Current Approaches in Animal Models Used in Epilepsy Research
Emir Çağrı Kiraz, Arzu Temizyürek, Mehmet Kaya, Nadir Arıcan, Nurcan OrhanAnimal models have been used for many years and are still used to provide guidance for understanding the pathophysiologies and potential mechanisms underlying both epilepsy and anti-epileptic drugs (AEDs) used for the treatment of epilepsy, including drug-resistant epilepsy. They are indispensable in silico, in vitro, and in vivo models for research on the use and side effects of AEDs. Despite success in modifying existing models or developing new models, animal models appear to be unable to fully mimic human seizure patterns in terms of the high degree of heterogeneity in patients, the complexity of resistance to AEDs, multiple seizures, and comorbidities. Therefore, a targeted treatment approach is suggested for cohorts that are difficult to treat, especially in patients with drug-resistant epilepsy. However, the most important problem of experimental epilepsy research is to reflect the findings of preclinical studies in the clinical environment. In this context, criteria such as construct, face, and predictive validity should be taken into consideration when assessing the clinical relevance and usefulness of animal models to be developed in epilepsy research. In conclusion, the aforementioned complex mechanisms still exist in the field of epilepsy research and are open questions for the epilepsy world.
Referanslar
- 1. Löscher W. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochem Res. 2017;42(7):1873-88. google scholar
- 2. Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359-68. google scholar
- 3. Albertoni P. Untersuchungen über die Wirkung einiger Arzneimittel auf die Erregbarkeit des Grosshirns nebst Beitragen zur Therapie der Epilepsie. Naunyn-Schmiedeberg’s Arch Pharmacol 1882;15:249-288. google scholar
- 4. Merritt HH, Putnam TJ. A New Series of Anticonvulsant Drugs Tested by Experiments on Animals. Arc-hives of Neurology & Psychiatry. 1938;39(5):1003-15. google scholar
- 5. Seligmann E, Jungeblut CW. Neutralization of SK Murine Poliomyelitis Virus and of Theiler’s Virus of Mouse Encephalomyelitis by Human Sera. Am J Public Health Nations Health. 1943;33(11):1326-32. google scholar
- 6. Smith M, Wilcox KS, White HS. Discovery of antiepileptic drugs. Neurotherapeutics. 2007;4(1):12-7. google scholar
- 7. Toman JE, Swinyard EA, Goodman LS. Properties of maximal seizures, and their alteration by anticonvu-lant drugs and other agents. J Neurophysiol. 1946;9:231-9. google scholar
- 8. Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol. 1969;25(3):295-330. google scholar
- 9. Ben-Ari Y, Lagowska J. [Epileptogenic action of intra-amygdaloid injection of kainic acid]. C R Acad Hebd Seances Acad Sci D. 1978;287(8):813-6. google scholar
- 10. Vergnes M, Marescaux C, Micheletti G, Reis J, Depaulis A, Rumbach L, et al. Spontaneous paroxysmal elect-roclinical patterns in rat: a model of generalized non-convulsive epilepsy. Neurosci Lett. 1982;33(1):97-101. google scholar
- 11. Remler MP, Marcussen WH. Bicuculline methiodide in the blood-brain barrier-epileptogen model of epi-lepsy. Epilepsia. 1985;26(1):69-73. google scholar
- 12. Löscher W, Jackel R, Czuczwar SJ. Is amygdala kindling in rats a model for drug-resistant partial epilepsy? Exp Neurol. 1986;93(1):211-26. google scholar
- 13. Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science. 1998;282(5396):2028-33. google scholar
