Review


DOI :10.26650/IUITFD.2020.0058   IUP :10.26650/IUITFD.2020.0058    Full Text (PDF)

CURRENT METHODS IN ISOLATION OF HEMATOPOIETIC STEM CELL

Nilgün OkşakDürdane Serap Kuruca

Hematopoietic stem cells are the rare cells in various hematopoietic organs which are found in small numbers (1-100/ml). When these cells are transferred to patients suffering from diabetes, cancer, heart diseases, muscle and joint problems, they will help the patients’ bodies with the regeneration of impaired tissues. While the most important problem in the transplantation of autologous stem cells is malignant cell contamination in cancer patients, in allogeneic transplantation, it is immune reactions and tissue rejections. Therefore, clearing of the transplant material from tumour cells and immune cells may support the long-term healthy regeneration of the tissue to which they are transplanted. Although various techniques have been developed for the purification of these cells in terms of clinical use over many years, there is still no sufficiently effective method. In recent years, researchers have shown an increased interest in microfluidic systems because they are easy to use, cheap and highly efficient. In these types of systems designed with various microcapillaries, micropillars and micropores; purification is carried out according to the properties of cells such as size, deformability, cell adhesion and electrical charges. This review aims to explain traditional and emerging hematopoietic stem cell isolation methods and their advantages and disadvantages.

DOI :10.26650/IUITFD.2020.0058   IUP :10.26650/IUITFD.2020.0058    Full Text (PDF)

HEMATOPOETİK KÖK HÜCRE İZOLASYONUNDA GÜNCEL YÖNTEMLER

Nilgün OkşakDürdane Serap Kuruca

Hematopoetik kök hücreler (HKH) başta kemik iliği (Kİ) olmak üzere çeşitli hematopoetik organlarda, kordon kanında (KK), aferez materyalinde ve periferik kanda çok az sayıda bulun[1]maktadır (1-100 hücre/ml). Bu hücrelerin saflaştırılarak diyabet, kanser, kalp, nörolojik hastalıklar, kas ve eklem sorunları olan hastalara nakledilmesi fonksiyonu bozulan doku ve organların rejenerasyonunu sağlayacaktır. Kanser hastalarında otolog kök hücrelerin transplantasyonunda en önemli sorun malign hücre kontaminasyonudur. Allojenik transplantasyonda ise hücreler farklı kişilerden alındığı için, alıcıda meydana gelen immün reaksiyonlar ve doku reddi bu alanın en önemli sorunudur. Dolayısıyla transplant materyalinin tümör hücrelerinden ve immün hücrelerden temizlenmesi nakledildiği dokuda uzun süreli ve sağlıklı rejenerasyonu sağlayacaktır. Klinik kullanım için bu hücrelerin saflaştırılmasında uzun yıllar çeşitli teknikler geliştirilmesine rağmen halen uygun ve etkili bir yöntem bulunmamaktadır. Son yıllarda geliştirilen mikroakışkan sistemler (mikroçipler) kolay, ucuz ve yüksek verimli olması nedeni ile araştırılmaktadır. Çeşitli mikrokapiller, mikrosütunlar, mikroporlarla dizayn edilen bu sistemlerde hücrelerin boyut, mekanik esneklik, deformabilite, hücre adezyonu ve elektrik yükleri gibi özelliklerine dayalı saflaştırma yapılmaktadır. Başlangıçta çok az sayıda bulunan dolaşımdaki tümör hücrelerini (DTH) yakalamak amacıyla geliştirilen bu sistemler şimdi çeşitli hücrelerin, mikroveziküllerin ve eksozomların saflaştırılması ve tanısı için kullanılmaktadır. Bu derleme, geleneksel ve gelişmekte olan hematopoetik kök hücre izolasyon yöntemleri ile bu yöntemlerin avantajları ve dezavantajlarını açıklamayı amaçlamaktadır.


