Wearable Health Technologies: Transforming Healthcare in the Digital Age
Halil ŞengülWearable health technologies, encompassing a diverse array of devices such as smartwatches, fitness trackers, and medical-grade wearables, have emerged as transformative tools in the realm of healthcare. This abstract provides an overview of the multifaceted impact of wearable technologies on health monitoring, patient care, and overall well-being. The adoption of wearable devices has revolutionized the way individuals engage with their health by providing real-time data on various physiological parameters, including heart rate, physical activity, sleep patterns, and more. This continuous monitoring capability facilitates proactive health management, allowing users to make informed decisions about their lifestyle, exercise routines, and preventive healthcare measures. In clinical settings, wearable health technologies play a pivotal role in remote patient monitoring, chronic disease management, and post-treatment surveillance. The integration of these devices into healthcare ecosystems enables healthcare professionals to access real-time patient data, enhance personalized care strategies, and improve treatment outcomes. The amalgamation of wearable technologies with advanced sensors, artificial intelligence, and data analytics has paved the way for predictive healthcare. By leveraging continuous streams of health-related data, these technologies empower predictive analytics models to anticipate health issues, potentially preventing the onset of diseases or exacerbations of existing conditions. However, the widespread adoption of wearable health technologies also raises significant challenges, including data security, privacy concerns, and the need for standardization in data interpretation. Striking a balance between innovation and ethical considerations is crucial to ensuring the responsible and effective use of these technologies in healthcare. In conclusion, wearable health technologies represent a paradigm shift in healthcare delivery, offering unprecedented opportunities for personalized, data-driven health management. As these technologies continue to evolve, addressing associated challenges will be essential to unlocking their full potential and revolutionizing the landscape of modern healthcare.
Referanslar
- Alexeev, V. L., Das, S., Finegold, D. N., & Asher, S. A. (2004). Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clinical Chemistry, 50(12), 2353-2360. https://doi.org/10.1373/clinchem.2004. 039701 google scholar
- Amjadi, M., Sheykhansari, S., Nelson, B. J., & Sitti, M. (2018). Recent advances in wearable transdermal delivery systems. Advanced Materials, 30(7), 1704530. https://doi.org/10.1002/adma.201704530 google scholar
- An, B. W., Gwak, E. J., Kim, K., Kim, Y. C., Jang, J., Kim, J. Y., & Park, J. U. (2016). Stretchable, transparent electrodes as we-arable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Letters, 16(1), 471-478. https://doi.org/10.1021/acs.nanolett.5b04134 google scholar
- ArroYO-Currâs, N., Dauphin-Ducharme, P., Scida, K., & Châvez, J. L. (2020). From the beaker to the bodY: Translational challenges for electrochemical, aptamer-based sensors. Analytical Methods, 12(10), 1288-1310. https://doi.org/ 10.1039/D0AY00026D google scholar
- Avci, M., Ozgenc, O., Coskuner, S. A., & Olut, A. I. (2012). Hospital acquired infections (HAI) in the elderly: Comparison with the younger patients. Archives of Gerontology and Geriatrics, 54(1), 247-250. https://doi.org/10.1016/j.archger. 2011.03.014 google scholar
