Review Article


DOI :10.26650/IUITFD.2019.0072   IUP :10.26650/IUITFD.2019.0072    Full Text (PDF)

MAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS

Emre HarıUlaş AyHüden NeşeAli BayramTamer Demiralp

Functional connectivity analyses based on functional Magnetic Resonance Imaging (fMRI) data have gained an important place in brain research. There are alternative functional connectivity estimation approaches, which, despite the similarity of the overall results, produce significant differences in their details. For effective use of the functional connectivity metrics, the strengths and weaknesses of various approaches need to be well understood. While the seed-based functional connectivity analyses based on the selection of those anatomic regions of interest derived from the literature represent a stronger approach for hypothesis testing, the independent component analysis (ICA) as a data-driven approach provides an unbiased evaluation possibility for exploratory data analysis. Another difference between the methods is related to group analyses in terms of registering individual brains to a common template or implementing anatomical definitions on the spatial coordinates of individual brains. While the latter increases the success in studies on pathologies that lead to large-scale brain deformations, the former may be advantageous for deriving normative results from large data sets. Lastly, volume vs surface-based approaches for the definition of cortical anatomy in the individual space also significantly affect the results of functional connectivity analyses. In this review, functional connectivity estimation methods will be compared by evaluating them using these three perspectives. 
DOI :10.26650/IUITFD.2019.0072   IUP :10.26650/IUITFD.2019.0072    Full Text (PDF)

MANYETİK REZONANS GÖRÜNTÜLEME TEMELLİ FONKSİYONEL BAĞLANTISALLIK YÖNTEMLERİ

Emre HarıUlaş AyHüden NeşeAli BayramTamer Demiralp

Fonksiyonel Manyetik Rezonans Görüntüleme (fMRG) verilerine dayanan fonksiyonel bağlantısallık analizleri beyin araştırmalarında önemli bir yer kazanmıştır. Özellikle dinlenim durumunda beynin büyük ölçekli nörokognitif ağlarının ortaya koyulabilmesi ve bunların hastalıklardaki değişimlerinin gösterilebilmesi bu araştırma yöntemine olan ilgiyi artırmıştır. Öte yandan, genel hatlarıyla birbirine benzer olsa da detayda farklılaşan sonuçlar üreten alternatif fonksiyonel bağlantısallık hesaplama yaklaşımları mevcuttur. Fonksiyonel nörogörüntülemenin etkin kullanımı için bu farklı yaklaşımların, ele alınan problem ve incelenen popülasyona bağlı olarak beynin büyük ölçekli ağlarının yapısal örüntülerini ve işlevlerini ortaya koymaktaki güçlü ve zayıf yönlerinin anlaşılması gereklidir. Bu çerçevede, hipotez testi için literatürden kaynaklı anatomik ilgi alanlarının seçimine dayanan tohum temelli fonksiyonel bağlantısallık analizi daha güçlü bir yaklaşımken, keşifçi araştırmalarda tümüyle veri güdümlü olan bağımsız bileşen analizi (BBA) tüm beyin verisini tarafsız değerlendirme olanağı sunmaktadır. Yöntemler arasındaki diğer önemli ayrım, grup analizleri için incelenen beyinlerin anatomik olarak ortak bir şablon üzerinde çakıştırılması veya anatomik tanımlamaların her beynin kendi mekânsal koordinatlarında gerçekleştirilmesidir. Beyinde büyük ölçekli deformasyonlara yol açan patolojilerde ikinci yolun seçimi başarımı büyük ölçüde arttırırken, büyük ölçekli sağlıklı katılımcı veri kümelerinden normatif sonuçlar çıkartmak için ilk yaklaşım daha avantajlı olabilir. Son olarak, bireysel koordinatlarda kortekse ilişkin anatomik tanımlamaların gerçekleştirilmesinde hacim veya yüzeye dayalı yaklaşımlar da fonksiyonel bağlantısallık çalışmalarının sonuçlarını önemli ölçüde etkilemektedir. Bu derlemede, fonksiyonel bağlantısallık hesaplama yaklaşımları bu üç perspektiften ele alınarak karşılaştırılacaktır. 

