Review


DOI :https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36   IUP :https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36    Full Text (PDF)

MOLECULAR TRACES AND EVIDENCE OF EVOLUTION

Selen GüçlüGülşah AlbayrakAsuman DeveciAbdullah Ekmekçi

Evolution is being investigated with the aid of today’s technological advances. Evolutionary biology researches directly or indirectly may affect today and tomorrow. When evolution is mentioned, even at first Darwin’s Evolutionary Theory and phylogenetic approaches that depend on organisms’ morphological features come to mind, there are also hypotheses that see mutation and genetic drift as the genetic diversity resource in populations. Proofs that support evolution vary from rocks and bones to molecules. As living organisms’ genome sequences and proteins that are involved in common mechanisms are discovered through DNA sequence analysis, it has been answered to these questions in molecular level like what is the origin of the living organisms, which living organism is relative with another, which organisms share the common ancestor. The hypotheses like origin of the life and evolutionary history are not being able to be explained exactly as the hypothesis testing applications can not be performed in the laboratory. In this review, various theories and hypotheses related with molecular evolution are being discussed with proofs that have been obtained by tracking evolution’s molecular marks in the light of mechanisms that affect gene and genome evolution.


DOI :https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36   IUP :https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36    Full Text (PDF)

EVRİMİN MOLEKÜLER İZLERİ VE KANITLARI

Selen GüçlüGülşah AlbayrakAsuman DeveciAbdullah Ekmekçi

Evrim, günümüzde teknolojinin sağladığı olanaklarla merakla araştırılmaya devam edilen bir konudur. Evrimsel biyolojik araştırmalar, doğrudan ya da dolaylı olarak bugünü ve yarını etkileyebilmektedir. Evrim denildiğinde akla öncelikle gelen türlerin kökeniyle ilgili Darwin’in evrim teorisi ve organizmaların morfolojisini dikkate alan geleneksel filogenetik yaklaşımlar olsa da, mutasyonu ve genetik kaymayı, popülasyonlardaki genetik çeşitliliğin kaynağı olarak gören hipotezler de bulunmaktadır. Evrimi destekleyen kanıtlar kayalardan kemiklere, kemiklerden moleküllere kadar çeşitlilik göstermektedir. DNA dizileme analizleriyle canlıların genom dizilimi ve canlılardaki ortak mekanizmalarda etkili proteinler belirlendikçe canlılığın biyolojik kökeninin nereden geldiği, hangi canlının birbiri ile akraba olduğu, hangi organizmaların ortak atayı paylaştığı sorularına moleküler boyutta yanıt oluşturulabilmektedir. Yaşamın kökeni ve evrimin tarihsel olaylarıyla ilgili hipotezlerin bir kısmı, hipotezi test edecek uygulamaların laboratuvarlarda henüz yapılamaması nedeniyle tam olarak açıklanamamaktadır. Bu derlemede, gen ve genom evrimine etki eden mekanizmalar ışığında moleküler evrim ile ilgili çeşitli teori, hipotezler ve evrimin moleküler izleri takip edilerek elde edilen kanıtlar tartışılmaktadır.