- 14. Barton ME, Klein BD, Wolf HH, White HS. Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res. 2001;47(3):217-27. google scholar
- 15. Berghmans S, Hunt J, Roach A, Goldsmith P. Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res. 2007;75(1):18-28. google scholar
- 16. Sun L, Gilligan J, Staber C, Schutte RJ, Nguyen V, O’Dowd DK, et al. A knock-in model of human epi-lepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure. J Neurosci. 2012;32(41):14145-55. google scholar
- 17. Johan Arief MF, Choo BKM, Yap JL, Kumari Y, Shaikh MF. A Systematic Review on Non-mammalian Models in Epilepsy Research. Front Pharmacol. 2018;9:655. google scholar
- 18. Ramakrishnan L, Dalhoff Z, Fettig SL, Eggerichs MR, Nelson BE, Shrestha B, et al. Riluzole attenuates the effects of chemoconvulsants acting on glutamatergic and GABAergic neurotransmission in the planarian Dugesia tigrina. Eur J Pharmacol. 2013;718(1-3):493-501. google scholar
- 19. Abbasi B, Goldenholz DM. Machine learning applications in epilepsy. Epilepsia. 2019;60(10):2037-47. google scholar
- 20. Grone BP, Baraban SC. Animal models in epilepsy research: legacies and new directions. Nat Neurosci. 2015;18(3):339-43. google scholar
- 21. Kundap UP, Paudel YN, Shaikh MF. Animal Models of Metabolic Epilepsy and Epilepsy Associated Metabolic Dysfunction: A Systematic Review. Pharmaceuticals (Basel). 2020;13(6). google scholar
- 22. Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr. Protoc. Neurosci. 2012;58:9.37.1-9.37.12. google scholar
- 23. De Deyn PP, D’Hooge R, Marescau B, Pei YQ. Chemical models of epilepsy with some reference to their applicability in the development of anticonvulsants. Epilepsy Res. 1992;12(2):87-110. google scholar
- 24. Ates M. Animal Models of Epilepsy. Journal of Experimental and Basic Medical Sciences. 2021;1:113-6. google scholar
- 25. Ohmori I, Ouchida M, Shinohara M, Kobayashi K, Ishida S, Mashimo T. Novel animal model of combined generalized and focal epilepsy. Epilepsia. 2022;63(7):e80-e5. google scholar
- 26. Jambroszyk M, Tipold A, Potschka H. Add-on treatment with verapamil in pharmacoresistant canine epi-lepsy. Epilepsia. 2011;52(2):284-91. google scholar
- 27. Howbert JJ, Patterson EE, Stead SM, Brinkmann B, Vasoli V, Crepeau D, et al. Forecasting seizures in dogs with naturally occurring epilepsy. PLoS One. 2014;9(1):e81920. google scholar
- 28. Gawel K, Langlois M, Martins T, van der Ent W, Tiraboschi E, Jacmin M, et al. Seizing the moment: Zebrafish epilepsy models. Neuroscience & Biobehavioral Reviews. 2020;116:1-20. google scholar
- 29. Wang Y, Wei P, Yan F, Luo Y, Zhao G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis. 2022;13(1):215-31. google scholar
- 30. Cachat J, Stewart A, Utterback E, Hart P, Gaikwad S, Wong K, et al. Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One. 2011;6(3):e17597. google scholar
- 31. Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish. 2013;10(1):70-86. google scholar
- 32. Kolesnikova TO, Demin KA, Costa FV, Zabegalov KN, de Abreu MS, Gerasimova EV, et al. Towards Zebrafish Models of CNS Channelopathies. Int J Mol Sci. 2022;23(22):13979. google scholar
- 33. Kodankandath TV, Theodore D, Samanta D. Generalized Tonic-Clonic Seizure. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.; 2023. google scholar
- 34. Browning RA, Nelson DK. Variation in threshold and pattern of electroshock-induced seizures in rats depending on site of stimulation. Life Sci. 1985;37(23):2205-11. google scholar