- Bandodkar, A. J., & Wang, J. (2014). Non-invasive wearable electrochemical sensors: A review. Trends in Biotechnology, 32(7), 363-371. https://doi.org/10.1016/j.tibtech.2014.04.005 google scholar
- Bandodkar, A. J., Hung, V. W., JIa, W., Valdes-Ramîrez, G., Windmiller, J. R., Martinez, A. G., ... & Wang, J. (2013). Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst, 138(1), 123-128. https://doi. org/10.1039/C2AN36422K google scholar
- Bandodkar, A. J., Jia, W., Yardımcı, C., Wang, X., Ramirez, J., & Wang, J. (2015). Tattoo-based noninvasive glucose monito-ring: A proof-of-concept study. Analytical Chemistry, 87(1), 394-398. https://doi.org/10.1021/ac504300n google scholar
- Bandodkar, A. J., Molinnus, D., Mirza, O., Guinovart, T., Windmiller, J. R., Valdes-Ramîrez, G., ... & Wang, J. (2014). Epider-mal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 54, 603-609. https://doi.org/10.1016/j.bios.2013.11.039 google scholar
- Barfidokht, A., Mishra, R. K., Seenivasan, R., Liu, S., Hubble, L. J., Wang, J., & Hall, D. A. (2019). Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sensors and Actuators B: Chemical, 296, 126422. https://doi.org/10.1016/j.snb.2019.04.053 google scholar
- Bariya, M., Nyein, H. Y. Y., & Javey, A. (2018). Wearable sweat sensors. Nature Electronics, 1(3), 160-171. https://doi.org/ 10.1038/s41928-018-0043-y google scholar
- Casselman, J., Onopa, N., & Khansa, L. (2017). Wearable healthcare: Lessons from the past and a peek into the future. Telematics and Informatics, 34(7), 1324-1337. https://doi.Org/10.1016/j.tele.2017.04.011 google scholar
- Chen, G., Li, Y., Bick, M., & Chen, J. (2020). Smart textiles for electricity generation. Chemical Reviews, 120(8), 3668-3720. http://orcid.org/0000-0002-3439-0495 google scholar
- Chen, Y., Yang, Y., Li, M., Chen, E., Mu, W., Fisher, R., & Yin, R. (2021). Wearable actuators: An overview. Textiles, 1(2), 283-321. https://doi.org/10.3390/textiles1020015 google scholar
- Cheol Jeong, I., Bychkov, D., & Searson, P. C. (2018). Wearable devices for precision medicine and health state monito-ring. IEEE Transactions on Biomedical Engineering, 66(5), 1242-1258. https://doi.org/10.1109/TBME.2018.2871638 google scholar
- Choi, S., Lee, H., Ghaffari, R., Hyeon, T., & Kim, D. H. (2016). Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Advanced Materials, 28(22), 4203-4218. https://doi.org/10.1002/adma. 201504150 google scholar
- Chu, Z., Zhang, W., You, Q., Yao, X., Liu, T., Liu, G., ... & Jin, W. (2020). A separation-sensing membrane performing precise real-time serum analysis during blood drawing. Angewandte Chemie, 132(42), 18860-18867. https://doi.org/10. 1002/ange.202008241 google scholar
- Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102(1), 29-45. google scholar
- Constant, N., Douglas-Prawl, O., Johnson, S., & Mankodiya, K. (2015, June). Pulse-Glasses: An unobtrusive, wearable HR monitor with Internet-of-Things functionality. In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (pp. 1-5). IEEE. https://doi.org/10.1109/BSN.2015.7299350 google scholar
- Dong, T. Y., Zhang, X. L., & Liu, T. (2018). Artificial muscles for wearable assistance and rehabilitation. Frontiers of Infor-mation Technology & Electronic Engineering, 19(11), 1303-1315. https://doi.org/10.1631/FITEE.1800618 google scholar
