BÖLÜM


DOI :10.26650/B/LS34CH11CH22/2024.011.007   IUP :10.26650/B/LS34CH11CH22/2024.011.007    Tam Metin (PDF)

Parki̇nson Hastalığında Deği̇şmi̇ş Mi̇krobi̇yota Profi̇li̇

Gülsen Babacan Yıldız

Nörodejeneratif hastalıklar kronik ilerleyici ,geri dönüşümsüz hastalıklardır ve etiyolojileri ve tedavileri şu anda büyük ölçüde bilinmemektedir. İdiyopatik Parkinson hastalığı (PH), tremor, bradikinezi ve postural instabilite gibi tipik motor semptomlara yol açan bir nörodejeneratif hastalıktır. Nöropatolojik olarak, α-sinüklein (α-syn) içeren Lewy cisimciklerinin ve Lewy nöritlerinin substantia nigra pars compacta (SNpc) bölgesindeki inklüzyonları ile karakterizedir. Ancak, bu α-syn birikimleri yalnızca SNpc’de değil, aynı zamanda deri, kalp, tükürük bezleri, bağırsak mukozası gibi non-nöronal dokular-da da olduğu bildirilmiştir. PH’nin GIS’deki bu erken tutulumu, bağırsakların hastalığın başlamasında nöronal, immün, endokrin veya metabolik yollar aracılığıyla anahtar organ olabileceği şeklinde birçok teoriye yol açmıştır ve son yıllarda, bağırsak mikrobiyotasının PH’de beyin-bağırsak eksenini nasıl etkilediğinin araştırılmasına artan ilgi vardır. Bu ilişkinin anlaşılması, PH’nin etiyopatogenezini kavramak ve bağırsak mikrobiyotasını düzenleyerek veya değiştirerek yeni tedavi yaklaşımları geliştirmek açısından önemlidir. Bununla birlikte, bu alanda daha fazla araştırma yapılması ve mevcut bulguların daha da doğrulanması gerekmektedir.


DOI :10.26650/B/LS34CH11CH22/2024.011.007   IUP :10.26650/B/LS34CH11CH22/2024.011.007    Tam Metin (PDF)

Altered Microbiota Profile in Parkinson’s Disease

Gülsen Babacan Yıldız

Neurodegenerative diseases are chronic progressive and irreversible diseases and their etiology and treatment are currently largely unknown. Idiopathic Parkinson’s disease (PD) is a neurodegenerative disease that causes typical motor symptoms of tremor, bradykinesia, and postural instability. It is neuropathologically characterized by the inclusions of Lewy bodies and Lewy neurites containing α-synuclein (α-syn) in the substantia nigra pars compacta (SNpc). However, these α-syn deposits have been reported not only in the SNpc, but also in the nonneuronal tissues such as skin, heart, salivary glands, intestinal mucosa. This early involvement of GIS in PD gave rise to several theories that the gut could be the key organ in the initiation of the disease, either via neural, immune, endocrine, or meta-bolic pathways, and in recent years, there is increasing interest in investigating how gut microbiota changes the brain–gut axis in PD. Understanding this relationship is important for comprehending the etiopathogenesis of PD and developing new therapeutic approaches by regulating or modifying the gut microbiota. However, further research is needed in this field, and existing findings need to be further validated.



