The Structural and Functional Organization of the Human Mind
Zerrin Yıldırım, Çiğdem Ulaşoğlu Yıldız, İbrahim Hakan GürvitUnderstanding the organization of the human mind has been a long-standing endeavor of scientists. In this framework, the dual origin hypothesis proposes that the cerebral cortex of higher mammals originates from two primordial structures, the piriform cortex and the hippocampus. While the piriform cortex gives rise to olfactocentric division, a.k.a. the ventral trend, the hippocampus gives rise to hippocampocentric division, a.k.a. the dorsal trend. Cortical areas arising from the ventral trend include ventral parts of the frontal, parietal, and occipital lobes, the insula, and most of the temporal lobe. Those from the dorsal trend include the medial and dorsolateral parts of the frontal, parietal, and occipital lobes, the hippocampal formation, and the parahippocampal gyrus. These two trends overlap in the anterior cingulate cortex, prefrontal cortex, and temporo-parietal junction. All these spatially distributed brain regions cooperate with each other to form a set of networks, today called intrinsic connectivity networks (ICNs). The correlative or anti-correlative interactions of ICNs give rise to human mental functions, which can be subdivided into two according to dual origin hypothesis as the general cognitive domains of the dorsal trend, the “cold brain” and the emotional and comportmental functions of the ventral trend, the “hot brain.” The default mode network as the seat of the “self” seems to be the major orchestrator of these dual streams of the cold and hot brain.
Referanslar
- 1. Pandya DN, Seltzer B, Petrides M, Cipolloni PB, editors. Cerebral cortex architecture, connections, and the dual origin concept. New York: Oxford University Press; 2015. google scholar
- 2. Pandya DN, Seltzer B, Barbas H. Input-output organization of the primate cerebral cortex. In: Steklis HD, Erwin J, editors. Comparative Primate Biology Neurosciences, New York: Alan Liss;1988. pp. 39-80. google scholar
- 3. Giaccio RG. The dual origin hypothesis: an evolutionary brain-behavior framework for analyzing psychi-atric disorders. Neurosci Biohehav Rev. 2006;30(4):526-50. google scholar
- 4. Catani M, Dell’acqua F, Thiebaut de Schotten M. A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev. 2013;37(8):1724-37. google scholar
- 5. Gazzaniga M, Ivry RB, Mangun GR, editors. Cognitive Neuroscience: The Biology of the Mind. 5th ed. New York: W. W. Norton & Company; 2019. google scholar
- 6. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A. 2000;97(8):4398-403. google scholar
- 7. Woollett K, Maguire EA. Acquiring “the Knowledge” of London’s layout drives structural brain changes. Curr Biol. 2011;21(24):2109-14. google scholar
- 8. Raichle ME. Neuroscience. The brain’s dark energy [published correction appears in Science. 2007 Jan 12;315(5809):187]. Science. 2006;314(5803):1249-1250. Raichle ME. Neuroscience. The brain’s dark energy. Science. 2006;314(5803):1249-50. Erratum in: Science. 2007;315(5809):187. google scholar
- 9. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc. Natl Acad Sci U S A. 2001;98(2):676-82. google scholar
- 10. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62(1):42-52. google scholar
- 11. Shen W, Tu Y, Gollub RL, Ortiz A, Napadow V, Yu S, et al. Visual network alterations in brain functional connectivity in chronic low back pain: A resting state functional connectivity and machine learning study. NeuroImage: Clinical. 2019;22:101775. google scholar
- 12. Yang YL, Deng HX, Xing GY, Xia XL, Li HF. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state. Neural Regen Res.2015;10(2):298-307. google scholar