- Dunn, J., Runge, R., & Snyder, M. (2018). Wearables and the medical revolution. Personalized Medicine, 15(5), 429-448. https://doi.org/10.2217/pme-2018-0044 google scholar
- Elsherif, M., Hassan, M. U., Yetisen, A. K., & Butt, H. (2018). Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano, 12(6), 5452-5462. https://doi.org/10.1021/acsnano.8b00829 google scholar
- Garcia-Carmona, L., Martin, A., Sempionatto, J. R., Moreto, J. R., Gonzalez, M. C., Wang, J., & Escarpa, A. (2019). Pacifier biosensor: Toward noninvasive saliva biomarker monitoring. Analytical Chemistry, 91(21), 13883-13891. https:// doi.org/10.1021/acs.analchem.9b03379 google scholar
- Gilbert, F., & Ovadia, D. (2011). Deep brain stimulation in the media: Over-optimistic portrayals call for a new strategy involving journalists and scientists in ethical debates. Frontiers in Integrative Neuroscience, 5, 16. https://doi. org/10.3389/fnint.2011.00016 google scholar
- Glennon, T., O’QuigleY, C., McCaul, M., Matzeu, G., Beirne, s., Wallace, G. G., ... & Diamond, D. (2016). ‘SWEATCH’: A we-arable platform for harvesting and analysing sweat sodium content. Electroanalysis, 28(6), 1283-1289. https:// doi.org/10.1002/elan.201600106 google scholar
- Guilbault, G. G., & Montalvo Jr, J. G. (1969). Urea-specific enzYme electrode. Journal of the American Chemical Society, 91(8), 2164-2165. https://doi.org/10.1021/ja01036a083 google scholar
- Guinovart, T., Valdes-Ramîrez, G., Windmiller, J. R., Andrade, F. J., & Wang, J. (2014). Bandage-based wearable po-tentiometric sensor for monitoring wound pH. Electroanalysis, 26(6), 1345-1353. https://doi.org/10.1002/elan. 201400053 google scholar
- Guk, K., Han, G., Lim, J., Jeong, K., Kang, T., Lim, E.-K., & Jung, J. (2019). Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials, 9(6), 813. https://doi.org/10.3390/nano9060813 google scholar
- Guo, S., Yang, D., Zhang, S., Dong, Q., Li, B., Tran, N., & Zaghloul, M. E. (2019). Development of a cloud-based epider-mal MoSe2 device for hazardous gas sensing. Advanced Functlonal Materials, 29(18), 1900138. https://doi.org/ 10.1002/adfm.v29.1810.1002/adfm.201900138 google scholar
- Guo, Y., Liu, X., Peng, S., Jiang, X., Xu, K., Chen, C., & Chen, W. (2021). A review of wearable and unobtrusive sensing technologies for chronic disease management. Computers in Biology and Medicine, 129, 104163. https://doi.org/ 10.1016/j.compbiomed.2020.104163 google scholar
- Gura, M. T. (2015). Considerations in patients with cardiac implantable electronic devices at end of life. AACN Advanced Crltlcal Çare, 26(4), 356-363. https://doi.org/10.4037/NCI.0000000000000111 google scholar
- Han, L., Xu, J., Wang, S., Yuan, N., & Ding, J. (2018). Multiresponsive actuators based on modified electrospun films. RSC Advances, 8(19), 10302-10309. https://doi.org/10.1039/C7RA13384G google scholar
- Hattori, Y., Falgout, L., Lee, W., Jung, S. Y., Poon, E., Lee, J. W., & Rogers, J. A. (2014). Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Advanced Healthcare Materlals, 3(10), 15971607. https://doi.org/10.1002/adhm.201400073 google scholar
- Heikenfeld, J., Jajack, A., Feldman, B., Granger, S. W., Gaitonde, S., Begtrup, G., & Katchman, B. A. (2019). Accessing analY-tes in biofluids for peripheral biochemical monitoring. Nature Blotechnology, 37(4), 407-419. https://doi.org/10. 1038/s41587-019-0040-3 google scholar
- Hsu, Y. P., & Young, D. J. (2013, November). Skin-surface-coupled personal health monitoring sYstem. In 2013 IEEE Sen-sors (pp. 1-4). IEEE. https://doi.org/10.1109/ICSENS.2013.6688176 google scholar
