Neuronal Culture Methods to Study Neuronal Function and Disease
Melis Şen, Neşe Ayşit, Sadık Bay, Erdem TüzünDamage to the nervous system often triggers irreversible degenerative process. Trauma to the central nervous system in particular causes severe loss of function. The most important reason for this is that neurons do not divide. The inability to replace the deceased and the disruption of axonal connections regeneration is not restored by regeneration. Therefore, there are still many incurables develop treatment strategies for neurological disease or nervous system trauma. Many researchers aiming to understand neurodegenerative and neurodegenerative processes are currently working on these diseases for which there is no definitive cure. Primary in vitro cultures of neurons have been widely used in recent years to improve our understanding of the functioning of the nervous system. Primary neuronal cells are particularly difficult to purify and culture because neurons do not undergo cell division and are surrounded by large numbers of glia cells to minimize both time and cost, immortalized secondary cell lines derived from neuronal tumors have been tried. They have the advantage of providing unlimited cell numbers and minimizing variability between cultures, as well as being relatively easy to grow in cell culture. The major disadvantage of these cell lines is that they have many important physiological differences with the cell type from which they are derived and are not very amenable to manipulation. Often such cell lines are induced to exhibit a more neuronal phenotype by changing culture conditions, adding factors, etc. In this section, the main characteristics and common uses of neuronal cultures will be discussed.
Referanslar
- 1. Kanaan NM, Pigino GF, Brady ST, Lazarov O, Binder LI, Morfini GA. Axonal degeneration in Alzhei-mer’s disease: When signaling abnormalities meet the axonal transport system. Expreimental Neurology. 2014;(312):44-53. google scholar
- 2. Conforti L, Gilley J, Coleman MP. Wallerian degeneration: An emerging axon death pathway linking injury and disease. Nat Publ Gr. 2014;15:13-5. google scholar
- 3. Burn DJ, Jaros E. Multiple system atrophy: Cellular and molecular pathology. J Clin Pathol - Mol Pathol. 2001;54(6):419-26. google scholar
- 4. Lopes da Silva F. EEG and MEG: relevance to neuroscience. Neuron. 2013;80(5):1112-28. google scholar
- 5. Ramanan VK, Saykin AJ. Pathways to neurodegeneration: Mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am J Neurodegener Dis. 2013;2(3):145-75. google scholar
- 6. Vargas ME, Barres BA. Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci. 2007;30:153-79. google scholar
- 7. Salvadores N, Geronimo-Olvera C, Court FA. Axonal degeneration in AD: The contribution of ap and tau. Front Aging Neurosci. 2020;12:1-16. google scholar
- 8. Wang JT, Medress ZA, Barres BA. Axon degeneration: Molecular mechanisms of a self-destruction pathway. J Cell Biol. 2012;196(1):7-18. google scholar
- 9. Akram R, Anwar H, Javed MS, Rasul A, Imran A, Malik SA, Raza C, Khan IU, Sajid F, Iman T, Sun T, Han HS, Hussain G. Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets. Biomedicines. 2022;10(12):3186. google scholar
- 10. Davies A. Neurotrophins: Neurotrophic modulation of neurite growth. Curr Biol. 2000;10:R198--200. google scholar
- 11. Coleman M. Axon degeneration mechanisms: Commonality amid diversity. Nat Rev Neurosci. 2005;6(11):889-98. google scholar
- 12. Goll DE, Thompson VF, Li H, Wei WEI, Cong J. The Calpain System. Physiol Rev.2023;83(3):731-801. google scholar
- 13. Schwarz T. Mitochondrial Trafficking in Neurons. Cold Spring Harb Perspect Biol. 2013;5(6):a011304. google scholar
- 14. Maor-nof M, Romi E, Shalom HS, Leshkowitz D, Lang R, Axonal degeneration is regulated by a transcrip-tional program that coordinates expression of pro- and anti-degenerative factors article axonal degeneration ıs regulated by a transcriptional program that coordinates expression of pro- and anti-degenerative. Neuron. 2016;92(5):991-1006. google scholar
- 15. Millecamps S, Julien JP. Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci. 2013;14(3):161-76. google scholar
- 16. Koch MW, Metz LM, Agrawal SM, Yong VW. Environmental factors and their regulation of immunity in multiple sclerosis. J Neurol Sci. 2013;324(1):10-6. google scholar