PDF View

References

  • 1. Angers B, Castonguay E, Massicotte R. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Molecular Ecology 2010;19(7):1283-1295. google scholar
  • 2. Bada JL. How life began on Earth: a status report, Earth Planet Science Leters 2004;226:1-15. google scholar
  • 3. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes and Development, 2009;23(7):781-783. google scholar
  • 4. Blöchl E, Keller M, Wächtershäuser G, Stetter ΚΟ. Reactions depending on iron sulphide and linking geochemistry with biochemistry. Proceedings of the National Academy of Science USA 1992;89:8117- 8120. google scholar
  • 5. Butlin RK, Tregenza T. Levels of genetic polymorphism: marker loci versus quantitative traits. Philosophical Transactions of the Royal Society B 1998;353(1366):187-198. google scholar
  • 6. Carroll SB, Grenier J, Weatherbee SD. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. 2nd ed., Oxford: Blackwell Publishing, 2005. google scholar
  • 7. Cech TR, Zaug AJ, Grabowski PJ. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 1981;27:487-496. google scholar
  • 8. Corliss JB, Baross JΑ, Hoffman SE. An hypothesis concerning the relationship between submarine hot springs and the origin of life on earth. Oceanologica Acta 1981;4:59-69. google scholar
  • 9. Crick FHC. The origin of the genetic code. Journal of Molecular Biology 1968; 38: 367–379. google scholar
  • 10. Dobzhansky T. Nothing in Biology Makes Sense except in the Light of Evolution. National Association of Biology Teachers 1973;35(3):125- 129. google scholar
  • 11. Forterr P. The two ages of the RNA world, and the transition to the DNA world:a story of viruses and cells. Biochimie 2005; 87(9):793-803. google scholar
  • 12. Gilbert, W. The RNA world. Nature 1986; 319: 618. google scholar
  • 13. Guerrier TC, Altman S. Catalytic activity of an RNA molecule prepared by transcription in vitro. Science 1984;223:285-286. google scholar
  • 14. Hastings PJ, Lupski JR. Rosenberg SM, Ira G. Mechanisms of change in gene copy number. Nature Reviews Genetics 2009;10(8):551-564 google scholar
  • 15. Hazen RM. The Emergence of Chemical Complexity: An Introduction, In: Zaikowski L (ed). Chemical Evolution across Space and Time. ACS Symposium Series; American Chemical Society. Washington, DC, 2008. google scholar
  • 16. Heng HHQ. The genome-centric concept: resynthesis of evolutionary theory. BioEssays, DOI: 10.1002/bies.200800182, March 30, 2009. google scholar
  • 17. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. DNA sequences from the quagga, an extinct member of the horse family. Nature 1984;312:282–284. google scholar
  • 18. Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S. Ancient DNA. Nature Reviews Genetics 2001;2:353-359. google scholar
  • 19. Hurles M. Gene duplication: the genomic trade in spare parts. PLoS Biol DOI:10.1371/journal.pbio. 0020206, July 13, 2004. google scholar
  • 20.Johannes F, et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet, DOI:10.1371/journal.pgen.1000530, June 26, 2009. google scholar
  • 21. Kimura M. Evolutionary rate at the molecular level. Nature 1968;217:624-626. google scholar
  • 22. Kimura M, Ohta T. On some principles governing molecular evolution. Proceedings of the National Academy of Sciences of the USA 1974;71(7): 2848- 285. google scholar
  • 23. Kimura M. The neutral theory of molecular evolution: A review of recent evidence. The Japanese Journal of Genetics 1991;66:367-386 google scholar
  • 24. Knight RD, Landweber LF. Rhyme or reason: RNAarginine interactions and the genetic code. Chemistry & Biology 1998;5(9):215-220. google scholar
  • 25. Knoll AH, Carroll SB. Early animal evolution: emerging views from comparative biology and geology. Science 1999;284(5423):2129-37. google scholar
  • 26. Koonin EV. Comparative genomics, minimal genesets and the last universal common ancestor. Nature Reviews Microbiology 2003;1:127-136. google scholar
  • 27. Kurland C.G.(2000), Something for everyone:Horizontal gene transfer in evolution. EMBO Rep. 2000 August 15;1(2):92–95. google scholar
  • 28. Lazcano A, Miller SL. The origin and early evolution review of life: Prebiotic chemistry, the Pre-RNA world, and time. Cell 1996;85:793-798. google scholar
  • 29. Marc J, et al. Genomically recoded organisms expand biological functions. Science, DOI: 10.1126/science.124145918, October 18, 2013. google scholar
  • 30. Martin W, Russel MJ. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philosophical Transactions of the Royal Society B: Biological 2003;358(1429):59-83. google scholar
  • 31. McClintock B. The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 1941;26(2):234–282. google scholar
  • 32. Miller SL. Production of amino acids under possible primitive earth conditions. Journal of American Chemical Society 1955;77(9):2351-2361. google scholar
  • 33. Morjan C, Rieseberg L. How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles. Molecular Ecology 2004; 13(6):1341-1356. google scholar
  • 34. Ohno S. Sex Chromosomes and Sex Linked Gene. Springer Verlag, Berlin, 1967. google scholar
  • 35. Ohta T. Role of gene duplication in evolution. Genome 1989;31(1):304-310. google scholar
  • 36. Orengo CA, Thornton JM. Protein families and their evolution-a structural perspective. Annual Review of Biochemistry 2005;74(1):867-900. google scholar
  • 37. Orgel LE. RNA catalysis and the origin of life. Journal of Theorotical Biology 1986;123(2):127-49. google scholar
  • 38. Orgel L. Prebiotic chemistry and the origin of the RNA world. Critical Review of Biochemistry and Molecular Biology 2004;39(2):99-123. google scholar
  • 39. Oró J, Kamat SS. Amino-acid synthesis from hydrogen cyanide under possible primitive earth conditions. Nature 1961;190:442-443. google scholar
  • 40. Penny D, Poole A. The nature of the last universal common ancestor. Current opinion in genetics & development 1999;9(6):672-677. google scholar
  • 41. Pirrotta V, Steller H, Bozzetti MP. Multiple upstream regulatory elements control the expression of the Drosophila white gene. The EMBO Journal 1985;4(13A):3501-3508. google scholar
  • 42. Poole A, Penny D, Sjöberg BM. Confounded cytosine! Tinkering and the evolution of DNA, Nature Review of Molecular Cell Biology 2001;2:147-151. google scholar
  • 43.River MC, Lake JA. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 2004;431(9):152-155. google scholar
  • 44.Russell MJ, Hall AJ. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal of the Geological Society of London,1957; 154: 377-402. google scholar
  • 45. Saladino R, Crestini C, Costanzo G, DiMauro, E. From Simple Amphiphiles to Protocell Models. In: Walde P (ed). Topics in Current Chemistry, Springer. Berlin/Heidelberg, 2005;29. google scholar
  • 46. Sawyer SA, Parsch J, Zhang Z, Hartl DL. Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proc Natl Acad Sci USA 2007;104(16):6504-6510 google scholar
  • 47. Schrey AW, et al. The role of epigenetics in evolution: the extended synthesis, Genetics Research International, DOI:10.1155/2012/286164, December 15, 2012. google scholar
  • 48. Sella G, Ardell DH. The coevolution of genes and genetic codes: Crick's frozen accident revisited. Journal of Molecular Evolution 2006;63(3):297-313. google scholar
  • 49. Sievers D, Von Kiedrowski G. Self-replication of complementary nucleotide-based oligomers, Nature 1994;369:221-224. google scholar
  • 50. Simon FW, et al. A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus. Science 2011; 332(6034):1163-1166. google scholar
  • 51. Stribling R, Miller SL. Energy yields for hydrogen cyanide and formaldehyde synthesis: the HCN and amino acid concentrations in the primitive ocean. Origins of Life and Evolution of Biospheres 1987;17:261-273. google scholar
  • 52. Wetterbom A, Sevov M, Cavelier L, Bergström TF. Comparative genomic analysis of human and chimpanzee indicates a key role for indels in primate evolution. Journal of Molecular Evolution 2006;63(5):682-690. google scholar
  • 53. Vladar HP. Amino acid fermentation at the origin of the genetic code. Biology Direct 2012;7:6. google scholar
  • 54. Zuckerkandl E, Pauling L. 1965 In: Bryson V, Vogel HJ (ed). Evolving Gene and Proteins. Academic Press, New York, 1965;97-166. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Güçlü, S., Albayrak, G., Deveci, A., & Ekmekçi, A. (2014). MOLECULAR TRACES AND EVIDENCE OF EVOLUTION. Journal of Istanbul Faculty of Medicine, 77(2), 31-36. https://doi.org/https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36