- Huang, X., Liu, Y., Chen, K., Shin, W. J., Lu, C. J., Kong, G. W., & Rogers, J. A. (2014). Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small, 10(15), 3083-3090. https://doi.org/10.1002/ smll.201400483 google scholar
- Hwang, I., Kim, H. N., Seong, M., Lee, S. H., Kang, M., Yi, H., & Jeong, H. E. (2018). Multifunctional smart skin adhesive patches for advanced health care. Advanced Healthcare Materlals, 7(15), 1800275. https://doi.org/10.1002/adhm. 201800275 google scholar
- JaYathilaka, W. A. D. M., Qi, K., Qin, Y., Chinnappan, A., Serrano-Garcîa, W., Baskar, C., & Ramakrishna, S. (2019). Signifi-cance of nanomaterials in wearables: A review on wearable actuators and sensors. Advanced Materlals, 31(7), 1805921. https://doi.org/10.1002/adma.201805921 google scholar
- JeffreY, K., & Parsonnet, V. (1998). Cardiac pacing, 1960-1985: A quarter centurY of medical and industrial innovation. Clrculatlon, 97(19), 1978-1991. https://doi.org/10.1161/01.CIR.97.19.1978 google scholar
- Kalantar-Zadeh, K., Ha, N., Ou, J. Z., & Berean, K. J. (2017). Ingestible sensors. ACS Sensors, 2(4), 468-483. https://doi. org/10.1021/acssensors.7b00045 google scholar
- Kamisalic, A., Fister, I., Jr., Turkanovic, M., & Karakatic, S. (2018). Sensors and functionalities of non-invasive wrist-we-arable devices: A review. Sensors, 18(6), 1714. https://doi.org/10.3390/s18061714 google scholar
- Kerr, D., Butler-Henderson, K., & Sahama, T. (2019). SecuritY, privacY, and ownership issues with the use of wearable health technologies. In Cyber Law, Prlvacy, and Securlty: Concepts, Methodologles, Tools, and Appllcatlons (pp. 1629-1644). IGI Global. google scholar
- Khoshmanesh, F., Thurgood, P., Pirogova, E., Nahavandi, S., & Baratchi, S. (2021). Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics, and assistive technologies. Blosensors and Bloelectronlcs, 176, 112946. https://doi.org/10.1016/j.bios.2020.112946 google scholar
- Kim, J., Campbell, A. S., de Âvila, B. E. F., & Wang, J. (2019). Wearable biosensors for Healthcare monitoring. Nature Bl-otechnology, 37(4), 389-406. https://doi.org/10.1038/s41587-019-0045-Y google scholar
- Kim, J., Imani, s., de Araujo, W. R., Warehall, J., Valdes-Ramırez, G., Paixâo, T. R., & Wang, J. (2015). Wearable salivary urIc acid mouthguard biosensor with integrated wireless Electronics. Blosensors and Bı'oelectronı'cs, 74, 1061-1068. https://doi.org/10.1016/j.bios.2015.07.039 google scholar
- Kim, J., sempionatto, J. R., Imani, s., Hartel, M. C., Barfidokht, A., Tang, G., & Wang, J. (2018). simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Advanced Sclence, 5(10), 1800880. https://doi.org/10.1002/advs.201800880 google scholar
- Kim, s. s., Jeon, J. H., Kim, H. I., Kee, C. D., & Oh, I. K. (2015). High-fidelity bioelectronic muscular actuator based on graphene-mediated and TEMPO-oxidized bacterial cellulose. Advanced Functlonal Materlals, 25(23), 3560-3570. https://doi.org/10.1002/adfm.201500673 google scholar
- Kim, s., saito, M., Wei, Y., Bhuyan, P., Choe, M., Fujie, T., & Park, s. (2023). stretchable and wearable polymeric heaters and strain sensors fabricated using liquid metals. Sensors and Actuators A: Physlcal, 355, 114317. https://doi. org/10.1002/adma.201805921 google scholar
- Kiourti, A., Psathas, K. A., & Nikita, K. s. (2014). Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges. Bloelectromagnetlcs, 35(1), 1-15. https://doi.org/10. 1002/bem.21813 google scholar