PDF View

References

  • 1. Gou Y, Jia Y, Wang P, Sun C. Progress of ınertial microfluidics in principle and application. Sensors (Basel) 2018;18(6):1762. [CrossRef] google scholar
  • 2. Tomlinson MJ, Tomlinson S, Yang, XB, Kirkham K. Cell separation: Terminology and practical considerations. Journal of Tissue Engineering 2012; 3(1):1-14. google scholar
  • 3. Metin S, Dere H. Hematopoetik kök hücre nakli ve güncel beslenme yaklaşımları. Turkiye Klinikleri J Pediatr 2017;26(1):22-31. [CrossRef] google scholar
  • 4. Zhu B, Murthy SK. Stem cell separation technologies. Curr Opin Chem Eng. 2014;2(1):3-7. [CrossRef] google scholar
  • 5. Rahmanian N, Bozorgmehr M, Torabi M, Akbari A, Zarnani AH. Cell separation: Potentials and pitfalls. Prep Biochem Biotechnol 2017;47(1):38-51. [CrossRef] google scholar
  • 6. Kenry, Leed WC, Loh KP, Li CT. When stem cells meet graphene: Opportunities and challenges inregenerative medicine. Biomaterials 2018;155:236-50. [CrossRef] google scholar
  • 7. Erdem-Kuruca S, Celik DD, Demirel G, Ozerkan D. Characterization and isolation of very small embryonic-like (VSEL) stem cells obtained from human peripheral blood. Stem Cell Rev Rep 2019;15(5):730-42. [CrossRef] google scholar
  • 8. Chhabra P, Brayman KL. Stem cell therapy to cure type 1 diabetes: from hype to hope. Stem Cells Transl Med 2013;2(5):328-36. [CrossRef] google scholar
  • 9. Mazini L, Rochette L, Amine M, Malka, G. Regenerative capacity of adipose derived stem cells (adscs), comparison with mesenchymal stem cells (mscs). Int J Mol Sci 2019;20(10):2523. [CrossRef] google scholar
  • 10. Zhang CL, Huang T, Wu BL, He WX, Liu D. Stem cells in cancer therapy: opportunities and challenges. Oncotarget 2017;8(43):75756-66. [CrossRef] google scholar
  • 11. Almendros I, Carreras A, Montserrat JM., Gozal D, Navajas D, Farre R. Potential role of adult stem cells in obstructive sleep apnea. Front Neurol 2012;3:112. [CrossRef] google scholar
  • 12. Yo M, Sakaue-Sawano A, Noda S, Miyawaki A, Miyoshi H. Fucci-guided purification of hematopoietic stem cells with high repopulating activity. Biochem Biophys Res Commun 2015;30;457(1):7-11. [CrossRef] google scholar
  • 13. Ng AP, Alexander WS. Haematopoietic stem cells: past, present and future. Cell Death Discovery 2017;3:17002. [CrossRef] google scholar
  • 14. Sargın D. Kök hücre ve kök hücre tedavisi. XXX. Ulusal Hematoloji Kongresi Mezuniyet Sonrası Eğitim Kursu; 10-14 Ekim 2003; İstanbul, 2003. p. 49-61. google scholar
  • 15. Diogo MM, Silva CL, Cabral JMS. Chapter 7: Separation technologies for stem cell bioprocessing. In: Mohamed Al-Rubeai, Mariam Naciri, editors. Stem Cells and Cell Therapy. Dordrecht: Springer; 2014. p. 157-181. [CrossRef] google scholar
  • 16. Hoeve MA, De Sousa, PA, Willoughby NA. Chapter: 5. Challenges of scale-up of cell separation and purification techniques: 5.3.3.1. Centrifugal Counterflow Elutriation (CCE). In: Connon Che J, editor. Bioprocessing for Cell-Based Therapies. UK: John Wiley & Sons; 2017. p. 138-140. google scholar
  • 17. Bachere E, Chagot D, Henrı Grızel H. Cell Separation by centrifugal elutriation. American Fisheries Society Special Publication 1988;18:281-5. google scholar
  • 18. Higuchi A, Lizuka A, Gomei Y, Miyazaki T, Sakurai M, Matsuoka Y, et al. Separation of CD34+ cells from human peripheral blood through polyurethane foaming membranes. J Biomed Mater Res A 2006;78(3):491-9. [CrossRef] google scholar
  • 19. Muller-Steinhardt M, Hennig H, Kirchner H, Schlenke P. Prestorage WBC filtration of RBC units with soft-shell filters: Filtration performance and impact on RBCs during storage for 42 days. Transfusion 2002;42:153-8. [CrossRef] google scholar
  • 20. Fatanat T, Li K, Veres T, Tabrizian M. Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based micro fluidic device. Biomaterials 2013;34:5588-93. [CrossRef] google scholar
  • 21. Yousuff CM, Wei-Ho ET, Ismail Hussain K, Hamid NHB. Microfluidic platform for cell isolation and manipulation based on cell properties. Micromachines 2017; 8 (15): 1-26. [CrossRef] google scholar
  • 22. Actor JK, Elsevier’s Integrated Review Immunology and Microbiology. Second Edition. Elsevier Inc.; 2012. p. 71-9. [CrossRef] google scholar
  • 23. Prince H, Arens L, Kleinman S. CD4 and CD8 Subsets Defined by Dual-color Cytofluorometry which Distinguish Symptomatic from Asymptomatic Blood Donors Seropositive for Human Immunodeficiency Virus. Diagn. Clin. Immunol 1986;5(4):188-93. google scholar
  • 24. Johnson KW, Dooner M, Quesenberry PJ. Fluorescence activated cell sorting: A window on the stem cell. Curr Pharm Biotechnol 2007;8(3):133-9. [CrossRef] google scholar
  • 25. Will B, Steidl U. Multi-parameter fluorescence-activated cell sorting and analysis of stem and progenitor cells in myeloid malignancies. Best Pract Res Clin Haematol 2010;23(3):391-401. [CrossRef] google scholar
  • 26. Curtis MG, Walker B, Denny TN. Flow cytometric methods for prenatal and neonatal diagnosis. J Immuno Methods 2011;363(2):198-209. [CrossRef] google scholar
  • 27. Garner DL, Evans KM, Seidel GE. Sex-sorting sperm using flow cytometry/cell sorting. Methods Mol Biol. 2013;927:279-95. [CrossRef] google scholar
  • 28. Mahmoud TMS. Selection of non-apoptotic, DNA intact spermatozoa. Groningen: University of Groningen. 2009. google scholar
  • 29. Rodrigues GMC, Fernandes TG, Rodrigues CAV, Diogo MM, Cabral JMS. Chapter 9- enrichment and separation technologies for stem cell-based therapies; 9.2.1 Adult stem cells.ln: Cabral JMS, Clâudia Lobato da Silva, Chase LG, Diogo MM, editors. Stem Cell Manufacturing. Elsevier; 2016. p. 199-213. [CrossRef] google scholar
  • 30. Fernandes TG, Diogo MM, Cabral JMS. Stem cell separation. Stem Cell Bioprocessing For Cellular Therapy, Diagnostics and Drug Development. Woodhead Publishing Series in Biomedicine; 2013. p. 115-41. [CrossRef] google scholar
  • 31. Firer MA. Efficient elution of functional proteins in affinity chromatography. J Biochem Biophys Methods 2001;49:433-42. [CrossRef] google scholar
  • 32. Hage DS, Cazes, J, editors. Handbook of Affinity Chromatography. 2nd Edition. Boca Raton: CRC Pres; 2005. p. 856. [CrossRef] google scholar
  • 33. Hage DS, Clarke W. Affinity chromatography: In: Cazes J, editör. Encyclopedia of Chromatography. New York: Marcel Dekker; 2004. p. 40-3. google scholar
  • 34. Sousa AF, Andrade PZ, Pirzgalska RM, Galhoz TM, Azevedo AM, Silva CL, et al. A novel method for human hematopoietic stem/progenitor cell isolation from umbilical cord blood based on immunoaffinity aqueous two-phase partitioning. Biotechnol Lett 2011;33(12):2373-7. [CrossRef] google scholar
  • 35. Yılmaz M. Design and fabrication of low cost passive microfluidic systems for particle separation. Istanbul: Istanbul Technical University, 2012. google scholar
