Review


DOI :10.26650/IUITFD.2020.0066   IUP :10.26650/IUITFD.2020.0066    Full Text (PDF)

EXERCISE AND NEUROGENESIS

Mehmet Ünal

Neurogenesis is a biological process characterized by the formation of new neurons. During embryogenesis, neural stem cells multiply, migrate, and differentiate into mature neurons that will eventually form the central nervous system. After proliferation, differentiation, and displacement, it has been proven that, during exercise, new neurons in the dentate gyrus settle in the neural circuits of the hippocampus and brain areas that are important for memory consolidation and learning. During and after exercise, the triggering factor for exercise-induced neurogenesis is a molecule called brain-derived neurotrophic factor, also known as BDNF in recent publications. Being a member of the neurotrophin family, BDNF is vital for many functions involved in neurogenesis, including proliferation, differentiation, maturation, and survival. Besides BDNF, signal pathways molecules, such as insulin-like growth factor-1, fibroblast growth factor 2, and vascular endothelial growth factor, have also proven to be effective in neuroplasticity and hippocampal neurogenesis. During physical activities, the most affected brain region is the hippocampus. Aerobic exercises have been found to significantly increase the size and function of the human hippocampus, especially when performed with moderate exercise; it is important to ensure that the exercise is not stressful. Stress suppresses neurogenesis by increasing the release of glucocorticoids in the hypothalamic–pituitary–adrenal axis and thus prevents the formation of new neurons. If voluntary exercise exceeds a certain threshold and become exhaustion, neurogenesis is prevented via the same mechanism. Therefore, it is important that exercise is done according to each person’s ability and should not cause exhaustion. 

DOI :10.26650/IUITFD.2020.0066   IUP :10.26650/IUITFD.2020.0066    Full Text (PDF)

EGZERSİZ VE NÖROGENEZ

Mehmet Ünal

Nörogenez, yeni nöronların oluştuğu biyolojik bir süreçtir. Nöral kök hücreler, embriyogenez sırasında, merkezi sinir sistemini oluşturacak olgun nöronlar halinde çoğalır, göç eder ve farklılaşır. Proliferasyonun, farklılaşmanın ve yer değiştirmenin ardından, egzersiz ile dentat girusda yeni doğan nöronların hipokampusun sinirsel devrelerine ve bellek konsolidasyonu ve öğrenme için önemli olan beyin bölgelerine yerleştiği kanıtlanmıştır. Egzersiz esnasında ve sonrasında “Egzersiz kaynaklı nörogenezi tetikleyen faktörün”, son yayınlarda beyin kaynaklı nörotrofik faktör (brain-derived neurotrophic factor-BDNF) adlı bir molekül olduğunun ön planda tutulduğu görülmektedir. Nörotrofin ailesinin bir üyesi olan BDNF, proliferasyon, farklılaşma, olgunlaşma ve hayatta kalma dahil olmak üzere nörogenezden sorumlu birçok fonksiyon için hayati öneme sahiptir. BDNF’nin yanı sıra nöroplastisite ve hipokampal nörogenezde İnsülin Benzeri Büyüme Faktörü-1 (IGF-1), Fibroblast Büyüme Faktörü-2 (FGF-2), Vasculer-Endotelyal Büyüme Faktörü (VEGF) gibi sinyal yolaklarının da etkili olduğu gösterilmiştir. Fiziksel aktivitelerde en fazla etkilenen beyin bölgesi hipokampus bölgesidir. Aerobik egzersizlerin, özellikle de aşırıya kaçmadan yapıldığında, insanların hipokampus boyutunda ve fonksiyonlarında anlamlı artışlara neden olduğu tespit edilmiştir. Egzersizin bir stres haline dönüştürülmemesi önemlidir. Stres Hipotalamo-hipofiz-adrenal korteks ekseninde glikokortikoid salınımını artırarak nörogenezi baskılamakta, yeni nöron oluşumuna engel olmaktadır. İstemli yapılan egzersizler bile belirli bir seviyenin üzerinde olursa, tüketici hale geldiğinde yine aynı mekanizma ile nörogenezi engellemektedir. Bu nedenle egzersizin kişiye özel olması ve tükenmeye neden olacak kadar olmaması önemlidir.