- Kozitsina, A. N., svalova, T. s., Malysheva, N. N., Okhokhonin, A. V., Vidrevich, M. B., & Brainina, K. Z. (2018). sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Blosensors, 8(2), 35. https://doi.org/10.3390/bios8020035 google scholar
- Lee, s. s., son, I. H., Choi, J. G., Nam, D. H., Hong, Y. s., & Lee, W. B. (2011). Estimated blood pressure algorithm for a wrist-wearable pulsimeter using Hall device. Journal of the Korean Physlcal Soclety, 58, 349-352. https://doi.org/10. 3938/jkps.58.349 google scholar
- Lee, Y. R., Kwon, H., Lee, D. H., & Lee, B. Y. (2017). Highly flexible and transparent dielectric elastomer actuators using silver nanowire and carbon nanotube hybrid electrodes. Soft Matter, 13(37), 6390-6395. https://doi.org/10.1039/ C7sM01329A google scholar
- Lee, Y., Kim, J., Jang, B., Kim, s., sharma, B. K., Kim, J. H., & Ahn, J. H. (2019). Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy, 62, 259-267. https://doi.org/10.1016/j.nanoen.2019.05.039 google scholar
- Lehrach, H., Ionescu, A., & Benhabiles, N. (2016). The future of health care: Deep data, smart sensors, virtual patients and the Internet-of-Humans (White Paper). Avallable onllne: https://docs.wixstatic.com/ugd/2b9f87_40d29af47 a9742498cbbbd484e0174e0.pdf google scholar
- Li, s., Ma, Z., Cao, Z., Pan, L., & shi, Y. (2020). Advanced wearable microfluidic sensors for healthcare monitoring. Small, 16(9), 1903822. https://doi.org/10.1002/smll.201903822 google scholar
- Lin, B. (2019). Wearable smart devices for P4 medicine in heart disease: Ready for medical cyber-physical systems? Omlcs: A Journal of Integratlve Blology, 23(5), 291-292. https://doi.org/10.1089/omi.2019.0059 google scholar
- Lin, S., Yu, W., Wang, B., Zhao, Y., En, K., Zhu, J., ... & Emaminejad, S. (2020). Noninvasive wearable eleetroaetive phar-maceutical monitoring for personalized therapeutics. Proceedlngs of the Natlonal Academy of Sclences, 117(32), 19017-19025. https://doi.org/10.1073/pnas.2009979117 google scholar
- Liu, X., & Lillehoj, P. B. (2016). Embroidered electrochemical sensors for biomolecular detection. Lab on a Chlp, 16(11), 2093-2098. https://doi.org/10.1039/C6LC00307A google scholar
- Liu, Y., Pharr, M., & Salvatore, G. A. (2017). Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano, 11(10), 9614-9635. https://doi.org/10.1021/acsnano.7b04898 google scholar
- Loncar-Turukalo, T., Zdravevski, E., da Silva, J. M., Chouvarda, I., & Trajkovik, V. (2019). Literature on wearable technology for connected health: Scoping review of research trends, advances, and barriers. Journal of Medlcal Internet Research, 21(9), e14017. https://doi.org/10.2196/14017 google scholar
- Madhvapathy, S. R., Ma, Y., Patel, M., Krishnan, S., Wei, C., Li, Y., . & Rogers, J. A. (2018). Epidermal electronic systems for measuring the thermal properties of human skin at depths of up to several millimeters. Advanced Functlonal Materlals, 28(34), 1802083. https://doi.org/10.1002/adfm.201802083 google scholar
- Maeder-York, P., Clites, T., Boggs, E., Neff, R., Polygerinos, P., Holland, D., . & Walsh, C. (2014). Biologically inspired soft robot for thumb rehabilitation. Journal of Medlcal Devlces, 8(2), 020933. https://doi.org/10.1115/1.4027031 google scholar
- Mannoor, M. S., Tao, H., Clayton, J. D., Sengupta, A., Kaplan, D. L., Naik, R. R., . & McAlpine, M. C. (2012). Graphene-based wireless bacteria detection on tooth enamel. Nature Communlcatlons, 3(1), 763. https://doi.org/10.1038/ ncomms1767 google scholar
- Marakhimov, A., & Joo, J. (2017). Consumer adaptation and infusion of wearable devices for healthcare. Computers in Humar Behavior, 76, 135-148. https://doi.Org/10.1016/j.chb.2017.07.016 google scholar
- Min, J., Sempionatto, J. R., Teymourian, H., Wang, J., & Gao, W. (2021). Wearable electrochemical biosensors in North America. Biosersors ard Bioelectrorics, 172, 112750. https://doi.org/10.1016/j.bios.2020.112750 google scholar
- Naresh, V., & Lee, N. (2021). A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sersors, 21(4), 1109. https://doi.org/10.3390/s21041109 google scholar
- National Institute on Aging. (2019). Workshop on applying digital technology for early diagnosis and monito-ring of Alzheimer’s disease and related dementias. Executive Summary. Available online: https://www.nia. nih.gov/sites/default/files/2019-07/Digital%20Biomarkers%20Workshop.Executive%20Summary.v3.%2020%20 June2019_508.docx google scholar
- Noh, S., Yoon, C., Hyun, E., Yoon, H. N., Chung, T. J., Park, K. S., & Kim, H. C. (2014). Ferroelectret film-based patch-type sensor for continuous blood pressure monitoring. Electrorics Letters, 50(3), 143-144. https://doi.org/10.1049/el. 2013.3715 google scholar
- Pacelli, M., Loriga, G., Taccini, N., & Paradiso, R. (2006, September). Sensing fabrics for monitoring physiological and biomechanical variables: E-textile solutions. In 2006 3rd IEEE/EMBS Irterratioral Summer School or Medical Devices ard Biosersors (pp. 1-4). IEEE. https://doi.org/10.1109/ISSMDBS.2006.360082 google scholar
- Pal, A., Nadiger, V. G., Goswami, D., & Martinez, R. V. (2020). Conformal, waterproof electronic decals for wireless moni-toring of sweat and vaginal pH at the point-of-care. Biosersors ard Bioelectrorics, 160, 112206. https://doi.org/ 10.1016/j.bios.2020.112206 google scholar
- Pantelopoulos, A., & Bourbakis, N. G. (2009). A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trarsactiors or Systems, Mar, ard Cyberretics, Part C (Applicatiors ard Reviews), 40(1), 1-12. https://doi.org/10.1109/TSMCC.2009.2032660 google scholar
- Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. IEEE Trarsactiors or Irformatior Techrology ir Biomedicire, 9(3), 337-344. https://doi.org/10.1109/TITB.2005.854512 google scholar
- Polat, E. O., Çetin, M. M., Tabak, A. F., BiLget Güven, E., Uysal, B. Ö., Arsan, T., ... & Gül, S. B. (2022). Transducer Technologies for biosensors and their wearable applications. Biosersors, 12(6), 385. https://doi.org/10.3390/bios12060385 google scholar
- Qian, R. C., & Long, Y. T. (2018). Wearable chemosensors: A review of recent progress. ChemistryOper, 7(2), 118-130. https://doi.org/10.1002/open.201700159 google scholar
- Ren, S., Han, M., & Fang, J. (2022). Personal cooling garments: A review. Polymers, 14(24), 5522. https://doi.org/10.3390/ polym14245522 google scholar
- Saldanha, D. J., Cai, A., & Dorval Courchesne, N. M. (2021). The evolving role of proteins in wearable sweat biosensors. ACS Biomaterials Scierce & Ergireerirg, 9(5), 2020-2047. https://doi.org/10.1021/acsbiomaterials.1c00699 google scholar
- Schwarz, A. (2010). L. Van langenhove, P. Guermonprez and D. Deguillemont. Text. Prog, 42, 99-180. google scholar
- Sempionatto, J. R., Mishra, R. K., Martın, A., Tang, G., Nakagawa, T., Lu, X., ... & Wang, J. (2017). Wearable ring-based sen-sing platform for detecting chemical threats. ACS Sersors, 2(10), 1531-1538. https://doi.org/10.1021/acssensors. 7b00603 google scholar
- Sempionatto, J. R., Nakagawa, T., Pavinatto, A., Mensah, S. T., Imani, S., Mercier, P., & Wang, J. (2017). Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab or a Chip, 17(10), 1834-1842. https://doi.org/10.1039/C 7LC00192D google scholar
- Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., ... & Seneviratne, A. (2017). A survey of wearab-le devices and challenges. IEEE Commuricatiors Surveys & Tutorials, 19(4), 2573-2620. https://doi.org/10.1109/ COMST.2017.2731979 google scholar
- Shi, J., Liu, S., Zhang, L., Yang, B., Shu, L., Yang, Y., ... & Tao, X. (2020). Smart textile-integrated microelectronic systems for wearable applications. Advarced Materials, 32(5), 1901958. https://doi.org/10.1002/adma.201901958 google scholar
- Sibinski, M., Jakubowska, M., & Sloma, M. (2010). Flexible temperature sensors on fibers. Sersors, 10(9), 7934-7946. https://doi.org/10.3390/s100907934 google scholar
- Sim, I. (2019). Mobile devices and health. New Erglard Jourral of Medicire, 381(10), 956-968. https://doi.org/10.1056/ NEJMra1806949 google scholar
- Singh, R., Bathaei, M. J., Istif, E., & Beker, L. (2020). A review of bioresorbable implantable medical devices: Materials, fabrication, and implementation. Advanced Healthcare Materials, 9(18), 2000790. https://doi.org/10.1002/adhm. 202000790 google scholar
- Son, d., Lee, J., Qiao, s., Ghaffari, R., Kim, J., Lee, J. e., ... & Kim, D. H. (2014). Multifunctional wearable devlces for diagno-sis and therapy of movement disorders. Nature Nanotechnology, 9(5), 397-404. https://doi.org/10.1038/nnano. 2014.38 google scholar
- Tai, L. C., Gao, W., Chao, M., Bariya, M., Ngo, Q. P., Shahpar, Z., . & Javey, A. (2018). Methylxanthine drug monitoring with wearable sweat sensors. Advanced Materials, 30(23), 1707442. https://doi.org/10.1002/adma.201707442 google scholar
- Teymourian, H., Barfidokht, A., & Wang, J. (2020). Electrochemical glucose sensors in diabetes management: An upda-ted review (2010-2020). Chemical Society Reviews, 49(21), 7671-7709. https://doi.org/10.1039/D0CS00304B google scholar
- Tu, J., Torrente-Rodrîguez, R. M., Wang, M., & Gao, W. (2020). The era of digitaL health: A review of portable and wearable affinity biosensors. Advanced Functional Materials, 30(29), 1906713. https://doi.org/10.1002/adfm.201906713 google scholar
- Vashist, S. K. (2012). Non-invasive glucose monitoring technology in diabetes management: A review. Analytica Chimi-caActa, 750, 16-27. https://doi.org/10.1016/j.aca.2012.03.043 google scholar
- Wang, A. (2006). Analytical Electrochemistry (3rd ed.). John Wiley & Sons, Inc. google scholar
- Wasserberg, D., & Jonkheijm, P. (2017). Supramolecular wearable sensors. Chem, 3(4), 531-533. https://doi.org/10.1016/ j.chempr.2017.09.019 google scholar
- Webb, R. C., Bonifas, A. P., Behnaz, A., Zhang, Y., Yu, K. J., Cheng, H., . & Rogers, J. A. (2013). Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Materials, 12(10), 938-944. https:// doi.org/10.1038/nmat3755 google scholar
- Weinswig, D. (2016). The Wearables Report: Reviewing a fast-changing market. Fung Global Retail and Technology. google scholar
- White, R. M. (1987). A sensor classification scheme. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 34(2), 124-126. https://doi.org/10.1109/TUFFC.1987.10125 google scholar
- Wright, R., & Keith, L. (2014). Wearable technology: If the tech fits, wear it. Journal of Electronic Resources in Medical Libraries, 11(4), 204-216. https://doi.org/10.1080/15424065.2014.969051 google scholar