- 13. Seitzman BA, Snyder AZ, Leuthardt EC, Shimony JS. The State of Resting State Networks. Top Magn Reson Imaging. 2019;28(4):189-96. google scholar
- 14. Bijsterbosch J, Smith SM, Beckmann CF, editors. Introduction to Resting State fMRI Functional Conne-ctivity (illustrated ed.). Oxford, United Kingdom: Oxford University Press: 2017. google scholar
- 15. Ulaşoğlu Yıldız, Ç. Spinoserebellar atakslll hastalarda örtük bellek süreçleri ile yapısal ve fonskiyonel konnektivite korelasyonları. İ.Ü. Sağlık Bilimleri Enstütüsü, Doktora Tezi. 2017. google scholar
- 16. Menon V. Salience Network. In: Toga AW, editor. Brain Mapping: An Encyclopedic Reference, vol. 2. Academic Press: Elsevier; 2015. pp. 597-611. google scholar
- 17. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5-6):655-67. google scholar
- 18. Seeley WW. The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands. J Neurosci. 2019;39(50):9878-82. google scholar
- 19. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201-15. google scholar
- 20. Corbetta M, Shulman GL. Spatial neglect and attention networks. Annu Rev Neurosci. 2011;34:569-99. google scholar
- 21. Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58(3), 306-24. google scholar
- 22. Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist. 2014;20(2):150-9. google scholar
- 23. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl Acad Sci U S A. 2007;104(26):11073-8. google scholar
- 24. Ohata R, Ogawa K, Imamizu H. Neuroimaging Examination of Driving Mode Switching Corresponding to Changes in the Driving Environment. Front Hum Neurosci. 2022;16:788729. google scholar
- 25. Wen X, Yao L, Liu Y, Ding M. Causal interactions in attention networks predict behavioral performance. J Neurosci. 2012;32(4):1284-92. google scholar
- 26. Sevinc G, Gurvit H, Spreng RN. Salience network engagement with the detection of morally laden infor-mation. Soc Cogn Affect Neurosci. 2017;12(7):1118-27. google scholar
- 27. Yoder KJ, Decety J. The neuroscience of morality and social decision-making. Psychol Crime Law. 2018;24(3):279-95. google scholar
- 28. Schurz M, Radua J, Tholen MG, Maliske L, Margulies DS, Mars RB, et al. Toward a hierarchical model of social cognition: A neuroimaging meta-analysis and integrative review of empathy and theory of mind. Psychol Bull. 2021;147(3):293-327. google scholar
- 29. Premack D, Woodruff G. Does the chimpanzee have a theory of mind? Behav Brain Sci.1978;1(4):515-26. google scholar
- 30. Shamay-Tsoory SG, Harari H, Aharon-Peretz J, Levkovitz Y. The role of the orbitofrontal cortex in affecti-ve theory of mind deficits in criminal offenders with psychopathic tendencies. Cortex. 2010;46(5):668-77. google scholar
- 31. Healey ML, Grossman M. Cognitive and Affective Perspective-Taking: Evidence for Shared and Dissoci-able Anatomical Substrates. Front Neurol. 2018;9:491. google scholar
- 32. Stietz J, Jauk E, Krach S, Kanske P. Dissociating Empathy from Perspective-Taking: Evidence from Intra-and Inter-Individual Differences Research. Front Psyhiatry. 2019;10:126. google scholar
- 33. Gupta R, Tranel D, Duff MC. Ventromedial prefrontal cortex damage does not impair the development and use of common ground in social interaction: implications for cognitive theory of mind. Neuropsychologia. 2012;50(1):145-52. google scholar
- 34. Sebastian CL, Fontaine NM, Bird G, Blakemore SJ, Brito SA, McCrory EJ, et al. Neural processing asso-ciated with cognitive and affective Theory of Mind in adolescents and adults. Soc Cogn Affect Neurosci. 2012;7(1):53-63. google scholar
- 35. Xi C, Zhu Y, Niu C, Zhu C, Lee TM, Tian Y, et al. Contributions of subregions of the prefrontal cortex to the theory of mind and decision making. Behav Brain Res. 2011;221(2):587-93. google scholar
- 36. Kalbe E, Schlegel M, Sack AT, Nowak DA, Dafotakis M, Bangard C, et al. Dissociating cognitive from affective theory of mind: a TMS study. Cortex. 2010;46(6):769-80. google scholar
- 37. Poletti M, Enrici I, Adenzato M. Cognitive and affective Theory of Mind in neurodegenerative diseases: neuropsychological, neuroanatomical and neurochemical levels. Neurosci Biobehav Rev. 2012;36(9):2147-64. google scholar
- 38. Maliske LZ, Schurz M, Kanske P. Interactions within the social brain: Co-activation and connectivity among networks enabling empathy and Theory of Mind. Neurosci Biohehav Rev. 2023;147:105080. google scholar
- 39. Schurz M, Maliske L, Kanske P. Cross-network interactions in social cognition: A review of findings on task related brain activation and connectivity. Cortex. 2020;130:142-57. google scholar
- 40. Lamm C, Decety J, Singer T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage. 2011;54(3):2492-502. google scholar
- 41. Lamm C, Silani G, Singer T. Distinct neural networks underlying empathy for pleasant and unpleasant touch. Cortex. 2015;70:79-89. google scholar
- 42. Mobbs D, Yu R, Meyer M, Passamonti L, Seymour B, Calder AJ, et al. A key role for similarity in vicarious reward. Science. 2009;324(5929):900. google scholar
- 43. Wang Y, Olson IR. The Original Social Network: White Matter and Social Cognition. Trends Cogn Sci. 2018;22(6):504-16. google scholar
- 44. Kanske P, Böckler A, Trautwein FM, Parianen Lesemann FH, Singer T. Are strong empathizers better mentalizers? Evidence for independence and interaction between the routes of social cognition. Soc Cogn Affect Neurosci. 2016;11(9):1383-92. google scholar
- 45. Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ, et al. The Dynamics of Functional Brain Networks: Integrated Network States during Cognitive Task Performance. Neuron. 2016;92(2):544-54. google scholar
- 46. Schuwerk T, Schurz M, Müller F, Rupprecht R, Sommer M. The rTPJ’s overarching cognitive function in networks for attention and theory of mind. Soc Cogn Affect Neurosci. 2017;12(1):157-68. google scholar
- 47. Bruce V, Young A. Understanding face recognition. Br J Psychol. 1986;77(Pt 3):305-27. google scholar
- 48. Rapcsak SZ. Face Recognition. Curr Neurol Neurosci Rep. 2019;19(7):41. google scholar
- 49. Rapcsak SZ, Edmonds EC. The executive control of face memory. Behav Neurol. 2011;24(4):285-98. google scholar
- 50. Rapcsak SZ. Face recognition. In: Chatterjee A, Coslett HB, editors. The roots of cognitive neuroscience: behavioral neurology and neuropsychology. New York: Oxford University Press; 2014. google scholar
- 51. Gazzaley A, Cooney JW, McEvoy K, Knight RT, D’Esposito M. Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci. 2005;17(3):507-17. google scholar
- 52. Chadick JZ, Gazzaley A. Differential coupling of visual cortex with default or frontal-parietal network based on goals. Nat Neurosci. 2011;14(7):830-32. google scholar
- 53. Eslinger PJ, Damasio AR. Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology. 1985;35(12):1731-41. google scholar
- 54. Damasio AR, Tranel D, Damasio H. Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behav Brain Res. 1990;41(2):81-94. google scholar
- 55. Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition. 1994;50(1-3):7-15. google scholar
- 56. Bechara A, Damasio H, Damasio AR. Emotion, decision making and the orbitofrontal cortex. Cereb Cortex. 2000;10(3):295-307. google scholar
- 57. Li X, Lu ZL, D’Argembeau A, Ng M, Bechara A. The Iowa Gambling Task in fMRI images. Hum Brain Mapp. 2010;31(3):410-23. google scholar
- 58. Sandor S, Gürvit H. Development of somatic markers guiding decision-making along adolescence. Int J Psychophysiol. 2019;137:82-91. google scholar
- 59. Farrar DC, Mian AZ, Budson AE, Moss MB, Killiany RJ. Functional brain networks involved in decisi-on-making under certain and uncertain conditions. Neuroradiology. 2018;60(1):61-69. google scholar