PDF View

References

  • 1. Liu PZ, Nusslock R. Exercise and hippocampal neurogenesis: a dogma re-examined and lessons learned. Neural Regen Res 2018;13(8):1354-5. [CrossRef] google scholar
  • 2. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab 2013;18(5):649-59. [CrossRef] google scholar
  • 3. Voss MW, Heo S, Prakash RS, Erickson KI, Alves H, Chaddock L, et al. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention. Hum Brain Mapp 2013;34(11):2972-85. [CrossRef] google scholar
  • 4. Ünal M. Alzheimer Hastalarında Egzersiz Uygulamaları. In: Ünal M, editor. Alzheimer’a Dair Her Şey. İstanbul: İstanbul Tıp Kitapevi; 2018.p.139-70. google scholar
  • 5. Ünal M, Erdem S, Deniz G. The Effects Of Chronic Aerobic And Anaerobic Exercises On Lymphocyte Subgroups. Acta Physiol Hung 2005;92(2):163-71. [CrossRef] google scholar
  • 6. Ma CL, Ma XT, Wang JJ, Liu H, Chen YF, Yang Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav Brain Res 2017;317:332- 9. [CrossRef] google scholar
  • 7. Altman J. Are new neurons formed in the brains of adult mammals? Science 1962;135(3509):1127-8. [CrossRef] google scholar
  • 8. Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 1998; 95(6):3168-71. [CrossRef] google scholar
  • 9. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4(11):1313-7. [CrossRef] google scholar
  • 10. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997;386(6624):493-5. [CrossRef] google scholar
  • 11. Van Praag H, Kempermann G, Gage FH.Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999;2(3):266-70. [CrossRef] google scholar
  • 12. Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 2018;361(6406):eaan8821. [CrossRef] google scholar
  • 13. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965;124(3):319-35. [CrossRef] google scholar
  • 14. Kempermann G. Activity dependency and aging in the regulation of adult neurogenesis. Cold Spring Harb Perspect Biol 2015;7(11):a018929. [CrossRef] google scholar
  • 15. O’Leary JD, Hoban AE, Murphy A, O’Leary OF, Cryan JF, Nolan YM. Differential effects of adolescent and adult-initiated exercise on cognition and hippocampal neurogenesis. Hippocampus 2019;29(4):352- 65. [CrossRef] google scholar
  • 16. Woost L, Bazin PL, Taubert M, Trampel R,Tardif CL,Garthe A, at al. Physical Exercise and Spatial Training: A Longitudinal Study of Effects on Cognition, Growth Factors, and Hippocampal Plasticity. Sci Rep 2018;8(1):4239. [CrossRef] google scholar
  • 17. Ernst A, Frisen J. Adult neurogenesis in humans common and unique traits in mammals. PLoS Biol 2015;13(1):e1002045. [CrossRef] google scholar
  • 18. Liu PZ, Nusslock R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front Neurosci 2018;12:52. [CrossRef] google scholar
  • 19. Tharmaratnam T,Tabobondung T, Tabobondung T, Doherty S. Synergistic effects of brain-derived neurotrophic factor (BDNF) and exercise intensity on memory in the adolescent brain: a commentary. Environ Health Prev Med 2018;23(1):12. [CrossRef] google scholar
  • 20. Jeon YK, Ha CH. The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environ Health Prev Med 2017;22(1):27. [CrossRef] google scholar
  • 21. Baptista P, Andrade JP. Adult Hippocampal Neurogenesis: Regulation and Possible Functional and Clinical Correlates. Front Neuroanat 2018;12:44. [CrossRef] google scholar
  • 22. Chapman SB, Aslan S, Spence JS, Keebler MW, DeFina LF, Didehbani N, et al. Distinct brain and behavioral benefits from cognitive vs. physical training: a randomized trial in aging adults. Front Hum Neurosci 2016;10:338. [CrossRef] google scholar
  • 23. Heath M, Weiler J, Gregory MA, Gill DP, Petrella RJ. A six-month cognitive-motor and aerobic exercise program improves executive function in persons with an objective cognitive impairment: a pilot investigation using the antisaccade task. J Alzheimers Dis 2016;54(3):923-31.v [CrossRef] google scholar
  • 24. Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 2018;555(7696):377-81. [CrossRef] google scholar
  • 25. Gheorghe A, Qiu W, Galea LAM. Hormonal Regulation of Hippocampal Neurogenesis: Implications for Depression and Exercise. Curr Top Behav Neurosci 2019;43:379-421. [CrossRef] google scholar
  • 26. Davis CL, Cooper S. Fitness, fatness, cognition, behavior, and academic achievement among overweight children: do cross-sectional associations correspond to exercise trial outcomes? Prev Med 2011;52:65-9. [CrossRef] google scholar
  • 27. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 2011;108(7):3017-22. [CrossRef] google scholar
  • 28. Ehninger D, Kempermann G. Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cereb Cortex 2003;13(8):845-51. [CrossRef] google scholar
  • 29. Nurten A. Alheimer Hastalığı ve Nörofizyolojik Değişiklikler. In: Ünal M, editor. Alzheimer’a Dair Her Şey. İstanbul: İstanbul Tıp Kitapevi; 2018;77-87. google scholar
  • 30. Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 2001;58(3):498- 504. [CrossRef] google scholar
  • 31. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 2012;64(2):238-58. [CrossRef] google scholar
  • 32. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 2013;153(6):1219-27. [CrossRef] google scholar
  • 33. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, et al. An in vivo correlate of exercise induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A 2007;104(13):5638-43. [CrossRef] google scholar
  • 34. Kempermann G. New neurons for ‘survival of the fittest’. Nat Rev Neurosci 2012;13(10):727-36. [CrossRef] google scholar
  • 35. Xu X, Fu Z, Le W. Exercise and Parkinson’s disease. Int Rev Neurobiol 2019;147:45-74. [CrossRef] google scholar
  • 36. Meeusen R. Exercise, nutrition and the brain. Sports Med 2014;44:47-56. [CrossRef] google scholar
  • 37. Voss MW, Heo S, Prakash RS, Erickson KI, Alves H, Chaddock L, et al. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention. Hum Brain Mapp 2013;34(11):2972-85. [CrossRef] google scholar
  • 38. Cardoso A, Marrana F, Andrade JP. Caloric restriction in young rats disturbs hippocampal neurogenesis and spatial learning. Neurobiol Learn Mem 2016;133:214-24. [CrossRef] google scholar
  • 39. Leuner B, Glasper ER, Gould E. Sexual experience promotes adult neurogenesis in the hippocampus despite an initial elevation in stress hormones. PLoS One 2010;5(7):e11597. [CrossRef] google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Ünal, M. (2021). EXERCISE AND NEUROGENESIS. Journal of Istanbul Faculty of Medicine, 84(2), 264-268. https://doi.org/10.26650/IUITFD.2020.0066