Referanslar

  • Abbott RD, Petrovitch H, Masaki KH (2001). Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 57:456-462. doi: 10.1212/wnl.57.3.456. google scholar
  • Babacan Yildiz G, Kayacan ZC, Karacan I, Sumbul B, Elibol B, Gelisin O, Akgul O. (2023). Altered gut mic-robiota in patients with idiopathic Parkinson’s disease: an age-sex matched case-control study. Acta Neurol Belg. 2023 Jun;123(3):999-1009. doi: 10.1007/s13760-023-02195-0. Jan 31. google scholar
  • Baldereschi M, Di Carlo A, Rocca, WA, Vanni P, Maggi S, Perissinotto E, et al. (2000). Parkinson’s disease and Parkinsonism in a longitudinal study: Two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging. Neurology ;55. 1358-63. doi:10.1212/wnl.55.9.1358 google scholar
  • Barichella, M., Severgnini, M., Cilia, R., Cassani, E., Bolliri, C., Caronni, S., Ferri, V. (2019). Unraveling gut microbiota in Parkinson’s disease and atypical Parkinsonism. Mov. Disord. 34 (3), 396-405. doi: 10.1002/ mds.27581 google scholar
  • Braak H, Rüb U, Gai WP, Del Tredici K (2003). Idiopathic Parkinson’s disease: possible routes by which vulne-rable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna). May;110(5):517-36. doi: 10.1007/s00702-002-0808-2. google scholar
  • Bedarf, J.R., Hildebrand, F., Coelho, L.P., Sunagawa, S., Bahram, M., Goeser, F., Bork, P., (2017). Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naıve Parkinson’s disease patients. Genome Med. 9 (1), 39. doi.org/10.1186/s13073-017-0428-y google scholar
  • Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567-590. doi: 10.1152/physrev.1990.70.2.567. google scholar
  • Blatchford P, Stoklosinski H, Eady S, et al. (2017). Consumption of kiwi- fruit capsules increases Faecalibacte-rium prausnitzii abundance in functionally constipated individuals: a randomised controlled human trial. J Nutr Sci;6:e52. doi: 10.1017/jns.2017.52. google scholar
  • Buford, T.W., (2017). (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome 5, 80. doi.org/10.1186/s40168-017-0296-0 google scholar
  • Cersosimo MG. (2015). Gastrointestinal biopsies for the diagnosis of alpha- synuclein pathology in Parkinson’s disease. Gastroenterol Res Pract: 476041. doi: 10.1155/2015/476041. google scholar
  • Chen X, Hu Y, Cao Z, Liu Q, Cheng Y (2018). Cerebrospinal fluid inflammatory cytokine aberrations in Alzhei-mer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Front Immunol. 9:2122. doi: 10.3389/fimmu.2018.02122. google scholar
  • Choi, D. Y., Zhang, J., and Bing, G. (2010). Aging Enhances the Neuroinflammatory Response and Alpha-Sy-nuclein Nitration in Rats. Neurobiol. Aging 31, 1649-1653. doi: 10.1016/j.neurobiolaging.2008.09.010 google scholar
  • Clairembault T, Leclair-Visonneau L, Coron E, et al. (2015). Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol Commun;3:12. doi: 10.1186/s40478-015-0196-0. google scholar
  • Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. (2019).The role of short-chain fatty acids in microbio-ta-gut-brain communication. Nat Rev Gastroenterol Hepatol. Aug;16(8):461-478. doi: 10.1038/s41575-019-0157-3. google scholar
  • De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., et al. (2014). Microbiota-Generated Metabolites Promote Metabolic Benefits Via Gut-Brain Neural Circuits. Cell 156, 84-96. doi: 10.1016/j.cell.2013.12.016 google scholar
  • Dorsey ER, Sherer T, Okun MS, Bloem BR (2018). The emerging evidence of the Parkinson pandemic. J Par-kinsons Dis; 8: S3-8. doi: 10.3233/JPD-181474. PMID: 30584159 google scholar
  • Duerkop BA, Vaishnava S, Hooper LV (2009). Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31 (3):368-376. doi: 10.1016/j.immuni.2009.08.009. google scholar
  • Edwards LL, Pfei er RF, Quigley EM, Hofman R, Ballu M. (1991). Gastrointestinal symptoms in Parkinson’s disease. Mov Disord; 6:151-156. doi: 10.1002/mds.870060211. google scholar
  • Fahn, S. (2003). Description of Parkinson’s disease as a clinical syndrome. Ann. N. Y. Acad. Sci. 991, 1-14. doi: 10.1111/j.1749-6632.2003.tb07458.x. google scholar
  • Fellner L, et al. (2013).Toll-like receptor 4 is required for alpha-synuclein dependent activation of microglia and astroglia. Glia. 2013;61:349-60.doi: 10.1002/glia.22437. google scholar
  • Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA et al (2011). Increased intestinal permeability corre- lates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 6(12):e28032. doi: 10.1371/journal.pone.0028032. google scholar
