BÖLÜM


DOI :10.26650/B/ET07.2021.003.05   IUP :10.26650/B/ET07.2021.003.05    Tam Metin (PDF)

Büyük Sağlık Verisi ve Bilgi Yönetimi

Sevinç GülseçenEda Çevik

Teknoloji insanlığın ilk gününden beri Dünya tarihini dönemlere ayıran önemli kavram olmuştur ve her dönem taş, metal, toprak, buhar, elektrik gibi bir enerji ya da hammadde ile birlikte anılmıştır. Doğumuna şahit olduğumuz Endüstri 4.0 çağında ise Büyük Veri Teknolojileri ve veri kilit rol oynamaktadırlar. Sağlık bilimleri, astronomi, hesaplamalı biyoloji, yüksek enerji fiziği gibi disiplinlerin ihtiyaçlarını karşılaşmak için geliştirilen birçok teknoloji web 2.0, sosyal medya ve iş dünyasının kullanımı ile birlikte Büyük Veri Teknolojileri adıyla araştırmalara konu olmuştur. Büyük Veri Ekosistemi olarak adlandırılaran, hacim, hız, çeşitlilik gibi vasıflara sahip büyük verinin depolanması, yakalanması, iyileştirilmesi, aranması, paylaşılması, aktarılması, analizi ve görselleştirilmesi için gerekli teknolojiler uygulandığı her alanı dönüştürme potansiyeline sahiptir. Kişiye özgü tedavi planlanmasını hedefine koyan Hassas Tıp alanının doğumu, toplum sağlığını tehdit eden bulaşıcı hastalıkların coğrafi konum gibi karmaşık değişkenlerle olan ilişkilerini inceleme imkanı ve kalıtsal hastalıkların tedavisi için umut olan gen terapisi gibi hücre, birey, toplum özelinde çözümler üretmenin arkasında bu teknolojiler bulunmaktadır. Nasıl ki üretim işletmelerinde hammaddeden ürün elde etme sürecinin yönetilmesi gerekiyorsa, aynı şekilde bilgiyi merkezine alan bir sağlık sistemi oluşturmak için bilgi üretiminin de yönetilmesi gerekmektedir. Hasta kayıtlarının elektronik ortamda tutulmaya başlanması, röntgen gibi görüntüleme cihazlarının çıktılarının dijitalleşmesi, genetik alanındaki gelişmeler ve hatta sosyal medya veri patlaması yaratmıştır. Bu sebeple Bilgi Yönetimi alanına olan ihtiyaç artmıştır ve tıbbi uygulama, tıp eğitimi, tıbbi araştırma faaliyetlerinden akan bilgilerin toplanması, analiz edilmesi ve yayılmasını konu edinen Sağlık Bilgi Yönetimi uygulamalı disiplininin gelişmesine sebep olmuştur. Bu çalışmada Bilgi Yönetimi, Büyük Veri teorik alanları ve Büyük Sağlık Verisi, Sağlık Bilgi Yönetimi uygulamalı disiplinleri açıklanmaya çalışılmıştır.


DOI :10.26650/B/ET07.2021.003.05   IUP :10.26650/B/ET07.2021.003.05    Tam Metin (PDF)

Big Medical Data and Knowledge Management

Sevinç GülseçenEda Çevik

Since the first day of humanity, technology has been an important concept that divides the history of the Earth into periods and has been mentioned with energy or raw materials such as stone, metal, earth, steam, and electricity. In the age of Industry 4.0, in which its birth is witnessed, big data technologies and data play key roles. Many technologies that were developed to meet the needs of disciplines such as health sciences, astronomy, computational biology, or high energy physics have been the subject of research under the name of big data technologies with the use of Web 2.0, social media, and the business world. The technologies required for the storage, capture, improvement, search, sharing, transfer, analysis, and visualization of big data, which are called big data ecosystem, with characteristics such as volume, speed, and diversity, have the potential to transform every field in which they are applied. These technologies are behind the development of individual, cell, and community-specific solutions such as the birth of the precision medicine field, which aims to plan personalized treatment and offers the opportunity to examine the relationships of complex variables like geographical data with infectious diseases that threaten public health, and gene therapy, which is a hope for treating hereditary diseases. Just as it is necessary to manage the process of obtaining products from raw materials in manufacture enterprises, in the same way that information production should be managed to create a health system that takes information at its center. The start of maintaining patient records electronically, digitalization of the output of imaging devices such as x-rays, advances in genetics and even social media have created a data explosion. For this reason, there is an increased need for the field of knowledge management, which has led to the development of the applied discipline of health knowledge management that discusses collecting, analyzing, and disseminating information flowing from medical practice, medical education, and medical research activities. This study attempts to explain the applied disciplines of knowledge management, big data theoretical fields and big health data, and health knowledge management.