AMA

Ünal M. EXERCISE AND NEUROGENESIS. Journal of Istanbul Faculty of Medicine. 2021;84(2):264-268. https://doi.org/10.26650/IUITFD.2020.0066


ABNT

Ünal, M. EXERCISE AND NEUROGENESIS. Journal of Istanbul Faculty of Medicine, [Publisher Location], v. 84, n. 2, p. 264-268, 2021.


Chicago: Author-Date Style

Ünal, Mehmet,. 2021. “EXERCISE AND NEUROGENESIS.” Journal of Istanbul Faculty of Medicine 84, no. 2: 264-268. https://doi.org/10.26650/IUITFD.2020.0066


Chicago: Humanities Style

Ünal, Mehmet,. EXERCISE AND NEUROGENESIS.” Journal of Istanbul Faculty of Medicine 84, no. 2 (May. 2024): 264-268. https://doi.org/10.26650/IUITFD.2020.0066


Harvard: Australian Style

Ünal, M 2021, 'EXERCISE AND NEUROGENESIS', Journal of Istanbul Faculty of Medicine, vol. 84, no. 2, pp. 264-268, viewed 17 May. 2024, https://doi.org/10.26650/IUITFD.2020.0066


Harvard: Author-Date Style

Ünal, M. (2021) ‘EXERCISE AND NEUROGENESIS’, Journal of Istanbul Faculty of Medicine, 84(2), pp. 264-268. https://doi.org/10.26650/IUITFD.2020.0066 (17 May. 2024).


MLA

Ünal, Mehmet,. EXERCISE AND NEUROGENESIS.” Journal of Istanbul Faculty of Medicine, vol. 84, no. 2, 2021, pp. 264-268. [Database Container], https://doi.org/10.26650/IUITFD.2020.0066


Vancouver

Ünal M. EXERCISE AND NEUROGENESIS. Journal of Istanbul Faculty of Medicine [Internet]. 17 May. 2024 [cited 17 May. 2024];84(2):264-268. Available from: https://doi.org/10.26650/IUITFD.2020.0066 doi: 10.26650/IUITFD.2020.0066


ISNAD

Ünal, Mehmet. EXERCISE AND NEUROGENESIS”. Journal of Istanbul Faculty of Medicine 84/2 (May. 2024): 264-268. https://doi.org/10.26650/IUITFD.2020.0066



TIMELINE


Submitted25.05.2020
Accepted05.11.2020
Published Online17.03.2021

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.