  • Forsythe P, Bienenstock J, Kunze WA. (2014). Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol.; 817:115-33. doi. org/10.1007/978-1-4939-0897-4. google scholar
  • Gabrielli M, Bonazzi P, Scarpellini E, et al. (2011). Prevalence of small intestinal bacterial overgrowth in Par-kinson’s disease. 26: 889-92. doi: 10.1002/mds.23566. google scholar
  • Gelpi E, Navarro-Otano J, Tolosa E, et al. (2014). Multiple organ involve- ment by alpha-synuclein pathology in Lewy body disorders. Mov Disord; 29:1010-1017. doi: 10.1002/mds.25776. google scholar
  • Gerhardt S, Mohajeri MH (2018). Changes of colonic bacterial composition in Parkinson’s disease and other neurodegenerative diseases. Nutrients 10(6):E708 . doi: 10.3390/nu10060708. google scholar
  • Goldman SM, Tanner C. (1998). Etiology of Parkinson’s’s disease. In: Jankovic J, Tolosa E (Eds). Parkinson’s disease and movement disorders (pp. 133-58). Baltimore, MD: Lippincott-Williams and Wilkins. google scholar
  • Goedert, M., (2015). Neurodegeneration Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science 349, 1255555. doi: 10.1126/science.1255555. google scholar
  • Gutsmann T, Müller M, Carroll SF, MacKenzie RC, Wiese A, Seydel U (2001) Dual role of lipopolysaccharide (LPS)-binding protein in neutralization of LPS and enhancement of LPS-induced activation of mononuclear cells. Infect Immun 69(11):6942-6950. doi: 10.1128/IAI.69.11.6942-6950.2001. google scholar
  • Harrison IF, Dexter DT (2013). Epigenetic targeting of histone dea- cetylase: therapeutic potential in Parkinson’s disease? Pharmacol Ther. 2013;140:34-52. doi: 10.1016/j.pharmthera.2013.05.010. google scholar
  • Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K, Shibata A. (2015). Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One 10(11) e0142164. doi: 10.1371/journal.pone.0142164. google scholar
  • Heintz-Buschart, A., Pandey, U., Wicke, T., Sixel-D€oring, F., Janzen, A., Sittig-Wiegand, E., Trenkwalder, C., Oertel, (2018). The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33, 88-98. doi: 10.1002/mds.27105. google scholar
  • Hernando S, Requejo C, Herran E, Ruiz-Ortega JA, Morera-Herreras T, Lafuente JV, Ugedo L (2019). Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson’s disease: the role of glia and NRf2 regulation. Neurobiol Dis 121:252-262. doi: 10.1016/j.nbd.2018.10.001. google scholar
  • Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD et al (2017). Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739-749. doi: 10.1002/mds.26942. google scholar
  • Jacob Horsager, Katrine B Andersen, Karoline Knudsen, Casper Skj®rb®k, Tatyana D Fedorova, Niels Ok-kels, (2020). Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study, Bra-in, Volume 143, Issue 10, October, Pages 3077-3088. doi: 10.1093/brain/awaa238. Keshavarzian, A., Green, S.J., Engen, P.A., Voigt, R.M., Naqib, A., Forsyth, C.B., Mutlu, E. (2015). Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 30, 1351-1360. doi: 10.1002/mds.26307. google scholar
  • Komatsuzaki Y, Murakami G, Tsurugizawa T, Mukai H, Tanabe N, Mitsuhashi K, et al. (2005). Rapid spinoge-nesis of pyramidal neurons induced by activation of glucocorticoid receptors in adult male rat hippocampus. Biochem Biophys Res Commun. 335:1002-7. doi: 10.1016/j.bbrc.2005.07.173 google scholar
  • Klingelhoefer L, Reichmann H (2015). Pathogenesis of Parkinson disease—the gut-brain axis and environmental factors. NatRevNeurol 11(11):625-636. doi: 10.1038/nmeurol.2015.197. google scholar
  • Lewis, K. et al. (2010). Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm. Bowel. Dis. 16, 1138-1148. doi: 10.1002/ibd.21177. google scholar
  • Lin CH, et al. (2019). Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J Neuroinflammation.;16:129. doi.org/10.1186/s12974-019-1528-y google scholar
  • Liu HN, Wu H, Chen YZ, Chen YJ, Shen XZ, Liu TT (2017). Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: a systematic review and meta-analysis. Dig Liver Dis 49(4):331-337. doi: 10.1016/j.dld.2017.01.142. google scholar
  • Martinez-Martin, P., (2011). The importance of non-motor disturbances to quality of life in Parkinson’s disease. J. Neurol. Sci. 310 (1), 12-16. doi: 10.1016/j.jns.2011.05.006.7;2017:41-5. google scholar
  • Macfarlane, S. & Macfarlane, G. T. (2003). Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62, 67-72. doi: 10.1079/PNS2002207. google scholar