- Wright, R., & Keith, L. (2014). Wearable technology: If the tech fits, wear it. Journal of Electronic Resources in Medical Libraries, 11(4), 204-216. https://doi.org/10.1080/15424065.2014.969051 google scholar
- Wu, H., Gao, W., & Yin, Z. (2017). Materials, devices and systems of soft bioelectronics for precision therapy. Advanced Healthcare Materials, 6(10), 1700017. https://doi.org/10.1002/adhm.201700017 google scholar
- Xie, Y., Lu, L., Gao, F., et al. (2021). Integration of Artificial Intelligence, Blockchain, and Wearable Technology for Chronic Disease Management: A New Paradigm in Smart Healthcare. Current Medical Science, 41(6), 1123-1133. https:// doi.org/10.1007/s11596-021-2485-0 google scholar
- Y ang, Y., & Gao, W. (2019). Wearable and flexible electronics for continuous molecular monitoring. Chemical Society Reviews, 48(6), 1465-1491. https://doi.org/10.1039/C7CS00730B google scholar
- Y ao, H., Liao, Y., Lingley, A. R., Afanasiev, A., Lâhdesmâki, I., Otis, B. P., & Parviz, B. A. (2012). A contact lens with integ-rated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring. Journal of Micromechanics and Microengineering, 22(7), 075007. https://doi.org/10.1088/0960-1317/22/7/075007 google scholar
- Y ao, H., Shum, A. J., Cowan, M., Lâhdesmâki, I., & Parviz, B. A. (2011). A contact lens with embedded sensor for monitoring tear glucose level. Biosensors and Bioelectronics, 26(7), 3290-3296. https://doi.org/10.1016/j.bios.2010.12.042 google scholar
- Y eo, J. C., & Lim, C. T. (2016). Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsystems & Nanoengineering, 2(1), 1-19. https://doi.org/10.1038/micronano.2016.43 google scholar
- Y etisen, A. K., Martinez-Hurtado, J. L., Ünal, B., Khademhosseini, A., & Butt, H. (2018). Wearables in medicine. Advanced Materials, 30(33), 1706910. https://doi.org/10.1002/adma.201706910 google scholar
- Y i, F., Zhang, Z., Kang, Z., Liao, Q., & Zhang, Y. (2019). Recent advances in triboelectric nanogenerator-based health monitoring. Advanced Functional Materials, 29(41), 1808849. https://doi.org/10.1002/adfm.201808849 google scholar
- Yilmaz, A. F., Khalilbayli, F., Ozlem, K., Elmoughni, H. M., Kalaoglu, F., Atalay, A. T., . & Atalay, O. (2022). Effect of seg-ment types on characterization of soft sensing textile actuators for soft wearable robots. Biomimetics, 7(4), 249. https://doi.org/10.3390/biomimetics7040249 google scholar
- Yoo, E. H., & Lee, S. Y. (2010). Glucose biosensors: An overview of use in clinical practice. Sensors, 10(5), 4558-4576. https://doi.org/10.3390/s100504558 google scholar
- Zakharov, A. P., & Pismen, L. M. (2018). Active textiles with Janus fibres. Soft Matter, 14(5), 676-680. https://doi.org/10. 1039/C7SM02248A google scholar
- Zhang, N., Huang, F., Zhao, s., Lv, X., Zhou, Y., Xiang, s., ... & Fan, X. (2020). Photo-rechargeable fabries as sustainable and robust power sources for wearable bioelectronics. Matter, 2(5), 1260-1269. https://doi.org/10.1016/j.matt.2020. 01.022 google scholar
- Zhao, Y., Wang, B., Hojaiji, H., Wang, Z., Lin, S., Yeung, C., ... & Emaminejad, S. (2020). A wearable freestanding electroc-hemical sensing system. Science Advances, 6(12), eaaz0007. https://doi.org/10.1126/sciadv.aaz0007 google scholar
- Zhou, J., Mulle, M., Zhang, Y., Xu, X., Li, E. Q., Han, F., ... & Lubineau, G. (2016). High-ampacity conductive polymer mic-rofibers as fast response wearable heaters and electromechanical actuators. Journal of Materials Chemistry C, 4(6), 1238-1249. https://doi.org/10.1039/C5TC03380B google scholar