- 35. Sakkaki S, Gangarossa G, Lerat B, Françon D, Forichon L, Chemin J, et al. Blockade of T-type calcium channels prevents tonic-clonic seizures in a maximal electroshock seizure model. Neuropharmacology. 2016;101:320-9. google scholar
- 36. Miziak B, Chroscinska-Krawczyk M, Czuczwar SJ. Neurosteroids and Seizure Activity. Front Endocrinol (Lausanne). 2020;11:541802. google scholar
- 37. Jamali H, Heydari A. Effect of dextromethorphan/quinidine on pentylenetetrazole- induced clonic and tonic seizure thresholds in mice. Neurosci Lett. 2020;729:134988. google scholar
- 38. Gonzalez-Trujano ME, Martmez-Gonzalez CL, Flores-Carrillo M, Luna-Nophal SI, Contreras-Murillo G, Magdaleno-Madrigal VM. Behavioral and electroencephalographic evaluation of the anticonvulsive activity of Moringa oleifera leaf non-polar extracts and one metabolite in PTZ-induced seizures. Phyto-medicine. 2018;39:1-9. google scholar
- 39. Ferland RJ. The Repeated Flurothyl Seizure Model in Mice. Bio Protoc. 2017;7(11). google scholar
- 40. McCarthy E, Shakil F, Saint Ange P, Morris Cameron E, Miller J, Pathak S, et al. Developmental decre-ase in parvalbumin-positive neurons precedes increase in flurothyl-induced seizure susceptibility in the Brd2(+/-) mouse model of juvenile myoclonic epilepsy. Epilepsia. 2020;61(5):892-902. google scholar
- 41. Egawa K, Nakakubo S, Kimura S, Goto T, Manabe A, Shiraishi H. Flurothyl-induced seizure paradigm revealed higher seizure susceptibility in middle-aged Angelman syndrome mouse model. Brain Dev. 2021;43(4):515-20. google scholar
- 42. Mosini AC, Calio ML, Foresti ML, Valeriano RPS, Garzon E, Mello LE. Modeling of post-traumatic epilepsy and experimental research aimed at its prevention. Braz J Med Biol Res. 2020;54(2):e10656. google scholar
- 43. Pitkanen A, Immonen RJ, Gröhn OH, Kharatishvili I. From traumatic brain injury to posttraumatic epi-lepsy: what animal models tell us about the process and treatment options. Epilepsia. 2009;50 Suppl 2:21-9. google scholar
- 44. Keith KA, Huang JH. Animal Models of Post-Traumatic Epilepsy. Diagnostics (Basel). 2020; 10(1): 4. google scholar
- 45. Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14(2):128-42. google scholar
- 46. D’Ambrosio R, Perucca E. Epilepsy after head injury. Curr Opin Neurol. 2004;17(6):731-5. google scholar
- 47. Glushakov AV, Glushakova OY, Dore S, Carney PR, Hayes RL. Animal Models of Posttraumatic Seizures and Epilepsy. Methods Mol Biol. 2016;1462:481-519. google scholar
- 48. Lu XM, Browning J, Liao Z, Cao Y, Yang W, Shear DA. Post-Traumatic Epilepsy and Seizure Susceptibi-lity in Rat Models of Penetrating and Closed-Head Brain Injury. J Neurotrauma. 2020;37(2):236-47. google scholar
- 49. Cho SJ, Park E, Telliyan T, Baker A, Reid AY. Zebrafish model of posttraumatic epilepsy. Epilepsia. 2020;61(8):1774-85. google scholar
- 50. Ronne Engström E, Hillered L, Flink R, Kihlström L, Lindquist C, Nie JX, et al. Extracellular amino acid levels measured with intracerebral microdialysis in the model of posttraumatic epilepsy induced by intracortical iron injection. Epilepsy Res. 2001;43(2):135-44. google scholar
- 51. Hazra R, Ray K, Guha D. Inhibitory role of Acorus calamus in ferric chloride-induced epileptogenesis in rat. Hum Exp Toxicol. 2007;26(12):947-53. google scholar
- 52. Li Q, Li QQ, Jia JN, Sun QY, Zhou HH, Jin WL, et al. Baicalein Exerts Neuroprotective Effects in FeC-l(3)-Induced Posttraumatic Epileptic Seizures via Suppressing Ferroptosis. Front Pharmacol. 2019;10:638. google scholar