Referanslar

  • Abidi, S. S. R. (2001). Knowledge management in healthcare: towards ‘knowledge-driven’decision-support services. International journal of medical informatics, 63(1-2), 5-18. google scholar
  • Abidi, S. S. R. (2007, July). Healthcare knowledge management: The art of the possible. In AIME Workshop on Knowledge Management for Health Care Procedures (pp. 1-20). Springer, Berlin, Heidelberg.Ackoff, R. L. (1989). From data to wisdom. Journal of applied systems analysis, 16(1), 3-9. google scholar
  • Agrahari, A., & Rao, D. (2017). A review paper on Big Data: technologies, tools and trends. Int Res J Eng Technol, 4(10), 10. google scholar
  • Akay, E. Ç. (2018). Ekonometride Yeni Bir Ufuk: Büyük Veri ve Makine Öğrenmesi. Sosyal Bilimler Araştırma Dergisi, 7(2), 41-53. google scholar
  • Araujo, M. B., & Naimi, B. (2020). Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. medRxiv. google scholar
  • Arora, S., & Agarwal, M. (2018). Empowerment through big data: issues & challenges. Int J Sci Res Comput Sci Eng Inf Technol, 3, 1-9. google scholar
  • Atalay, M., & Çelik, E. (2017). Büyük Veri Analizinde Yapay Zekâ Ve Makine Öğrenmesi Uygulamalari-Artifi-cial Intelligence and Machine Learning Applications in Big Data Analysis. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(22), 155-172. google scholar
  • Bahga, A., & Madisetti, V. K. (2013). A cloud-based approach for interoperable electronic health records (EHRs). IEEE Journal of Biomedical and Health Informatics, 17(5), 894-906. google scholar
  • Balkhair, A., Al Maamari, K., & Alawi, F. B. (2013). The struggle against MERS-CoV (the novel coronavirus). Oman Medical Journal, 28(4), 226. google scholar
  • Baker, M. (2012). Building better biobanks. Nature, 486(7401), 141-146. google scholar
  • Baskarada, S., & Koronios, A. (2013). Data, information, knowledge, wisdom (DIKW): a semiotic theoretical and empirical exploration of the hierarchy and its quality dimension. Australasian Journal of Information Systems, 18(1). google scholar
  • Bellinger, G., Castro, D.,&Mills, A. (2004). Data, information, knowledge, and wisdom. https://homepages. dcc.ufmg.br/~amendes/SistemasInformacaoTP/TextosBasicos/Data-Information-Knowledge.pdf Erişim: Şubat, 2020 google scholar
  • Berman, J. J. (2013). Principles of big data : preparing, sharing, and analyzing complex information. ABD: Elsevier google scholar
  • Beyhan, O. (2017). Büyük Veri Çalışmaları. Türkiye Bilişim Derneği Kamu Bilişim Merkezleri Yöneticileri Birliği Kamu Bilişim Platformu (KAMU BIB’19) [http://www.kamu-bib.org.tr/kamubib-19/sunumlar/ozan-beyhan-kamu-bib19.pdf] Erişim: Mayıs, 2020 google scholar
  • Bhatt, D. (2000). EFQM excellence model and knowledge management implications. Published by EFQM Organization, 8. google scholar
  • Bibri, S. E. (2018). Smart Sustainable Cities of the Future: The Untapped Potential of Big Data Analytics and Context-Aware Computing for Advancing Sustainability. İsviçre: Springer google scholar
  • Birinci, Ş. (2019). [https://www.memurlar.net/haber/856202/saglik-bakanligi-saglikta-dijitallesmede-dunya-nin-zirvesindeyiz.html] Erişim: Mayıs, 2020 google scholar
  • Boni Global (2020). [https://www.boniglobal.com/solutions/korona-takip/] Erişim: 2020 google scholar
  • Calman, N., Hauser, D., Lurio, J., Wu, W. Y., & Pichardo, M. (2012). Strengthening public health and primary care collaboration through electronic health records. American journal of public health, 102(11), e13-e18. google scholar
  • Catalyst, N. E. J. M. (2018). Healthcare big data and the promise of value-based care. NEJM Catalyst, 4(1). [https://catalyst.nejm.org/doi/full/10.1056/CAT.18.0290] Erişim: Şubat, 2020 google scholar
  • Chatti, M. A., Klamma, R., Jarke, M., & Naeve, A. (2007, July). The Web 2.0 driven SECI model based learning process. In Seventh IEEE International Conference on Advanced Learning Technologies (ICALT 2007) (pp. 780-782). IEEE. google scholar
  • Chen, E. T. (2013). An observation of healthcare knowledge management. Communications of the IIMA, 13(3), 7. google scholar
  • Chen, M. (2014). NDNC-BAN: supporting rich media healthcare services via named data networking in cloud-assisted wireless body area networks. Information Sciences, 284, 142-156. google scholar
  • Chen, M., Hao, Y., Hwang, K., Wang, L., & Wang, L. (2017). Disease prediction by machine learning over big data from healthcare communities. Ieee Access, 5, 8869-8879. google scholar
  • Chitra, M. K., & MCA, M. (2018). Hurdles of Big Data in Business Application. International Conference on Data Analytics & Visualization Edıtors Of Specıal Issue Journal, 8. google scholar
  • Coleman, C. M., & Frieman, M. B. (2014). Coronaviruses: important emerging human pathogens. Journal of virology, 88(10), 5209-5212. google scholar
  • Cox, M., & Ellsworth, D. (1997a). Application-controlled demand paging for out-of-core visualization. In Pro-ceedings. Visualization’97 (Cat. No. 97CB36155) (pp. 235-244). IEEE. google scholar
  • Cox, M., & Ellsworth, D. (1997b). Managing big data for scientific visualization. In ACM Siggraph 97, pp. 21-38. google scholar
  • Crowley, E., Di Nicolantonio, F., Loupakis, F., & Bardelli, A. (2013). Liquid biopsy: monitoring cancer-genetics in the blood. Nature reviews Clinical oncology, 10(8), 472. google scholar
  • Dalkir, K. (2011). Knowledge Management in Theory and Practice. 2. Baskı. ABD: The MIT Press google scholar
  • David, R. (2008). The art of healing in ancient Egypt: a scientific reappraisal. The Lancet, 372(9652), 1802-1803. google scholar
  • Demchenko, Y., De Laat, C., & Membrey, P. (2014, May). Defining architecture components of the Big Data Ecosys-tem. In 2014 International Conference on Collaboration Technologies and Systems (CTS) (pp. 104-112). IEEE. google scholar
  • Demchenko, Y., Ngo, C., & Membrey, P. (2013). Architecture framework and components for the big data ecosystem. Journal of System and Network Engineering, 4(7), 1-31. google scholar
  • Demirkır, D. (2020). Tomografi görüntüsüyle korona tahmini! Koronayı teşhis eden yapay zeka geliştirildi! [https://www.haberturk.com/koronavirusu-1-dakikada-teshis-eden-yapay-zeka-gelistirildi-2629572] Erişim: Mayıs, 2020 google scholar
  • Domo. Data Never Sleeps Infographics. [https://www.domo.com/learn/data-never-sleeps-7] Erişim: Şubat, .2020 google scholar
  • Duda, O. M., Kunanets, N. E., Matsiuk, O. V., Pasichnyk, V. V., & Rzheuskyi, A. V. (2018). Fog computing and Big data in projects of class smart city. ECONTECHMOD: An International Quarterly Journal on Econo-mics of Technology and Modelling Processes, 7. google scholar
  • Dwivedi, A. N., Bali, R. K., & Naguib, R. N. (2007). Building new healthcare management paradigms: A case for healthcare knowledge management. In Healthcare Knowledge Management (pp. 3-10). Springer, New York, NY. google scholar
  • EcoHealth Alliance (2017). Establishing Biosurveillance Networks in Western Asia. [https://www.ecohealthal-liance.org/program/wab-net] Erişim: Mayıs, 2020 google scholar
  • EcoHealth Alliance (2018). With Big Data and Predictive Analytics, Scientists Are Getting Smarter About Outb-reaks [https://www.ecohealthalliance.org/2018/12/with-big-data-and-predictive-analytics-scientists-are-get-ting-smarter-about-outbreaks] Erişim: Mayıs, 2020 google scholar
  • eHealth. The health data ecosystem and big data [Internet]. Geneva: World Health Organization; 2016. [http:// www.who.int/ehealth/resources/ecosystem/en/] Erişim: Mayıs, 2020 google scholar
  • El Morr, C., & Subercaze, J. (2010). Knowledge management in healthcare. In Handbook of research on deve-lopments in e-health and telemedicine: Technological and social perspectives (pp. 490-510). IGI Global. google scholar
  • Elhoseny, M., Abdelaziz, A., Salama, A. S., Riad, A. M., Muhammad, K., & Sangaiah, A. K. (2018). A hybrid model of internet of things and cloud computing to manage big data in health services applications. Future generation computer systems, 86, 1383-1394. google scholar
  • Ernst & Young (1999) http: //www.ey.com/consulting/kbb/k2 work.asp Aktaran: Rubenstein-Montano, B., Lie-bowitz, J., Buchwalter, J., McCaw, D., Newman, B., Rebeck, K., & Team, T. K. M. M. (2001). A systems thinking framework for knowledge management. Decision support systems, 31(1), 5-16. google scholar
  • Estrela, V. V., Monteiro, A. C. B., França, R. P., Iano, Y., Khelassi, A., & Razmjooy, N. (2018). Health 4.0: app-lications, management, technologies and review. Medical Technologies Journal, 2(4), 262-276. google scholar
  • Fernandez, I. B. & Sabherwal, R. (2010) Knowledge Management Systems And Processes. İngiltere: M.E. Shar-pe, Inc. google scholar
  • Gartner Glossary. [https://www.gartner.com/en/information-technology/glossary/big-data] Erişim: Şubat, 2020 google scholar
  • Ghuman, K. & Aswathappa, K. (2010). Management: Concepts, Practice & Cases. Hindistan: Tata McGraw Hil-lGökçen, H. (2011) .Yönetim/Bilgi Bilişim Sistemleri: Analiz veTasarım. 2. Baskı. Ankara: Afşar Matbaacılık google scholar
  • Gu, J., & Zhang, L. (2014). Some comments on big data and data science. Annals of data science, 1(3-4), 283-291. google scholar
  • Gunnar, A. (2007). Healthcare Politics, Policy and Services: A Social Justice Analysis. Amerika: Springer Pub-lishing Company google scholar
  • Güvercin, A., Mil, H. İ., & Tarım, B. (2016). Sağlık hizmetlerinin finansmanı ve sosyal güvenlik kurumu (SGK). Bartın Üniversitesi İİ BF Dergisi, 7(13), 80-94. google scholar
  • Hajir, J., Obeidat, B. Y., Al-dalahmeh, M. A., & Masa’deh, R. (2015). The role of knowledge management inf-rastructure in enhancing innovation at mobile telecommunication companies in Jordan. European Journal of Social Sciences, 50(3), 313-330. google scholar
  • Han, J., Haihong, E., Le, G., & Du, J. (2011, October). Survey on NoSQL database. In 2011 6th international conference on pervasive computing and applications (pp. 363-366). IEEE. google scholar
  • HİPAM (2017). HİPAM’ın Yeni Yerinin Açılış Töreni. [https://hipam.marmara.edu.tr/notice/hipamin-yeni-yeri-nin-acilis-toreni] Erişim: Mayıs, 2020 google scholar
  • Hoyt, E. R. Bernstam, E. V. (2014). Overview of Health Informatics. İçinde: Health Informatics: Practical Guide for Healthcar and Information Technology Professionals. Ed: Hoyt, E. R. USA: Informatics Education google scholar
  • Hu, H., Wen, Y., Chua, T. S., & Li, X. (2014). Toward scalable systems for big data analytics: A technology tutorial. IEEE access, 2, 652-687. google scholar
  • Jacques, L. B. (2010). Electronic health records and respect for patient privacy: a prescription for compatibility. google scholar
  • Vand. J. Ent. & Tech. L., 13, 441. google scholar
  • Jifa, G., & Lingling, Z. (2014). Data, DIKW, Big data and Data science. Procedia Computer Science, 31, 814821. google scholar
  • Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013, January). Big data: Issues and challenges moving forward. In 2013 46th Hawaii International Conference on System Sciences (pp. 995-1004). IEEE. google scholar
  • Kalpic, B., & Bernus, P. (2006). Business process modeling through the knowledge management perspective. Journal of knowledge management. google scholar
  • Kandaloosi, A. S., Lhazaei, K., & Khanjani, T. (2014). Examining infrastructural obstacles against knowledge management in high education centers in free west zone of Mazandarn Province. European Online Journal of Natural and Social Sciences: Proceedings, 2(3 (s)), pp-3052. google scholar
  • Kayaaltı Ö, Kara S, (2007). Erciyes Üniversitesi Hastaneleri Radyoloji Servisi PACS Sisteminin İncelenmesi. Antalya: 2. E- Sağlık Kongresi google scholar
  • Kişisel Sağlık Verileri Çalışma Grubu [http://www.kisiselsaglikverileri.org] Erişim: Mayıs, 2020 google scholar
  • Kişisel Verilerin Korunması Kanunu (2016). [https://www.mevzuat.gov.tr/MevzuatMetin/1.5.6698.pdf] Erişim: Mayıs, 2020 google scholar
  • Ko, J., Baldassano, S. N., Loh, P. L., Kording, K., Litt, B., & Issadore, D. (2018). Machine learning to detect signatures of disease in liquid biopsies-a user’s guide. Lab on a Chip, 18(3), 395-405. google scholar
  • Köse, İ. (2008). Sağlık bilişimi ile SGK sağlıkta tek aktör olmaya doğru ilerliyor. Sağlık Düşüncesi ve Tıp Kültürü Platformu. [http://www.sdplatform.com/Dergi/138/Saglik-bilisimi-ile-SGK-saglikta-tek-aktor-ol-maya-dogru-ilerliyor.aspx] Erişim: Mayıs, 2020 google scholar
  • Landset, S., Khoshgoftaar, T. M., Richter, A. N., & Hasanin, T. (2015). A survey of open source tools for machine learning with big data in the Hadoop ecosystem. Journal of Big Data, 2(1), 24. google scholar
  • Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group research note, 6(70), 1. [https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Control-ling-Data-Volume-Velocity-and-Variety.pdf] Erişim: Şubat, 2020 google scholar
  • Lenz, R., Blaser, R., & Kuhn, K. A. (1999). Hospital information systems: chances and obstacles on the way to integration. Studies in health technology and informatics, 25-30. google scholar
  • Liebowitz, J. (2000) Building Organizational Intelligence: A Knowledge Management Primer, CRC Press, Boca Raton, Aktaran: Rubenstein-Montano, B., Liebowitz, J., Buchwalter, J., McCaw, D., Newman, B., Rebeck, K., & Team, T. K. M. M. (2001). A systems thinking framework for knowledge management. Decision support systems, 31(1), 5-16. google scholar
  • Liu, Y., Zhang, D., Lu, G., & Ma, W. Y. (2007). A survey of content-based image retrieval with high-level se-mantics. Pattern recognition, 40(1), 262-282. google scholar
  • Low, S. K., Zembutsu, H., & Nakamura, Y. (2018). Breast cancer: The translation of big genomic data to cancer precision medicine. Cancer science, 109(3), 497-506. google scholar
  • Mahmood, N., Burney, A., Abbas, Z., & Rizwan, K. (2012). Data and knowledge management in designing healthcare information systems. International Journal of Computer Applications, 50(2), 34-39. google scholar
  • Manikandan, G., & Abirami, S. (2017). Big Data Layers and Analytics: A Survey. In Computer Communication, Networking and Internet Security (pp. 383-393). Springer, Singapore. google scholar
  • Manogaran, G., Thota, C., Lopez, D., Vijayakumar, V., Abbas, K. M., & Sundarsekar, R. (2017). Big data know-ledge system in healthcare. In Internet of things and big data technologies for next generation healthcare (pp. 133-157). Springer, Cham. google scholar
  • Marquardt, M. (1996) Building the Learning Organization: A Systems Approach to Quantum Improvement and Global Success, McGraw-Hill, New York, Aktaran: Rubenstein-Montano, B., Liebowitz, J., Buchwalter, J., McCaw, D., Newman, B., Rebeck, K., & Team, T. K. M. M. (2001). A systems thinking framework for knowledge management. Decision support systems, 31(1), 5-16. google scholar
  • Mehdipour, Y., & Zerehkafi, H. (2013). Hospital Information System (HIS): At a Glance. Asian Journal of Computer andInformation Systems (ISSN: 2321-5658), 1(02). google scholar
  • Miloslavskaya, N., & Tolstoy, A. (2016). Big data, fast data and data lake concepts. Procedia Computer Science, 88(300-305), 63. google scholar
  • Ming, H., Chang, C. K., & Yang, J. (2015, July). Dimensional situation analytics: from data to wisdom. In 2015 IEEE 39th Annual Computer Software and Applications Conference (Vol. 1, pp. 50-59). IEEE. google scholar
  • Mitchell, R., & Waldby, C. (2010). National biobanks: clinical labor, risk production, and the creation of biova-lue. Science, Technology, & Human Values, 35(3), 330-355. google scholar
  • Mondal, K. (2016). Application design and analysis of different hybrid intelligent techniques. International Journal of Hybrid Intelligent Systems, 13(3-4), 173-181. google scholar
  • Montani, S., & Bellazzi, R. (2002). Supporting decisions in medical applications: the knowledge management perspective. International journal of medical informatics, 68(1-3), 79-90. google scholar
  • Montani, S., & Bellazzi, R. (2002). Supporting decisions in medical applications: the knowledge management perspective. International journal of medical informatics, 68(1-3), 79-90. google scholar
  • NIST (2015) