BÖLÜM


DOI :10.26650/B/LSB21LSB37.2024.023.014   IUP :10.26650/B/LSB21LSB37.2024.023.014    Tam Metin (PDF)

Detection and Tracking of Mucilage Phenomenon in the Sea of Marmara by Remote Sensing Images

Sefa KüçükBahri AbacıMurat DedeSeniha Esen YükselMete Yılmaz

 Marine mucilage is a collection of mucus-like organic matter released by marine microorganisms. Intense mucilage formation in the sea prevents fisheries, maritime, and tourism activities, reduces oxygen levels, and adversely affects biodiversity. The traditional method of detecting mucilage involves taking samples from the sea and analyzing them in a laboratory. However, detecting mucilage with these standard methods is laborious since it can spread over kilometers. On the other hand, several satellites in orbit regularly collect data from the Earth’s surface, making it possible to monitor the presence of mucilage through satellite data analysis. Therefore, using both traditional and deep learning algorithms, we utilized PRISMA hyperspectral and Sentinel-2 multispectral data to detect mucilage in its early stages. Sentinel-2A has four 10m fine bands and six 20m coarse bands. To benefit from all bands of Sentinel 2A, the spectral bands must have the same spatial resolution. Although the Sentinel-2A does not have a panchromatic band, the spatial resolution of the 20m bands has been increased to 10m employing its four fine bands as a panchromatic band. We aim to identify or construct a suitable panchromatic band for coarse bands using seven of the existing pansharpening techniques to enhance the spatial resolution of 20m bands to 10m. After preprocessing, we comprehensively compare four different methods, namely Linear regression, Random forest, U-Net, and Vescovi index, on two datasets. On the multispectral dataset, we correctly detect 87.8% of the mucilage formations with the U-Net model and achieve the area under the curve (AUC) score of 0.977. However, the Random forest model has outperformed the other methods, identifying 89.8% of the mucilage formations on the hyperspectral dataset. Experimental results on satellite data with multiple resolutions, bands, different days, and times indicate that detecting mucilage from satellite data with high accuracy and without massive effort is possible.



Referanslar

  • Abaci, B., Dede, M., Yuksel, S. E., & Yilmaz, M. (2022, April). Mucilage detection from hyperspectral and multispectral satellite data. In Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imaging XXVIII (Vol. 12094). SPIE. google scholar
  • Acar, U., Yılmaz, O. S., Çelen, M., Ateş, A. M., Gülgen, F., & Şanlı, F. B. (2021). Determination of mucilage in the sea of Marmara using remote sensing techniques with google earth engine. International Journal of Environment and Geoinformatics, 8(4), 423-434. google scholar
  • Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A., & Selva, M. (2006). MTF-tailored multiscale fusion of high-resolution MS and Pan imagery. Photogrammetric Engineering & Remote Sensing, 72(5), 591-596. google scholar
  • Aiazzi, B., Baronti, S., & Selva, M. (2007). Improving component substitution pansharpening through multivariate regression of MS+ Pan data. IEEE Transactions on Geoscience and Remote Sensing, 45(10), 3230-3239. google scholar
  • Bedük F., Aydın S., Aydın M. E., & Bahadır M. (2021). Prevention of mucilage-like disasters by using passive biofilm samplers to reduce pollution load. In: Öztürk, İ., Şeker, M. (Eds.), Ecology of the Marmara Sea: Formation and Interactions of Marine Mucilage, and Recommendations for Solutions. google scholar
  • Belgiu, M., & Draguk L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. google scholar
  • Bianchi, G. (1746). Notizie sulla vasta fioritura algale del 1729. Raccolta d’opuscoli Scientifici e Filologici, 34, 256-257. google scholar
  • Blonksi, S., Gasser, G., Russell, J., Ryan, R., Terrie, G., & Zanoni, V. (2002, November). Synthesis of multispectral bands from hyperspectral data: Validation based on images acquired by aviris, hyperion, ali, and etm+. In 2002 AVIRIS Earth Science and Applications Workshop (No. SE-2001-11-00065-SSC). google scholar
  • Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. google scholar
  • Carper, W., Lillesand, T., & Kiefer, R. (1990). The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogrammetric Engineering and Remote Sensing, 56(4), 459-467. google scholar
  • Choi, J., Yu, K., & Kim, Y. (2010). A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 295-309. google scholar
  • Danovaro, R., Fonda Umani, S., & Pusceddu, A. (2009). Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. PLoS One, 4(9), e7006. google scholar
  • Ertürk, A., & Erten, E. (2023). Unmixing of Pollution-Associated Sea Snot in the Near Surface After Its Outbreak in the Sea of Marmara Using Hyperspectral PRISMA Data. IEEE Geoscience and Remote Sensing Letters, 20, 1-5. google scholar
  • Fogg, G. E. (1995). Some speculations on the nature of the pelagic mucilage community of the northern Adriatic Sea. Science of the total environment, 165(1-3), 59-63. google scholar
  • Gangkofner, U. G., Pradhan, P. S., & Holcomb, D. W. (2008). Optimizing the high-pass filter addition technique for image fusion. Photogrammetric Engineering & Remote Sensing, 74(9), 1107-1118. google scholar
  • Gasparovic, M., & Jogun, T. (2018). The effect of fusing Sentinel-2 bands on land-cover classification. International journal of remote sensing, 39(3), 822-841. google scholar
  • Gillis, D. B. (2020). An underwater target detection framework for hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1798-1810. google scholar
  • Hu, C. (2022). Sea snots in the Marmara Sea as observed from medium-resolution satellites. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. google scholar
  • Hu, C., Qi, L., Xie, Y., Zhang, S., & Barnes, B. B. (2022). Spectral characteristics of sea snot reflectance observed from satellites: Implications for remote sensing of marine debris. Remote Sensing of Environment, 269, 112842. google scholar
  • Karadurmuş U. and Sarı, M. (2022). Marine mucilage in the sea of Marmara and its effects on the marine ecosystem: mass deaths. Turkish Journal of Zoology 46(1), 93-102. google scholar
  • Kavzoğlu, T., Çölkesen, İ., & Sefercik, U. G. (2021). Detection and monitoring of the mucilage occurrence in the Marmara Sea with remote sensing technologies. Ecology of the Marmara Sea: Formation and interactions of marine mucilage, and recommendations for solutions, 199-224. google scholar
  • Kavzoğlu, T., Tonbul, H., Çölkesen, İ., & Sefercik, U. G. (2021b). The Use of Object-Based Image Analysis for Monitoring 2021 Marine Mucilage Bloom in the Sea of Marmara. International Journal of Environment and Geoinformatics, 8, 529-536. google scholar
  • Keleş, G., Yılmaz, S., & Zengin, M. (2020). Possible economic effects of mucilage on Sea of Marmara fisheries. International Journal of Agriculture Forestry and Life Sciences, 4(2), 173-177. google scholar
  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. google scholar