- 17. LaMonte BH, Wallace KE, Holloway BA, Shelly SS, Ascano J, Tokito M, et al. Disruption of dynein/ dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron. 2002;34(5):715-27. google scholar
- 18. Dengler R, Bufler J. Amyotrophic lateral sclerosis and related disorders. Herdegen T, Delgado-Garcia J, editors. Brain Damage and Repair. Springer, Dordrecht; 2004.p.575-588. google scholar
- 19. Warita H, Itoyama Y, Abe K. Selective impairment of fast anterograde axonal transport in the peripheral nerves of asymptomatic transgenic mice with a G93Amutant SOD1 gene. 1999;120-31. google scholar
- 20. Harvey RJ, Skelton-Robinson M, Rossor MN. The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry. 2003;74(9):1206-9. google scholar
- 21. Bell KF, Claudio Cuello A. Altered synaptic function in Alzheimer’s disease. Eur J Pharmacol. 2006;545(1):11-21. google scholar
- 22. Krüttgen A, Schneider I, Weis J. The dark side of the NGF family: Neurotrophins in neoplasias. Brain Pathol. 2006;16(4):304—10. google scholar
- 23. Miknyoczki SJM, Lang DL, Huang LH, Szanto AJPKL, Dionne CAD, Ruggeri BAR. Neurotrophins and trk receptors in human pancreatic ductal adenocarcinoma : Expression patterns and effects on in vitro invasive behavior. International Journal of Cancer. 1999;81(3):417-27. google scholar
- 24. Turney SG, Ahmed M, Chandrasekar I, Wysolmerski RB, Goeckeler ZM, Rioux RM, Whitesides GM, Bridgman PC. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance. Mol Biol Cell. 2016;1;27(3):500-17. google scholar
- 25. Saxena S, Caroni P. Mechanisms of axon degeneration: From development to disease. Prog Neurobiol. 2007;83(3):174-91. google scholar
- 26. Neukomm LJ, Freeman MR. Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol. 2014;24(9):515-23. google scholar
- 27. Luo L, O’Leary DDM. Axon retraction and degeneration in development and disease. Annu Rev Neurosci. 2005;28:127-56. google scholar
- 28. Cusack CL, Swahari V, Henley WH, Ramsey JM, Deshmukh M. during apoptosis and axon-specific pruning. Nat Commun. 2013;1-11. google scholar
- 29. Yang J, Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, et al. Prevention of apoptosis by Bcl-2 : Release of cytochrome c from mitochondria blocked. Science. 1997;275(5303):1129-32. google scholar
- 30. Finn JT, Weil M, Archer F, Siman R, Srinivasan A, Raff MC. Evidence that wallerian degeneration arid localized axon degeneration induced by local neurotrophin deprivation do not involve caspases. J Neurosci. 2000;20(4):1333-41. google scholar
- 31. Putcha G V., Moulder KL, Golden JP, Bouillet P, Adams JA, Strasser A, et al. Induction of BIM, a proapop-totic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron. 2001;29(3):615-28. google scholar
- 32. Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 2000;15;14(16):2060-71. google scholar
- 33. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Fra-uwirth K, Chen Y, Wei M, Eng VM, Adelman DM, Simon MC, Ma A, Golden JA, Evan G, Korsmeyer SJ, MacGregor GR, Thompson CB. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell. 2000;6(6):1389-99. google scholar
- 34. Sokolowski JD, Gamage KK, Heffron DS, LeBlanc AC, Deppmann CD, Mandell JW. Caspase-mediated cleavage of actin and tubulin is a common feature and sensitive marker of axonal degeneration in neural development and injury. Acta Neuropathol Commun. 2014;2(1):1-14. google scholar
- 35. Thornberry NA, Rano TA, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997;272(29):17907-11. google scholar
- 36. Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;11;147(4):742-58. google scholar
- 37. Amit M, Na’ara S, Gil Z. Mechanisms of cancer dissemination along nerves. Nat Rev Cancer. 2016;16(6):399-408. google scholar
- 38. Fukuda Y, Li Y, Segal RA. A mechanistic understanding of axon degeneration in chemotherapy-induced peripheral neuropathy. FrontNeurosci. 2017;11:1-12. google scholar
- 39. Saatman KE, Creed J, Raghupathi R. Calpain as a Therapeutic Target in Traumatic Brain Injury. Neurothe-rapeutics. 2010;7(1):31-42. google scholar
- 40. Whitmore AV, Lindsten T, Raff MC, Thompson CB. The proapoptotic proteins Bax and Bak are not invol-ved in Wallerian degeneration. Cell Death Differ. 2003;10(2):260-1. google scholar
- 41. Narciso MS, Hokoc JN, Maria A, Martinez B. Calpain inhibitor 2 prevents axonal degeneration of opossum optic nerve fibers. J. Neurosci Res. 2004;77(3):410-9. google scholar
- 42. Nasser TIN, Spencer GE. Neurite Outgrowth. In: Reference Module in Biomedical Sciences. Elsevier. 2017. google scholar
- 43. Sleigh JN, Rossor AM, Fellows AD, Tosolini AP, Schiavo G. Axonal transport and neurological disease. Nat Rev Neurol. 2019;15(12):691-703. google scholar
- 44. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum S, Hudspeth AJ, Mack S, et al. Principles of neural science. Vol. 4. McGraw-hill New York; 2000. google scholar
- 45. Sleigh J. Axonal Transport: The delivery system keeping nerve cells alive. Front Young Minds. 2020;8:12. google scholar
- 46. Muralidharan H, Baas PW. Axonal Transport and the Neuronal Cytoskeleton. In eLS, John Wiley & Sons, Ltd (Ed.). 2020 Muralidharan H, Baas PW. Axonal Transport and the Neuronal Cytoskeleton. In eLS, John Wiley & Sons, Ltd (Ed.). 2020. google scholar
- 47. Reck-Peterson S, Redwine W, Vale R, Carter A. The cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell Biol. 2018;19(6):382-98. google scholar
- 48. Zhang K, Foster HE, Rondelet A, Lacey SE, Bahi-Buisson N, Bird AW, Carter AP. Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell. 2017;15;169(7):1303-1314.e18. google scholar
- 49. DeSantis M, Cianfrocco M, Htet Z, Tran TP, Reck-Peterson S, Leschziner A. Lis1 has two opposing modes of regulating cytoplasmic dynein. Cell. 2017;170:1197-1208. google scholar
- 50. Hirokawa N, Tanaka Y. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Exp Cell Res. 2015;334(1):16-25. google scholar
- 51. Maday S, Twelvetrees AE, Moughamian AJ, Holzbaur ELF. Axonal transport: Cargo-specific mechanisms of motility and regulation. Neuron. 2014;84(2):292-309. google scholar
- 52. Olenick M, Holzbaur E. Dynein activators and adaptors at a glance. J Cell Sci. 2019;132(6). google scholar
- 53. Berman T, Bayati A. What are neurodegenerative diseases and how do they affect the brain? Front Young Minds. 2018;6. google scholar
- 54. Guo T, Chen L, Tran K, Ghelich P, Guo YS, Nolta N, et al. Extracellular single-unit recordings from perip-heral nerve axons in vitro by a novel multichannel microelectrode array. Sens Actuators B Chem. 2020;315. google scholar
- 55. Caravagna C. What is multiple sclerosis? Front Young Minds. 2019;7. google scholar
- 56. Guo W, Dittlau K, Van Den Bosch L. Axonal transport defects and neurodegeneration: Molecular mecha-nisms and therapeutic implications. Semin Cell Dev Biol. 2019;99:133-150. google scholar
- 57. Şen M, Akbayir E, Mercan Ö, Arsoy E, Gencer M, Yilmaz V, et al. Cytokine-chemokine and cognitive profile of multiple sclerosis patients with predominant optic nerve and spinal cord involvement. J Spinal Cord Med. 2019;44:1-7. google scholar
- 58. Lubetzki C, Stankoff B. Demyelination in multiple sclerosis. Handb Clin Neurol. 2014;122:89-99. google scholar
- 59. Zhang Y, Yoshimi Y, Funatsu O, Hayashi R, Komagawa S, Saito S, et al. The mechanism of neurite outgrowth induction by novel synthetic retinobenzoic acids. bioRxiv. 2021;03.01.429320. google scholar
- 60. Karaaslan Z, Sanli E, Kahraman Ö, Yilmaz V, Akbayir E, Koral G, et al. Cerebrospinal fluid level of neuro-filament light chain is associated with increased disease activity in neuro-Behçet’s disease. Turkish J Med Sci. 2022;52:1266-73. google scholar
- 61. Perazzio S, Andrade L, Souza A. Understanding Behçet’s disease in the context of innate immunity activa-tion. Front Immunol. 2020;11:586558. google scholar
- 62. Scanziani M, Hausser M. Electrophysiology in the age of light. Nature. 2009;461(7266):930-9. google scholar
- 63. Gueguinou M, Chantome A, Fromont G, Bougnoux P, Vandier C, Potier-Cartereau M. KCa and Ca(2+) channels: The complex thought. Biochim Biophys Acta. 2014;1843(10):2322-33. google scholar
- 64. He B, Yang L, Wilke C, Yuan H. Electrophysiological imaging of brain activity and connectivity-challenges and opportunities. IEEE Trans Biomed Eng. 2011;58(7):1918-31. google scholar
- 65. Schölvinck ML, Leopold DA, Brookes MJ, Khader PH. The contribution of electrophysiology to functional connectivity mapping. Neuroimage. 2013;80:297-306. google scholar
- 66. Obien MEJ, Deligkaris K, Bullmann T, Bakkum DJ, Frey U. Revealing neuronal function through microe-lectrode array recordings. Front Neurosci. 2015;6;8:423. google scholar