  • 36. Kim GY, Han JI, Park JK. Inertial microfluidics-based cell sorting. BioChip Journal 2018;12(4):257-67. [CrossRef] google scholar
  • 37. Roda B, Lanzoni G, Alviano F, Zattoni A, Costa R, Di Carlo A, et al. A novel stem cell tag-less sorting method. Stem Cell Rev 2009;5(4):420-7. [CrossRef] google scholar
  • 38. Roda B, Reschiglian P, Alviano F, Lanzoni G, Bagnara GP, Ricci F, et al. Gravitational field-flow fractionation of human hemopoietic stem cells. J Chromatogr A 2009;1216(52):9081-7. [CrossRef] google scholar
  • 39. Talary MS, Mills KI, Hoy T, Burnett AK, Pethig R. Dielectrophoretic separation and enrichment of CD34+ cell subpopulation from bone marrow and peripheral blood stem cells. Medical and Biological Engineering and Computing 1995; 33 (2), p. 235-7. [CrossRef] google scholar
  • 40. Voldman, J. Electrical forces for microscale cell manipulation. Annu Rev Biomed EnG 2006;8:425-54. [CrossRef] google scholar
  • 41. Gwak H, Kim J, Kashefi-Kheyrabadi L, Kwak B, Kyung-A Hyun, Hyo-Il Jung. Progress in circulating tumor cell research using microfluidic devices. micromachines 2018;9(7):353. [CrossRef] google scholar
  • 42. Lecault V, Vaninsberghe M, Sekulovic S, Knapp DJ, Wohrer S, Bowden W, et al. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods 2011;8(7):581-6. [CrossRef] google scholar
  • 43. Perutelli P, Catellani S, Scarso L, Cornaglia-Ferraris P, Dini G. Processing of human cord blood by three different procedures for red blood cell depletion and mononuclear cell recovery. Vox Sanguinis 1999;76:237-40. [CrossRef] google scholar
  • 44. Rocha V, Gluckman E. Eurocord and European Blood and Marrow Transplant Grup. Clinical use of umbilical cord blood hematopoietic stem cells. Biol Blood Marrow Transplant 2006;12(1S):34-41. [CrossRef] google scholar
  • 45. Trewhitt KG. Bone marrow aspiration and biopsy: Collection and ınterpretation. Oncol Nurs Forum 2001;28(9):1409-17. google scholar
  • 46. Franklin WA, Shpall EJ, Archer P, Johnston CS, Garza-Williams S, Hami L, et al. Immunocytochemical detection of breast cancer cells in marrow and peripheral blood of patients undergoing high dose chemotherapy with autologous stem cell support, Breast Cancer Res Treat 1996;41(1):1-13. [CrossRef] google scholar
  • 47. Sharp JG, Kessinger MA, Vaughan WP, Mann SL, Crouse DA, Dicke KA, et al. Detection and clinical significance of minimal tumor cell contamination of peripheral stem cell harverts. Int Cell Cloning 1992;10(1):92-4. [CrossRef] google scholar
  • 48. Moss TJ. Sensitive detection of metastatic tumor cells in bone marrow. Prog Clin Biol Res. 1994;389:567-77. google scholar
  • 49. Nieto Y, Shpall EJ. CD34+ blood stem cell transplantation. In: Reiffers J, Goldman J, Armitage JO (eds). Blood Stem Cell Transplantation. London: Martin Dunitz Ltd.; 1998. p. 187-201. google scholar
  • 50. Ertuğrul-Örüç N, Yenicesu İ. Bölüm-II: Transfüzyon Merkezi. Ulusal Kan ve Kan Bileşenleri Hazırlama, Kullanım ve Kalite Güvencesi Rehberi, Türkiye 2008 Ulusal IPA (Katılım Öncesi Mali Yardım) Programı: 2016. URL: https://www.kanver.org/ Upload/Dosya/ulusal_kan_rehberi. Erişim Tarihi: 07.06.2019. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Okşak, N., & Kuruca, D. (2021). CURRENT METHODS IN ISOLATION OF HEMATOPOIETIC STEM CELL. Journal of Istanbul Faculty of Medicine, 84(3), 415-424. https://doi.org/10.26650/IUITFD.2020.0058


