonu İstatistikleri, Teknik Özet. Ankara: Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü Yayınları. google scholar
  • CHEN, H., Oguchi, T., & WU, P. (2017). Assessment for soil loss by using a scheme of alterative sub-models based on the RUSLE in a Karst Basin of Southwest China. Journal of Integrative Agriculture, 16(2), 377–388. doi:10.1016/s2095-3119(16)61507-1 google scholar
  • Danacıoğlu, Ş., & Tağıl, Ş. (2017). Bakırçay Havzasi’nda Rusle Modeli Kullanarak Erozyon Riskinin Değerlendirmesi. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 1–18. google scholar
  • DLR. (2016). TanDEM-X ground segment DEM products specification document TD-GS-PS-0021 v.3.1. DLR. google scholar
  • Erdoğan, M. A., Esbah, H., & Berberoğlu, S. (2016). Erosion Risk Mapping Using Rusle With Gis: Case Study Of Büyük Menderes River Basin Of Turkey. Int. J. Of Safety And Security Eng., 6(2), 132–140. google scholar
  • Erinç, S. (1996) Klimatoloji Metotları. İstanbul: Çantay Kitbevi. google scholar
  • Erkal, T. (2012). Çobanlar Havzasi’nda (Afyonkarahisar) Toprak Erozyonunun Değerlendirilmesi. The Journal of Academic Social Science Studies, 543–562. google scholar
  • Erpul, G., & Saygın, S. D. (2012). Ülkemizde Toprak Erozyonu Sorunu Üzerine: Ne Yapmalı? Toprak Bilimi ve Bitki Besleme Dergisi, 26–32. google scholar
  • Fernández, C., Vega, J. A., & Vieira, D. C. S. (2010). Assessing soil erosion after fire and rehabilitation treatments in NW Spain: Performance of rusle and revised Morgan-Morgan- Finney models. Land Degradation and Development, 21(1), 58–67. https://doi.org/10.1002/ldr.965 google scholar
  • Ferro, V. G. (1991). Isoerosivity and erosion risk map for Sicily. Hydrology Science Journal, 36, 549-564. google scholar
  • Fick, S. E. and R. J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfacesfor global land areas. International Journal of Climatology, 37(12), 4302-4315. google scholar
  • Galehouse, J. S. (1971). Sedimentation Analysis, Procedures in sedimentary petrology. New York: Wiley-Interscience google scholar
  • Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961. https:// doi.org/10.1016/j.gsf.2015.10.007 google scholar
  • Gaudette, H. E., Flight, W. R., Tonner, L., Folger, D. G. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Research, 44, 249–253. google scholar
  • Görüm, T., Bayrakdar, C., Uğur, A., & Resul, Ç. (2017). Geomorphology of the Mount Akdag landslide, Western Taurus Range (SW Turkey), Journal Of Maps, 165-172. https://doi.org/10.1080/17445647.2017 .1280424. google scholar
  • Gülşen, M. (2014). Eber Havzasında (Afyonkarahisar) Toprak Erozyonunun Değerlendirilmesi. (Yüksek Lisans Tezi). Afyon Kocatepe Üniversitesi Sosyal Bilimler Üniversitesi Afyonkarahisar google scholar
  • Hairsane, P. B. and Rose, C. W. (1992b). Modelling water erosion due to overland flow using pyhsical principles, 2. rill flow. Water Resour. Res. google scholar
  • Istanbulluoglu, E., Yetemen, O., Vivoni, E. R., Gutiérrez-Jurado, H. A., & Bras, R. L. (2008). Eco-geomorphic implications of hillslope aspect: Inferences from analysis of landscape morphology in central New Mexico. Geophysical Research Letters, 35(14), 1–6. https:// doi.org/10.1029/2008GL034477 google scholar
  • KHGM. (1999). Muğla İli Arazi Varlığı. Ankara: T.C. Başbakanlık Köy Hizmetleri Genel Müdürlüğü Yay. google scholar
  • Lanorte, A., Cillis, G., Calamita, G., Nolè, G., Pilogallo, A., Tucci, B., & De Santis, F. (2019). Integrated approach of RUSLE, GIS and ESA Sentinel-2 satellite data for post-fire soil erosion assessment in Basilicata region (Southern Italy). Geomatics, Natural Hazards and Risk, 10(1), 1563–1595. google scholar
  • Lee G. S., L. K. (2006). Scaling effect for estimating soil lossin the RUSLE model using remotely sensed geospatial data in Korea. Hydrology & Earth System Sciences Discussions. google scholar
  • Llena, M., Vericat, D., Smith, M. W., & Wheaton, J. M. (2020). Geomorphic process signatures reshaping sub-humid Mediterranean badlands: 1. Methodological development based on High Resolution Topography. In Earth Surface Processes and Landforms. https:// doi.org/10.1002/esp.4821 google scholar
  • McManus, J., 1988. Grain size determination and interpretation, (Techniques in Sedimentology, Editör: Tucker, M.,). Oxford,: Blackwell Scientific Publication, 63–85. google scholar
  • Moreno-de las Heras, M., & Gallart, F. (2016). Lithology controls the regional distribution and morphological diversity of montane Mediterranean badlands in the upper Llobregat basin (eastern Pyrenees). Geomorphology, 273, 107–115. https://doi.org/10.1016/j. geomorph.2016.08.004 google scholar
  • Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., and Styczen, M. E. (1998). The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23, 527–544. google scholar
  • Nearing, M. A., Foster, G. R., Lane, L. J., and Finckner, S. C., 1989. A process based soil erosion model for USDA water erosion prediction technology. Transactions of the American Society of Agricultural Engineers, 32, 1587–1593. google scholar
  • Pilogallo, G., Nolè, F., Amato, L., Saganeiti, M., Bentivenga, G., Palladino, F., Scorza, B., Murgante, G., Las Casas. (2019). Geotourism as a Specialization in the Territorial Context of the Basilicata Region (Southern Italy). Geoheritage, 11(4), 1435–1445. google scholar
  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., … Blair, R. (1995). Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science, 267(5201), 1117–1123. doi:10.1126/science.267.5201.1117 google scholar
  • Price, S. J., Ford, J. R., Cooper, A. H., & Neal, C. (2011). Humans as major geological and geomorphological agents in the Anthropocene: the significance of artificial ground in Great Britain. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering. Sciences, 369(1938), 1056–1084. doi:10.1098/ rsta.2010.0296 google scholar
  • Rahman, M. R., Shi, Z. H., Chongfa, C. (2009). Soil erosion hazard evaluation - An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling, 220, 1724–1734. google scholar
  • Renard, K. G. (1997). Predicting Soil Erosion By Water: A Guide To Conservation Planning With The Revised Universal Soil Loss Equation (RUSLE). Washington, DC: Agriculture Handbook, USDA. google scholar
  • Renard, K. G. (1983). Soil conservation: principles of erosion by water. American Society of Agronomy. Agronomy, a series of monographs; no. 23, 155–176. google scholar
  • Sahli, Y., Mokhtari, E., Merzouk, B. et al. (2019). Mapping surface water erosion potential in the Soummam watershed in Northeast Algeria with RUSLE model. J. Mt. Sci. 16, 1606–1615. google scholar
  • Sarı, E., Ünlü, S., Apak, R., Balcı, N. & Koldemir, B., (2014). Distribution and Contamination of Heavy Metals in the Surface Sediments of Ambarli Port Area (Istanbul, Turkey). Ekoloji, 23, 1–9. google scholar
  • Sarı, E., Cukrov, N., Franciskovic-Bilinski, S., Kurt, M. A. & Hallı, M., (2016). Contamination assessment of ecotoxic metals in recent sediments from the Ergene River, Turkey. Environmental Earth Sciences 75. google scholar
  • Sariş, F., Hannah, D. M., & Eastwood, W. J. (2010). Spatial variability of precipitation regimes over Turkey. Hydrological Science Journal. google scholar
  • Sayhan, S., (1990). Teke Yarımadasının Bitki Coğrafyası. (Basılmamış Doktora Tezi) - İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü. google scholar
  • Şenel, M. (1997). “1:100.000 Ölçekli Türkiye Jeoloji Haritaları No:2 Fethiye - L8 Paftası. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü. google scholar
  • Tağıl, Ş. (2007). Tuzla Çayı Havzası (Biga Yarımadası) CBS-Tabanlı RUSLE Modeli Kullanarak Arazi Degradasyonu Risk Değerlendirmesi. Ekoloji, 11–20. google scholar
  • Tanyaş, H., Kolat, Ç., & Süzen, M. L. (2015). A new approach to estimate cover-management factor of RUSLE and validation of RUSLE model in the watershed of Kartalkaya Dam. Journal of Hydrology. google scholar
  • Torri, D., Poesen, J., & Borselli, L. (1997). Predictability and uncertainty of the soil erodibility factor using a global dataset. CATENA, 31(1- 2), 1–22. doi:10.1016/s0341- 8162(97)00036-2 google scholar
  • Türkeş, M., Koç, T., & Sariş, F. (2009). Spatiotemporal variability of precipitation total series over Turkey. International Journal of Climatology, 29(8), 1056–1074. doi:10.1002/joc.1768 google scholar
  • de Vente J, Poesen J, Verstraeten G, Govers G, Vanmaercke M, Van Rompaey A, Arabkhedri M, Boix-Fayos C. 2013. Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Science Reviews, 127, 16–29. google scholar
  • Wıschmeıer, W. H. (1978). Predicting rainfall erosion losses. A Guide to conservation planning, United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Handbook, No.537. Washington DC.: United States Government Printing Office. google scholar
  • Wuepper, D., Borrelli, P., & Finger, R. (2020). Countries and the global rate of soil erosion. Nature Sustainability, 3(1), 51–55. https://doi. org/10.1038/s41893-019-0438-4 google scholar
  • UNEP, (1986). Sands of change: why land becomes desert and what can be done about it google scholar
  • UNEP Brief #2, United Nations Environment Programme, Nairobi, Kenya. google scholar
  • Yağmurlu, F. (2000). Burdur fayının sismotektonik. Batı Anadolu’nun Depremselliği Sempozyumu, (s. 143-151). İzmir. google scholar
  • Yasan, O. vd., (2019). Dağlık alanların iklim özelliklerini belirlemede cbs tabanlı enterpolasyon yöntemlerinin kullanımı: Batı Toroslar Örneği. Akköprü E., Döker F. M., (Ed.), Coğrafya araştırmalarında Coğrafi Bilgi Sistemi kullanımı kitabı içinde (s. 197- 215). Ankara: Pegem Akademi. google scholar
  • Yılmaz, E. (2006). Çamlıdere Baraji Havzasinda Erozyon Problemi Ve Risk Analizi. (Yüksek Lisans Tezi). Ankara Üniversitesi Sosyal Bilimler Enstitüsü, Ankara. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Avcıoğlu, A., Bayrakdar, C., Sarı, E., & Arslan Kaya, T. (2020). Determination of Soil Loss Based on the TanDEM-X12m. Digital Elevation Model. Journal of Geography, 0(41), 93-107. https://doi.org/10.26650/JGEOG2020-0047


AMA

Avcıoğlu A, Bayrakdar C, Sarı E, Arslan Kaya T. Determination of Soil Loss Based on the TanDEM-X12m. Digital Elevation Model. Journal of Geography. 2020;0(41):93-107. https://doi.org/10.26650/JGEOG2020-0047


ABNT

Avcıoğlu, A.; Bayrakdar, C.; Sarı, E.; Arslan Kaya, T. Determination of Soil Loss Based on the TanDEM-X12m. Digital Elevation Model. Journal of Geography, [Publisher Location], v. 0, n. 41, p. 93-107, 2020.


Chicago: Author-Date Style

Avcıoğlu, Aydoğan, and Cihan Bayrakdar and Erol Sarı and Tuğçe Nagihan Arslan Kaya. 2020. “Determination of Soil Loss Based on the TanDEM-X12m. Digital Elevation Model.” Journal of Geography 0, no. 41: 93-107. https://doi.org/10.26650/JGEOG2020-0047


Chicago: Humanities Style

Avcıoğlu, Aydoğan, and Cihan Bayrakdar and Erol Sarı and Tuğçe Nagihan Arslan Kaya. Determination of Soil Loss Based on the TanDEM-X12m. Digital Elevation Model.” Journal of Geography 0, no. 41 (May. 2024): 93-107. https://doi.org/10.26650/JGEOG2020-0047


Harvard: Australian Style

Avcıoğlu, A & Bayrakdar, C & Sarı, E & Arslan Kaya, T 2020, 'Determination of Soil Loss Based on the TanDEM-X12m. Digital Elevation Model', Journal of Geography, vol. 0, no. 41, pp. 93-107, viewed 17 May. 2024, https://doi.org/10.26650/JGEOG2020-0047


Harvard: Author-Date Style

Avcıoğlu, A. and Bayrakdar, C. and Sarı, E. and Arslan Kaya, T. (2020) ‘Determination of Soil Loss Based on the TanDEM-X12m. Digital Elevation Model’, Journal of Geography, 0(41), pp. 93-107. https://doi.org/10.26650/JGEOG2020-0047 (17 May. 2024).


MLA

Avcıoğlu, Aydoğan, and Cihan Bayrakdar and Erol Sarı and Tuğçe Nagihan Arslan Kaya. Determination of Soil Loss Based on the TanDEM-X12m. Digital Elevation Model.” Journal of Geography, vol. 0, no. 41, 2020, pp. 93-107. [Database Container], https://doi.org/10.26650/JGEOG2020-0047


Vancouver

Avcıoğlu A, Bayrakdar C, Sarı E, Arslan Kaya T. Determination of Soil Loss Based on the TanDEM-X12m. Digital Elevation Model. Journal of Geography [Internet]. 17 May. 2024 [cited 17 May. 2024];0(41):93-107. Available from: https://doi.org/10.26650/JGEOG2020-0047 doi: 10.26650/JGEOG2020-0047


ISNAD

Avcıoğlu, Aydoğan - Bayrakdar, Cihan - Sarı, Erol - Arslan Kaya, Tuğçe Nagihan. Determination of Soil Loss Based on the TanDEM-X12m. Digital Elevation Model”. Journal of Geography 0/41 (May. 2024): 93-107. https://doi.org/10.26650/JGEOG2020-0047



TIMELINE


Submitted02.06.2020
Accepted05.09.2020
Published Online16.12.2020

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.