  • Menozzi E, Macnaughtan J, Schapira AHV (2021). The gut-brain axis and Parkinson disease: clinical and pat-hogenetic relevance. Ann Med 53:611-625. doi: 10.1080/07853890.2021.1890330. google scholar
  • Nishiwaki H, Ito M, Ishida T, Hamaguchi T, Maeda T, Kashihara K, Tsuboi Y, et al. (2020). Meta-Analysis of Gut Dysbiosis in Parkinson’s Disease. Mov Disord. Sep;35(9):1626-1635. doi: 10.1002/mds.28119. google scholar
  • Olanow, C.W., Prusiner, S.B., (2009). Is Parkinson’s disease a prion disorder? Proc. Natl. Acad. Sci. U.S.A. 106, 12571-12572. doi.org/10.1073/pnas.0906759106 google scholar
  • Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F. (2017). Oral and nasal microbiota in Parkinson’s disease. Parkinsonism Relat Disord.;38:61-7. doi: 10.1016/j.parkreldis.2017.02.026. google scholar
  • Prechtl, J., & Powley, T. (1990). B-Afferents: A fundamental division of the nervous system mediating homeos-tasis? Behavioral and Brain Sciences, 13(2), 289-300. doi:10.1017/S0140525X00078729 google scholar
  • Petrov VA, et al. (2017) Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med. 2017;162:734-7. doi: 10.1007/s10517-017-3700-7. google scholar
  • Plöger S, Stumpff F, Penner GB, Schulzke JD, Gabel G, Martens H, Shen Z, Günzel D, Aschenbach JR (2012). Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci 1258:52-59. doi: 10.1111/j.1749-6632.2012.06553.x. google scholar
  • Pokusaeva K, Johnson C, Luk B, Uribe G, Fu Y, Oezguen N, et al. (2017). GABA- producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil 29:1-14. doi: 10.1111/ nmo.12904 google scholar
  • Shannon KM, Keshavarzian A, Mutlu E et al. (2012). Alpha-synuclein in colonic submucosa in early untreated Parkinson’s disease. Mov Disord 27:709-715. doi: 10.1002/mds.23838 google scholar
  • Shen, X., Yang, H., Wu, Y., Zhang, D., and Jiang, H. (2017). Meta-Analysis: Association of Helicobacter Pylori Infection With Parkinson’s Diseases. Helicobacter 22, e12398. doi: 10.1111/hel.12398 google scholar
  • Scheperjans F, et al. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord.;30:350-8. doi: 10.1002/mds.26069. google scholar
  • Svensson E, Horvath-Puho E, Thomsen RW, et al. (2015). Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol ;78: 522-529. doi: 10.1002/ana.24448 google scholar
  • Vascellari S, Palmas V, Melis M, Pisanu S, Cusano R, Uva P, Perra D. (2020). Gut microbiota and metabolo-me alterations associated with Parkinson’s disease.mSystems. 2020 Sep 15;5(5):e00561-20. doi: 10.1128/ mSystems google scholar
  • Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. (2016). Pathological alpha-synuclein in gast-rointestinal tissues from prodromal Parkinson disease patients. Ann Neurol 2016; 79: 940-9. doi: 10.1002/ ana.24648 google scholar
  • Schrag A, Schott JM. (2006) Epidemiological, clinical, and genetic characteristics of early-onset Parkinsonism, Lancet Neurol; 5:355-63. doi: 10.1016/S1474-4422(06)70411-2 google scholar
  • Parthasarathy G, Chen J, Chen X, et al. (2016). Relationship between microbiota of the colonic mucosa vs feces and symptoms, colonic transit, and methane production in female patients with chronic con- stipation. Gastroenterology; 150:367-379.e1. doi: 10.1053/j.gastro.2015.10.005 google scholar
  • Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y (2016). Aberrations in Peripheral Inflammatory Cytokine Levels in Parkinson Disease: A Systematic Review and Meta-analysis. JAMA Neurol 73 (11):1316-1324. doi: 10.1001/jamaneurol.2016.2742. google scholar
  • Tan AH, Mahadeva S, Thalha AM, Gibson PR, Kiew CK, Yeat CM et al.(2014). Small intestinal bacterial overgrowth in Parkin- son’s disease. Parkinsonism Relat Disord 20(5):535-540. doi: 10.1016/j.parkrel-dis.2014.02.019. google scholar
  • Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Burmann J et al. (2016). Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age- matched controls. Par-kinsonism RelatDisord 32:66-72. doi: 10.1016/j.parkreldis.2016.08.019. google scholar
  • Unger MM, Moller JC, Mankel K, et al. (2011). Postprandial ghrelin response is reduced in patients with par-kinson’s disease and idiopathic REM sleep behaviour disorder: a peripheral biomarker for early Parkinson’s disease? J Neurol; 258:982-990. doi: 10.1007/s00415-010-5864-1. google scholar
  • van IJzendoorn SCD, Derkinderen P. (2019). The Intestinal Barrier in Parkinson’s Disease: Current State of Knowledge. J Parkinsons Dis.; 9(s2):S323-S329. doi: 10.3233/JPD-191707. google scholar


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.