AMA

Güçlü S, Albayrak G, Deveci A, Ekmekçi A. MOLECULAR TRACES AND EVIDENCE OF EVOLUTION. Journal of Istanbul Faculty of Medicine. 2014;77(2):31-36. https://doi.org/https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36


ABNT

Güçlü, S.; Albayrak, G.; Deveci, A.; Ekmekçi, A. MOLECULAR TRACES AND EVIDENCE OF EVOLUTION. Journal of Istanbul Faculty of Medicine, [Publisher Location], v. 77, n. 2, p. 31-36, 2014.


Chicago: Author-Date Style

Güçlü, Selen, and Gülşah Albayrak and Asuman Deveci and Abdullah Ekmekçi. 2014. “MOLECULAR TRACES AND EVIDENCE OF EVOLUTION.” Journal of Istanbul Faculty of Medicine 77, no. 2: 31-36. https://doi.org/https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36


Chicago: Humanities Style

Güçlü, Selen, and Gülşah Albayrak and Asuman Deveci and Abdullah Ekmekçi. MOLECULAR TRACES AND EVIDENCE OF EVOLUTION.” Journal of Istanbul Faculty of Medicine 77, no. 2 (Aug. 2025): 31-36. https://doi.org/https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36


Harvard: Australian Style

Güçlü, S & Albayrak, G & Deveci, A & Ekmekçi, A 2014, 'MOLECULAR TRACES AND EVIDENCE OF EVOLUTION', Journal of Istanbul Faculty of Medicine, vol. 77, no. 2, pp. 31-36, viewed 24 Aug. 2025, https://doi.org/https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36


Harvard: Author-Date Style

Güçlü, S. and Albayrak, G. and Deveci, A. and Ekmekçi, A. (2014) ‘MOLECULAR TRACES AND EVIDENCE OF EVOLUTION’, Journal of Istanbul Faculty of Medicine, 77(2), pp. 31-36. https://doi.org/https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36 (24 Aug. 2025).


MLA

Güçlü, Selen, and Gülşah Albayrak and Asuman Deveci and Abdullah Ekmekçi. MOLECULAR TRACES AND EVIDENCE OF EVOLUTION.” Journal of Istanbul Faculty of Medicine, vol. 77, no. 2, 2014, pp. 31-36. [Database Container], https://doi.org/https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36


Vancouver

Güçlü S, Albayrak G, Deveci A, Ekmekçi A. MOLECULAR TRACES AND EVIDENCE OF EVOLUTION. Journal of Istanbul Faculty of Medicine [Internet]. 24 Aug. 2025 [cited 24 Aug. 2025];77(2):31-36. Available from: https://doi.org/https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36 doi: https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36


ISNAD

Güçlü, Selen - Albayrak, Gülşah - Deveci, Asuman - Ekmekçi, Abdullah. MOLECULAR TRACES AND EVIDENCE OF EVOLUTION”. Journal of Istanbul Faculty of Medicine 77/2 (Aug. 2025): 31-36. https://doi.org/https://doi.org/10.18017/iuitfd.13056441.2015.77/2.31-36



Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.