- 60. Philiastides MG, Biele G, Heekeren HR. A mechanistic account of value computation in the human brain. Proc Natl Acad Sci U S A. 2010;107(20):9430-35. google scholar
- 61. Hutchinson JB, Uncapher MR, Wagner AD. Increased functional connectivity between dorsal posterior parietal and ventral occipitotemporal cortex during uncertain memory decisions. Neurobiol Learn Mem. 2015;117:71-83. google scholar
- 62. Daw ND, Doya K. The computational neurobiology of learning and reward. Curr Opin Neurobiol. 2006;16(2):199-204. google scholar
- 63. Stalnaker TA, Calhoon GG, Ogawa M, Roesch MR, Schoenbaum G. Reward prediction error signaling in posterior dorsomedial striatum is action specific. J Neurosci. 2012;32(30):10296-305. google scholar
- 64. Samejima K, Ueda Y, Doya K, Kimura M. Representation of action-specific reward values in the striatum. Science. 2005;310(5752):1337-40. google scholar
- 65. Botvinick MM. Conflict monitoring and decision making: reconciling two perspectives on anterior cingu-late function. Cogn Affect Behav Neurosci. 2007;7(4):356-66. google scholar
- 66. Garrigan B, Adlam AL, Langdon PE. Corrigendum to “The neural correlates of moral decision-making: A systematic review and meta-analysis of moral evaluations and response decision judgements” [Brain Cogn. 108 (2016) 88-97]. Brain Cogn. 2017;111:104-06. Erratum for: Brain Cogn. 2016;108:88-97. google scholar
- 67. Garrido MI, Barnes GR, Kumaran D, Maguire EA, Dolan RJ. Ventromedial prefrontal cortex drives hip-pocampal theta oscillations induced by mismatch computations. Neuroimage. 2015;120:362-70. google scholar
- 68. Bzdok D, Schilbach L, Vogeley K, Schneider K, Laird AR, Langner R, et al. Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Struct Funct. 2012;217(4):783-96. google scholar
- 69. Rizzolatti G, Luppino G, Matelli M. The organization of the cortical motor system: new concepts. Elect-roencephalogr Clin Neurophysiol. 1998;106(4):283-96. google scholar
- 70. Rizzolatti G, Luppino G. The cortical motor system. Neuron. 2001;31(6):889-901. google scholar
- 71. Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169-92. google scholar
- 72. Iacoboni M, Dapretto M. The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci. 2006;7(12):942-51. google scholar
- 73. Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G. Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol. 2005;3(3):e79. google scholar
- 74. Iacoboni M, Lieberman MD, Knowlton BJ, Molnar-Szakacs I, Moritz M, Throop CJ, et al. Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. Neuroimage. 2004;21(3):1167-73. google scholar
- 75. Aziz-Zadeh L, Iacoboni M, Zaidel E, Wilson S, Mazziotta J. Left hemisphere motor facilitation in response to manual action sounds. Eur J Neurosci. 2004;19(9):2609-12. google scholar
- 76. Falck-Ytter T, Gredeback G, von Hofsten C. Infants predict other people’s action goals. Nat Neurosci. 2006;9(7):878-9. google scholar
- 77. Lepage JF, Theoret H. EEG evidence for the presence of an action observation-execution matching system in children. Eur J Neurosci. 2006;23(9):2505-10. google scholar
- 78. Shimada S, Hiraki K. Infant’s brain responses to live and televised action. Neuroimage. 2006;32(2):930-9. google scholar
- 79. Uddin LQ. Complex relationships between structural and functional brain connectivity. Trends in cognitive sciences. 2013;17(12):600-2. google scholar
- 80. Menon V. 20 years of the default mode network: A review and synthesis. Neuron. 2023;111(16):2469-87. google scholar
- 81. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, et al. Situating the defa-ult-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci U S A. 2016;113(44), 12574-9. google scholar