PDF View

References

  • 1. Bijsterbosch J, Smith SM, Beckmann C. Introduction to Resting State FMRI Functional Connectivity. Oxford University Press, 2017. google scholar
  • 2. Beckmann CF, Deluca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond, B, Biol Sci 2005;360(1457):1001-13. google scholar
  • 3. Leopold DA, Maier A. Ongoing physiological processes in the cerebral cortex. Neuroimage 2012;62(4):2190-200. google scholar
  • 4. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 2003;100(1):253-8. google scholar
  • 5. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8(9):700-11. google scholar
  • 6. Raichle ME, Macleod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA 2001;98(2):676-82. google scholar
  • 7. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34(4):53741. google scholar
  • 8. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 2006;103(37):13848-53. google scholar
  • 9. Schmidt SA, Akrofi K, Carpenter-thompson JR, Husain FT. Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss. PLoS ONE 2013;8(10):e76488. google scholar
  • 10. Fransson P, Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage 2008;42(3):1178-84. google scholar
  • 11. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci 2004;7(2):189-95. google scholar
  • 12. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002;3(3):201-15. google scholar
  • 13. Menon V, Adleman NE, White CD, Glover GH, Reiss AL. Error-related brain activation during a Go/NoGo response inhibition task. Hum Brain Mapp 2001;12(3):131-43. google scholar
  • 14. Andrews-hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain’s default network. Neuron 2010;65(4):550-62.15. Toga AW, Clark KA, Thompson PM, Shattuck DW, Van horn JD. Mapping the human connectome. Neurosurgery 2012;71(1):1-5. google scholar
  • 16. Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist 2014;20(2):150-9. google scholar
  • 17. Androulakis XM, Krebs KA, Jenkins C, et al. Central Executive and Default Mode Network Intranet work Functional Connectivity Patterns in Chronic Migraine. J Neurol Disord 2018;6(5):393. google scholar
  • 18. Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27(9):2349-56. google scholar
  • 19. Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE. A dual-networks architecture of top-down control. Trends Cogn Sci (Regul Ed) 2008;12(3):99-105. google scholar
  • 20. Takamura T, Hanakawa T. Clinical utility of resting-state functional connectivity magnetic resonance imaging for mood and cognitive disorders. J Neural Transm (Vienna) 2017;124(7):821-39. google scholar
  • 21. Greicius MD, Srivastava G, Reiss AL, Menon V. Defaultmode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 2004;101(13):4637-42. google scholar
  • 22. Sheline YI, Morris JC, Snyder AZ, et al. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aß42. J Neurosci 2010;30(50):17035-40. google scholar
  • 23. Sheline YI, Raichle ME, Snyder AZ, et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry 2010;67(6):584-7. google scholar
  • 24. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Erratum: Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 2017;23(2):264. google scholar
  • 25. Smitha KA, Akhil raja K, Arun KM, Rajesh PG, Thomas B, Kapilamoorthy TR, et al. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J 2017;30(4):305-17. google scholar
  • 26. Poldrack RA. Region of interest analysis for fMRI. Soc Cogn Affect Neurosci 2007;2(1):67-70. google scholar
  • 27. Whitfield-gabrieli S, Nieto-castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2012;2(3):125-41. [CrossRef] 28. Bajic D, Craig MM, Mongerson CRL, Borsook D, Becerra L. Identifying Rodent Resting-State Brain Networks with Independent Component Analysis. Front Neurosci 2017;11:685. google scholar
  • 29. Ribeiro de paula D, Ziegler E, Abeyasinghe PM, Das TK, Cavaliere C, Aiello M, et al. A method for independent component graph analysis of resting-state fMRI. Brain Behav 2017;7(3):e00626. google scholar
  • 30. Calhoun VD, Adali T, Stevens MC, Kiehl KA, Pekar JJ. Semi-blind ICA of fMRI: A method for utilizing hypothesisderived time courses in a spatial ICA analysis. Neuroimage 2005;25(2):527-38. google scholar
  • 31. Griffanti L, Douaud G, Bijsterbosch J, Evangelisti S, AlfaroAlmagro F, Glasser MF, et al. Hand classification of fMRI ICA noise components. Neuroimage 2017;154:188-205. google scholar
  • 32. Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD. Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp. 2011;32(12):207595. google scholar
  • 33. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 2001;14(3):140-51. google scholar
  • 34. Woolrich MW, Jbabdi S, Patenaude B, et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage 2009;45(1 Suppl):S173-86. google scholar
  • 35. Ferrarini L, Palm WM, Olofsen H, van der Landen R, van Buchem MA, Reiber JH, et al. Ventricular shape biomarkers for Alzheimer’s disease in clinical MR images. Magn Reson Med 2008;59(2):260-7. google scholar
  • 36. Laird AR, Robinson JL, Mcmillan KM, et al. Comparison of the disparity between Talairach and MNI coordinates in functional neuroimaging data: validation of the Lancaster transform. Neuroimage 2010;51(2):677-83. google scholar
  • 37. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143-56. google scholar
  • 38. Aribisala BS, He J, Blamire AM. Comparative study of standard space and real space analysis of quantitative MR brain data. J Magn Reson Imaging 2011;33(6):1503-9. google scholar
  • 39. Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53(1):1-15. google scholar
  • 40. Pauli WM, Nili AN, Tyszka JM. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci Data 2018;5:180063. google scholar
  • 41. Iglesias JE, Insausti R, Lerma-usabiaga G, et al. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 2018;183:314-26. google scholar
  • 42. Huang H, Lu J, Wu J, Ding Z, Chen S, Duan L, et al. Tumor Tissue Detection using Blood-Oxygen-Level-Dependent Functional MRI based on Independent Component Analysis. Sci Rep 2018;8(1):1223. google scholar
  • 43. Fischl B, Van der kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14(1):11-22. 44. Fischl B. FreeSurfer. Neuroimage 2012;62(2):774-81. google scholar
  • 45. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31(3):96880. google scholar
  • 46. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 2011;106(3):1125-65. google scholar
  • 47. Colclough GL, Smith SM, Nichols TE, Winkler AM, Sotiropoulos SN, Glasser MF, et al. The heritability of multi-modal connectivity in human brain activity. Elife 2017;6:e20178. google scholar
  • 48. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 1999;9(2):195-207. google scholar
  • 49. Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 2013;34(10):1866-72. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Harı, E., Ay, U., Neşe, H., Bayram, A., & Demiralp, T. (2020). MAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS. Journal of Istanbul Faculty of Medicine, 83(1), 71-80. https://doi.org/10.26650/IUITFD.2019.0072