- 53. Das J, Singh R, Sharma D. Antiepileptic effect of fisetin in iron-induced experimental model of traumatic epilepsy in rats in the light of electrophysiological, biochemical, and behavioral observations. Nutr Neuros-ci. 2017;20(4):255-64. google scholar
- 54. Kandratavicius L, Balista PA, Lopes-Aguiar C, Ruggiero RN, Umeoka EH, Garcia-Cairasco N, et al. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat. 2014;10:1693-705. google scholar
- 55. Cela E, Sjöström PJ. A Step-by-Step Protocol for Optogenetic Kindling. Front Neural Circuits. 2020;14:3. google scholar
- 56. Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience. 2013;16(10):1499-508. google scholar
- 57. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Targeted optogenetic stimu-lation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat Protoc. 2010;5(2):247-54. google scholar
- 58. Banach M, Rudkowska M, Sumara A, Borowicz-Reutt K. Amiodarone Enhances Anticonvulsive Effect of Oxcarbazepine and Pregabalin in the Mouse Maximal Electroshock Model. Int J Mol Sci. 2021;22(3). google scholar
- 59. Hanif S, Musick ST. Reflex Epilepsy. Aging Dis. 2021;12(4):1010-20. google scholar
- 60. Venzi M, Di Giovanni G, Crunelli V. A critical evaluation of the gamma-hydroxybutyrate (GHB) model of absence seizures. CNS Neurosci Ther. 2015;21(2):123-40. google scholar
- 61. Jefferys J, Steinhauser C, Bedner P. Chemically-induced TLE models: Topical application. J Neurosci Methods. 2016;260:53-61. google scholar
- 62. Cleeren E, Premereur E, Casteels C, Goffin K, Janssen P, Van Paesschen W. The effective connectivity of the seizure onset zone and ictal perfusion changes in amygdala kindled rhesus monkeys. Neuroimage Clin. 2016;12:252-61. google scholar
- 63. Levesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2887-99. google scholar
- 64. Kebir H, Carmant L, Fontaine F, Beland K, Bosoi CM, Sanon NT, et al. Humanized mouse model of Rasmussen’s encephalitis supports the immune-mediated hypothesis. J Clin Invest. 2018;128(5):2000-9. google scholar
- 65. Kienzler-Norwood F, Costard L, Sadangi C, Müller P, Neubert V, Bauer S, et al. A novel animal model of acquired human temporal lobe epilepsy based on the simultaneous administration of kainic acid and lorazepam. Epilepsia. 2017;58(2):222-30. google scholar
- 66. Wang Y, Zhou D, Wang B, Li H, Chai H, Zhou Q, et al. A kindling model of pharmacoresistant temporal lobe epilepsy in Sprague-Dawley rats induced by Coriaria lactone and its possible mechanism. Epilepsia. 2003;44(4):475-88. google scholar
- 67. Stewart KA, Wilcox KS, Fujinami RS, White HS. Development of postinfection epilepsy after Theiler’s virus infection of C57BL/6 mice. J Neuropathol Exp Neurol. 2010;69(12):1210-9. google scholar
- 68. DePaula-Silva AB, Hanak TJ, Libbey JE, Fujinami RS. Theiler’s murine encephalomyelitis virus infection of SJL/J and C57BL/6J mice: Models for multiple sclerosis and epilepsy. J Neuroimmunol. 2017;308:30-42. google scholar
- 69. Chen KD, Hall AM, Garcia-Curran MM, Sanchez GA, Daglian J, Luo R, et al. Augmented seizure sus-ceptibility and hippocampal epileptogenesis in a translational mouse model of febrile status epilepticus. Epilepsia. 2021;62(3):647-58. google scholar
- 70. Kelly KM, Miller ER, Lepsveridze E, Kharlamov EA, McHedlishvili Z. Posttraumatic seizures and epi-lepsy in adult rats after controlled cortical impact. Epilepsy Res. 2015;117:104-16. google scholar
- 71. Temizyürek A, Yılmaz CU, Emik S, Akcan U, Atış M, Orhan N, et al. Blood-brain barrier targeted delivery of lacosamide-conjugated gold nanoparticles: Improving outcomes in absence seizures. Epilepsy Res. 2022;184:106939. google scholar