AMA

Okşak N, Kuruca D. CURRENT METHODS IN ISOLATION OF HEMATOPOIETIC STEM CELL. Journal of Istanbul Faculty of Medicine. 2021;84(3):415-424. https://doi.org/10.26650/IUITFD.2020.0058


ABNT

Okşak, N.; Kuruca, D. CURRENT METHODS IN ISOLATION OF HEMATOPOIETIC STEM CELL. Journal of Istanbul Faculty of Medicine, [Publisher Location], v. 84, n. 3, p. 415-424, 2021.


Chicago: Author-Date Style

Okşak, Nilgün, and Dürdane Serap Kuruca. 2021. “CURRENT METHODS IN ISOLATION OF HEMATOPOIETIC STEM CELL.” Journal of Istanbul Faculty of Medicine 84, no. 3: 415-424. https://doi.org/10.26650/IUITFD.2020.0058


Chicago: Humanities Style

Okşak, Nilgün, and Dürdane Serap Kuruca. CURRENT METHODS IN ISOLATION OF HEMATOPOIETIC STEM CELL.” Journal of Istanbul Faculty of Medicine 84, no. 3 (Nov. 2024): 415-424. https://doi.org/10.26650/IUITFD.2020.0058


Harvard: Australian Style

Okşak, N & Kuruca, D 2021, 'CURRENT METHODS IN ISOLATION OF HEMATOPOIETIC STEM CELL', Journal of Istanbul Faculty of Medicine, vol. 84, no. 3, pp. 415-424, viewed 23 Nov. 2024, https://doi.org/10.26650/IUITFD.2020.0058


Harvard: Author-Date Style

Okşak, N. and Kuruca, D. (2021) ‘CURRENT METHODS IN ISOLATION OF HEMATOPOIETIC STEM CELL’, Journal of Istanbul Faculty of Medicine, 84(3), pp. 415-424. https://doi.org/10.26650/IUITFD.2020.0058 (23 Nov. 2024).


MLA

Okşak, Nilgün, and Dürdane Serap Kuruca. CURRENT METHODS IN ISOLATION OF HEMATOPOIETIC STEM CELL.” Journal of Istanbul Faculty of Medicine, vol. 84, no. 3, 2021, pp. 415-424. [Database Container], https://doi.org/10.26650/IUITFD.2020.0058


Vancouver

Okşak N, Kuruca D. CURRENT METHODS IN ISOLATION OF HEMATOPOIETIC STEM CELL. Journal of Istanbul Faculty of Medicine [Internet]. 23 Nov. 2024 [cited 23 Nov. 2024];84(3):415-424. Available from: https://doi.org/10.26650/IUITFD.2020.0058 doi: 10.26650/IUITFD.2020.0058


ISNAD

Okşak, Nilgün - Kuruca, Dürdane Serap. CURRENT METHODS IN ISOLATION OF HEMATOPOIETIC STEM CELL”. Journal of Istanbul Faculty of Medicine 84/3 (Nov. 2024): 415-424. https://doi.org/10.26650/IUITFD.2020.0058



TIMELINE


Submitted12.05.2020
Accepted07.09.2020
Published Online09.03.2021

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.