AMA

Harı E, Ay U, Neşe H, Bayram A, Demiralp T. MAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS. Journal of Istanbul Faculty of Medicine. 2020;83(1):71-80. https://doi.org/10.26650/IUITFD.2019.0072


ABNT

Harı, E.; Ay, U.; Neşe, H.; Bayram, A.; Demiralp, T. MAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS. Journal of Istanbul Faculty of Medicine, [Publisher Location], v. 83, n. 1, p. 71-80, 2020.


Chicago: Author-Date Style

Harı, Emre, and Ulaş Ay and Hüden Neşe and Ali Bayram and Tamer Demiralp. 2020. “MAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS.” Journal of Istanbul Faculty of Medicine 83, no. 1: 71-80. https://doi.org/10.26650/IUITFD.2019.0072


Chicago: Humanities Style

Harı, Emre, and Ulaş Ay and Hüden Neşe and Ali Bayram and Tamer Demiralp. MAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS.” Journal of Istanbul Faculty of Medicine 83, no. 1 (Oct. 2024): 71-80. https://doi.org/10.26650/IUITFD.2019.0072


Harvard: Australian Style

Harı, E & Ay, U & Neşe, H & Bayram, A & Demiralp, T 2020, 'MAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS', Journal of Istanbul Faculty of Medicine, vol. 83, no. 1, pp. 71-80, viewed 24 Oct. 2024, https://doi.org/10.26650/IUITFD.2019.0072


Harvard: Author-Date Style

Harı, E. and Ay, U. and Neşe, H. and Bayram, A. and Demiralp, T. (2020) ‘MAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS’, Journal of Istanbul Faculty of Medicine, 83(1), pp. 71-80. https://doi.org/10.26650/IUITFD.2019.0072 (24 Oct. 2024).


MLA

Harı, Emre, and Ulaş Ay and Hüden Neşe and Ali Bayram and Tamer Demiralp. MAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS.” Journal of Istanbul Faculty of Medicine, vol. 83, no. 1, 2020, pp. 71-80. [Database Container], https://doi.org/10.26650/IUITFD.2019.0072


Vancouver

Harı E, Ay U, Neşe H, Bayram A, Demiralp T. MAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS. Journal of Istanbul Faculty of Medicine [Internet]. 24 Oct. 2024 [cited 24 Oct. 2024];83(1):71-80. Available from: https://doi.org/10.26650/IUITFD.2019.0072 doi: 10.26650/IUITFD.2019.0072


ISNAD

Harı, Emre - Ay, Ulaş - Neşe, Hüden - Bayram, Ali - Demiralp, Tamer. MAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS”. Journal of Istanbul Faculty of Medicine 83/1 (Oct. 2024): 71-80. https://doi.org/10.26650/IUITFD.2019.0072



TIMELINE


Submitted05.09.2019
Accepted21.10.2019
Published Online13.01.2020

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.