- 67. Xie C, Lin Z, Hanson L, Cui Y, Cui B. Intracellular recording of action potentials by nanopillar electropo-ration. Nat. Nanotechnol. 2012;7(3):185-90. google scholar
- 68. Segev A, Garcia-Oscos F, Kourrich S. Whole-cell patch-clamp recordings in brain slices. J Vis Exp. 2016;(112). google scholar
- 69. Braeutigam S. Magnetoencephalography: Fundamentals and established and emerging clinical applications in radiology. ISRN Radiol. 2013;2013:529463. google scholar
- 70. Gross J. Magnetoencephalography in cognitive neuroscience: A primer. Neuron. 2019;104(2):189-204. google scholar
- 71. Majeed H, Sattar Y. Electrophysiologic study indications and evaluation. In: StatPearls. Treasure Island (FL); 2021. google scholar
- 72. Johnson MD, Franklin RK, Gibson MD, Brown RB, Kipke DR. Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings. J Neurosci Methods. 2008;174(1):62-70. google scholar
- 73. Salinas E, Sejnowski TJ. Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci. 2001;2(8):539-50. google scholar
- 74. Bostan, S. Mikro elektrot düzeneği ve optogenetik araçlar kullanılarak hipokampal nöronlarda bellek oluşumunun incelenmesi. (Yüksek lisans tezi). İstanbul Medipol Üniversitesi Sağlık Bilimleri Enstitüsü, İstanbul. 2020. google scholar
- 75. Hill CL, Stephens GJ. An introduction to patch clamp recording. In: Dallas M, Bell D, editors. Patch Clamp Electrophysiology: Methods and Protocols. New York, NY: Springer US; 2021. google scholar
- 76. Priel A, Gil Z, Moy VT, Magleby KL, Silberberg SD. Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording. Biophys J. 2007;92(11):3893-900. google scholar
- 77. Ogden D, Stanfield P. Patch clamp techniques for single channel and whole-cell recording. In: Microelect-rode techniques: the Plymouth workshop handbook. Company of Biologists Cambridge. 1994;53-78. google scholar
- 78. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Ion channels and the electrical properties of membranes. In: Molecular Biology of the Cell 4th edition. Garland Science. 2002. google scholar
- 79. Kornreich BG. The patch clamp technique: principles and technical considerations. J Vet Cardiol. 2007;9(1):25-37. google scholar
- 80. Subramanyam P, Colecraft HM. Ion channel engineering: Perspectives and strategies. J Mol Biol. 2015;427(1):190-204. google scholar
- 81. Niemeyer BA, Mery L, Zawar C, Suckow A, Monje F, Pardo LA, et al. Ion channels in health and disease. EMBO Rep. 2001;2(7):568-73. google scholar
- 82. Smith SJ. EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol Neuro-surg Psychiatry. 2005;76 (Suppl 2):ii2-7. google scholar
- 83. Light GA, Williams LE, Minow F, Sprock J, Rissling A, Sharp R, et al. Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Curr Protoc Neurosci. 2010;52(1):6.25. 1-6.25. 24. google scholar
- 84. Hamalainen MS. Basic principles of magnetoencephalography. Acta Radiol Suppl. 1991;377:58-62. google scholar
- 85. Uhlhaas PJ, Liddle P, Linden DEJ, Nobre AC, Singh KD, Gross J. Magnetoencephalography as a tool in psychiatric research: current status and perspective. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(3):235-44. google scholar
- 86. Gleichmann M, Mattson MP. Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal. 2011;14(7):1261-73. google scholar
- 87. Südhof TC. Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol. 2012;4(1):a011353. google scholar
- 88. Bliss T V, Collingridge GL, Morris RG. Synaptic plasticity in health and disease: Introduction and overview. Philos Trans R Soc L B Biol Sci. 2014;369(1633):20130129. google scholar
- 89. Bliss T V, Cooke SF. Long-term potentiation and long-term depression: a clinical perspective. Clin (Sao Paulo). 2011;66(Suppl 1):3-17. google scholar
- 90. West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, Shaywitz AJ, et al. Calcium regulation of neuronal gene expression. Proc Natl Acad Sci USA. 2001;98(20):11024-31. google scholar
- 91. Stosiek C, Garaschuk O, Holthoff K, Konnerth A. In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acas Sci USA. 2003;100(12):7319-24. google scholar
- 92. Russell JT. Imaging calcium signals in vivo: A powerful tool in physiology and pharmacology. Br J Phar-macol. 2011;163(8):1605-25. google scholar
- 93. Seshadri S, Hoeppner DJ, Tajinda K. Calcium Imaging in Drug Discovery for Psychiatric Disorders. Front Psychiatry. 2020;11:713. google scholar