  • Kraus, R., & Supic, N. (2015). Sea dynamics impact on the macroaggregates: A case study of the 1997 mucilage event in the northern Adriatic. Progress in Oceanography, 138, 249-267. google scholar
  • Kraut, S., Scharf, L. L., & McWhorter, L. T. (2001). Adaptive subspace detectors. IEEE Transactions on Signal Processing, 49(1), 1-16. google scholar
  • Küçük, S., Abacı, B., Dede, M., Yüksel, S. E., & Yılmaz, M. (2022, May). Analysis and Detection of Mucilage Bloom from Multispectral Satellite Images. In 2022 30th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE. google scholar
  • Kwarteng, P., & Chavez, A. (1989). Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis. Photogramm. Eng. Remote Sens, 55(1), 339-348. google scholar
  • Laben, C. A., & Brower, B. V. (2000). U.S. Patent No. 6,011,875. Washington, DC: U.S. Patent and Trademark Office. google scholar
  • Loizzo, R., Guarini, R., Longo, F., Scopa, T., Formaro, R., Facchinetti, C., & Varacalli, G. (2018, July). PRISMA: The Italian hyperspectral mission. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 175-178). IEEE. google scholar
  • Loizzo, R., Daraio, M., Guarini, R., Longo, F., Lorusso, R., Dini, L., & Lopinto, E. (2019, July). Prisma mission status and perspective. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 4503-4506). IEEE. google scholar
  • Madrid, Y., & Zayas, Z. P. (2007). Water sampling: Traditional methods and new approaches in water sampling strategy. TrAC Trends in Analytical Chemistry, 26(4), 293-299. google scholar
  • Maxar Satellite Imagery. [online] Available at: https://www.maxar.com/products/satellite-imagery [Accessed 10 February 2023]. google scholar
  • Mecozzi, M., Acquistucci, R., Di Noto, V., Pietrantonio, E., Amici, M., & Cardarilli, D. (2001). Characterization of mucilage aggregates in Adriatic and Tyrrhenian Sea: structure similarities between mucilage samples and the insoluble fractions of marine humic substance. Chemosphere, 44(4), 709-720. google scholar
  • Penna, N., Berluti, S., Penna, A., & Ridolfi, F. (2000). Study and monitoring of mucilage in the Adriatic Sea. Water Science and Technology, 42(1-2), 299-304. google scholar
  • Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: a review. Remote Sensing, 12(14), 2291. google scholar
  • Polat Beken, S.Ç., Tüfekçi, V., Sözer, B., Yıldız, E., Mantıkçı, M., Atabay, H., Telli-Karakoç, F., Hocaoğlu, S., Ediger, D., Tolun, & L., Olgun, A. (2011). Deniz Ortamında Musilaj/mukus Oluşumunu Denetleyen Faktörlerin Laboratuar Koşullarında İncelenmesi-Final Report, No: 108Y083, Feb. 2011. google scholar
  • Rinaldi, A., Vollenweider, R. A., Montanari, G., Ferrari, C. R., & Ghetti, A. (1995). Mucilages in Italian seas: the Adriatic and Tyrrhenian seas, 1988-1991. Science of the Total Environment, 165(1-3), 165-183. google scholar
  • Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. google scholar
  • Savun-Hekimoğlu, B., & Gazioğlu, C. (2021). Mucilage problem in the semi-enclosed seas: recent outbreak in the Sea of Marmara. International Journal ofEnvironment and Geoinformatics, 8(4), 402-413. google scholar
  • Selva, M., Aiazzi, B., Butera, F., Chiarantini, L., & Baronti, S. (2015). Hyper-sharpening: A first approach on SIM-GA data. IEEE Journal of selected topics in applied earth observations and remote sensing, 8(6), 3008-3024. google scholar
  • Sentinel, E. S. A. (2017). Spectral Response Functions (S2-SRF) COPE-GSEG-EOPG-TN-15-0007. google scholar
  • Tassan, S. (1993). An algorithm for the detection of the White-Tide (“mucilage”) phenomenon in the Adriatic Sea using AVHRR data. Remote sensing of environment, 45(1), 29-42. google scholar
  • Tüfekçi, V., Balkis, N., Beken, C. P., Ediger, D., & Mantikci, M. (2010). Phytoplankton composition and environmental conditions of the mucilage event in the Sea of Marmara. Turkish Journal ofBiology, 34(2), 199-210. google scholar
  • UCS Satellite Database. [online] Available at: https://www.ucsusa.org/resources/satellite-database [Accessed 20 July 2021]. google scholar
  • Vescovi, F. D., Marletto V., Montanari G. (2003). Monitoraggio modis dimucillagini nel mare adriatico. In ASITA, 1847-1852. google scholar
  • Yüksek, A. (2021). The reasons for occurrence of sea snot/ mucilage in the sea of Marmara. In: Öztürk, İ., Şeker, M. (Eds.), Ecology of the Marmara Sea: Formation and Interactions of Marine Mucilage, and Recommendations for Solutions. google scholar
  • Zambianchi, E., Calvitti, C., Cecamore, P., D’Amico, F., Ferulano, E., & Lanciano, P. (1992). The mucilage phenomenon in the Northern Adriatic Sea, summer 1989: a study carried out with remote sensing techniques. In Marine Coastal Eutrophication (pp. 581-598). Elsevier. google scholar


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.