- 72. Roebuck AJ, An L, Marks WN, Sun N, Snutch TP, Howland JG. Cognitive Impairments in Touchscre-en-based Visual Discrimination and Reversal Learning in Genetic Absence Epilepsy Rats from Strasbourg. Neuroscience. 2020;430:105-12. google scholar
- 73. Marescaux C, Vergnes M. Genetic Absence Epilepsy in Rats from Strasbourg (GAERS). Ital J Neurol Sci. 1995;16(1-2):113-8. google scholar
- 74. van Luijtelaar G, van Oijen G. Establishing Drug Effects on Electrocorticographic Activity in a Genetic Absence Epilepsy Model: Advances and Pitfalls. Front Pharmacol. 2020;11:395. google scholar
- 75. Shapiro LA, Wang L, Upadhyaya P, Ribak CE. Seizure-induced Increased Neurogenesis Occurs in the Dentate Gyrus of Aged Sprague-Dawley Rats. Aging Dis. 2011;2(4):286-93. google scholar
- 76. Barker-Haliski M. How do we choose the appropriate animal model for antiseizure therapy development? Expert Opin Drug Discov. 2019;14(10):947-51. google scholar
- 77. Hollist M, Au K, Morgan L, Shetty PA, Rane R, Hollist A, et al. Pediatric Stroke: Overview and Recent Updates. Aging Dis. 2021;12(4):1043-55. google scholar
- 78. Gennaccaro L, Fuchs C, Loi M, Pizzo R, Alvente S, Berteotti C, et al. Age-Related Cognitive and Motor Decline in a Mouse Model of CDKL5 Deficiency Disorder is Associated with Increased Neuronal Senes-cence and Death. Aging Dis. 2021;12(3):764-85. google scholar
- 79. Zhang K, Li Y, Gong H, Liang P, Zhang P. The role of the substantia nigra pars reticulata anterior in am-ygdala-kindled seizures. Brain Res. 2019;1715:84-93. google scholar
- 80. Englot DJ, Morgan VL, Chang C. Impaired vigilance networks in temporal lobe epilepsy: Mechanisms and clinical implications. Epilepsia. 2020;61(2):189-202. google scholar
- 81. Delfino-Pereira P, Bertti-Dutra P, Del Vecchio F, de Oliveira JAC, Medeiros DC, Cestari DM, et al. Beha-vioral and EEGraphic Characterization of the Anticonvulsant Effects of the Predator Odor (TMT) in the Amygdala Rapid Kindling, a Model of Temporal Lobe Epilepsy. Front Neurol. 2020;11:586724. google scholar
- 82. Wu X, Zhou Y, Huang Z, Cai M, Shu Y, Zeng C, et al. The study of microtubule dynamics and stabi-lity at the postsynaptic density in a rat pilocarpine model of temporal lobe epilepsy. Ann Transl Med. 2020;8(14):863. google scholar
- 83. Hong Z, Yang TH, Tang MH, Zhang H, Li HX, Chen L, et al. A novel kindling model of temporal lobe epilepsy in rhesus monkeys induced by Coriaria lactone. Epilepsy Behav. 2013;29(3):457-65. google scholar
- 84. Bröer S, Kaufer C, Haist V, Li L, Gerhauser I, Anjum M, et al. Brain inflammation, neurodegeneration and seizure development following picornavirus infection markedly differ among virus and mouse strains and substrains. Exp Neurol. 2016;279:57-74. google scholar
- 85. Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW. Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol. 2007;35(7):984-99. google scholar
- 86. Desai SA, Rolston JD, McCracken CE, Potter SM, Gross RE. Asynchronous Distributed Multielectrode Microstimulation Reduces Seizures in the Dorsal Tetanus Toxin Model of Temporal Lobe Epilepsy. Brain Stimul. 2016;9(1):86-100. google scholar
- 87. Sedigh-Sarvestani M, Thuku GI, Sunderam S, Parkar A, Weinstein SL, Schiff SJ, et al. Rapid eye move-ment sleep and hippocampal theta oscillations precede seizure onset in the tetanus toxin model of temporal lobe epilepsy. J Neurosci. 2014;34(4):1105-14. google scholar
- 88. Bonnett LJ, Tudur Smith C, Donegan S, Marson AG. Treatment outcome after failure of a first antiepileptic drug. Neurology. 2014;83(6):552-60. google scholar
- 89. Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, et al. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29(10):3276-87. google scholar
- 90. Jiruska P, Finnerty GT, Powell AD, Lofti N, Cmejla R, Jefferys JG. Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy. Brain. 2010;133(Pt 5):1380-90. google scholar
- 91. Andoh M, Ikegaya Y, Koyama R. Microglia modulate the structure and function of the hippocampus after early-life seizures. J Pharmacol Sci. 2020;144(4):212-7. google scholar
- 92. Barry JM, Mahoney JM, Holmes GL. Coordination of hippocampal theta and gamma oscillations relative to spatial active avoidance reflects cognitive outcome after febrile status epilepticus. Behav Neurosci. 2020;134(6):562-76. google scholar
- 93. Scantlebury MH, Gibbs SA, Foadjo B, Lema P, Psarropoulou C, Carmant L. Febrile seizures in the pre-disposed brain: a new model of temporal lobe epilepsy. Ann Neurol. 2005;58(1):41-9. google scholar
- 94. Hunt RF, Scheff SW, Smith BN. Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol. 2009;215(2):243-52. google scholar
- 95. Wagley PK, Williamson J, Skwarzynska D, Kapur J, Burnsed J. Continuous Video Electroencephalogram during Hypoxia-Ischemia in Neonatal Mice. J Vis Exp. 2020;(160):10.3791/61346. google scholar
- 96. Venceslas D, Corinne R. A Mesiotemporal Lobe Epilepsy Mouse Model. Neurochem Res. 2017;42(7):1919-25. google scholar
- 97. Raedt R, Van Dycke A, Van Melkebeke D, De Smedt T, Claeys P, Wyckhuys T, et al. Seizures in the int-rahippocampal kainic acid epilepsy model: characterization using long-term video-EEG monitoring in the rat. Acta Neurol Scand. 2009;119(5):293-303. google scholar
- 98. Upadhya D, Kodali M, Gitai D, Castro OW, Zanirati G, Upadhya R, et al. A Model of Chronic Temporal Lobe Epilepsy Presenting Constantly Rhythmic and Robust Spontaneous Seizures, Co-morbidities and Hippocampal Neuropathology. Aging Dis. 2019;10(5):915-36. google scholar
- 99. Morris G, Rowell R, Cunningham M. Limitations of animal epilepsy research models: Can epileptic human tissue provide translational benefit? Altex. 2021;38(3):451-62. google scholar
- 100. van der Staay FJ. Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy. Brain Res Rev. 2006;52(1):131-59. google scholar
- 101. Kundap UP, Paudel YN, Shaikh MF. Animal Models of Metabolic Epilepsy and Epilepsy Associated Metabolic Dysfunction: A Systematic Review. Pharmaceuticals. 2020;13(6):106. google scholar
- 102. Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I, et al. Nav1.1 localizes to axons of par-valbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci. 2007;27(22):5903-14. google scholar
- 103. Mouri G, Jimenez-Mateos E, Engel T, Dunleavy M, Hatazaki S, Paucard A, et al. Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain Res. 2008;1213:140-51. google scholar
- 104. van Gassen KL, Hessel EV, Ramakers GM, Notenboom RG, Wolterink-Donselaar IG, Brakkee JH, et al. Characterization of febrile seizures and febrile seizure susceptibility in mouse inbred strains. Genes Brain Behav. 2008;7(5):578-86. google scholar
- 105. Lidster K, Jefferys JG, Blümcke I, Crunelli V, Flecknell P, Frenguelli BG, et al. Opportunities for improving animal welfare in rodent models of epilepsy and seizures. J Neurosci Methods. 2016;260:2-25. google scholar
- 106. Chakraborty S, Parayil R, Mishra S, Nongthomba U, Clement JP. Epilepsy Characteristics in Neurodeve-lopmental Disorders: Research from Patient Cohorts and Animal Models Focusing on Autism Spectrum Disorder. Int. J. Mol. Sci. 2022;23(18):10807. google scholar
- 107. Gr0nskov K, Brondum-Nielsen K, Dedic A, Hjalgrim H. A nonsense mutation in FMR1 causing fragile X syndrome. Eur J Hum Genet. 2011;19(4):489-91. google scholar
- 108. Poirier K, Saillour Y, Bahi-Buisson N, Jaglin XH, Fallet-Bianco C, Nabbout R, et al. Mutations in the neuronal B-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet. 2010;19(22):4462-73. google scholar
- 109. Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet. 2010;42(11):1015-20. google scholar
- 110. Flecknell P. Replacement, reduction and refinement. Altex. 2002;19(2):73-8. google scholar
- 111. Benito-Kwiecinski S, Lancaster MA. Brain Organoids: Human Neurodevelopment in a Dish. Cold Spring Harb Perspect Biol. 2020;2(8):a035709. google scholar
- 112. Liou JY, Smith EH, Bateman LM, Bruce SL, McKhann GM, Goodman RR, et al. A model for focal seizure onset, propagation, evolution, and progression. Elife. 2020;9:e50927. google scholar
- 113. Sterlini B, Fruscione F, Baldassari S, Benfenati F, Zara F, Corradi A. Progress of Induced Pluripotent Stem Cell Technologies to Understand Genetic Epilepsy. Int J Mol Sci. 2020;21(2):482. google scholar
- 114. Nieto-Estevez V, Hsieh J. Human Brain Organoid Models of Developmental Epilepsies. Epilepsy Curr. 2020;20(5):282-90. google scholar
- 115. Jeibmann A, Paulus W. Drosophila melanogaster as a model organism of brain diseases. Int J Mol Sci. 2009;10(2):407-40. google scholar
- 116. Panthi S, Chapman PA., Szyszka P, Beck CW. Characterisation and automated quantification of induced seizure-related behaviours in Xenopus laevis tadpoles. Journal of neurochemistry. 2023;00:1-11. google scholar
- 117. Rawls SM, Thomas T, Adeola M, Patil T, Raymondi N, Poles A, et al. Topiramate antagonizes NMDA- and AMPA-induced seizure-like activity in planarians. Pharmacol Biochem Behav. 2009;93(4):363-7. google scholar
- 118. Lytton WW. Computer modelling of epilepsy. Nat Rev Neurosci. 2008;9(8):626-37. google scholar
- 119. Simkin D, Kiskinis E. Modeling Pediatric Epilepsy Through iPSC-Based Technologies. Epilepsy Curr. 2018;18(4):240-5. google scholar
- 120. Samarasinghe RA, Miranda OA, Buth JE, Mitchell S, Ferando I, Watanabe M, et al. Identification of neural oscillations and epileptiform changes in human brain organoids. Nat Neurosci. 2021;24(10):1488-500. google scholar
- 121. Passaro AP, Stice SL. Electrophysiological Analysis of Brain Organoids: Current Approaches and Advan cements. Front Neurosci. 2021;14:622137. google scholar
- 122. Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ, et al. Engineering of human brain organoids with a functional vascular-like system. Nat Methods. 2019;16(11):1169-75. google scholar
- 123. Niriayo YL, Mamo A, Kassa TD, Asgedom SW, Atey TM, Gidey K, et al. Treatment outcome and associ-ated factors among patients with epilepsy. Sci Rep. 2018;8(1):17354. google scholar
- 124. Malmgren K, Edelvik A. Long-term outcomes of surgical treatment for epilepsy in adults with regard to seizures, antiepileptic drug treatment and employment. Seizure. 2017;44:217-24. google scholar
- 125. Holt AB, Netoff TI. Computational modeling of epilepsy for an experimental neurologist. Exp Neurol. 2013;244:75-86. google scholar
- 126. Ahn S, Jun SB, Lee HW, Lee S. Computational modeling of epileptiform activities in medial temporal lobe epilepsy combined with in vitro experiments. J Comput Neurosci. 2016;41(2):207-23. google scholar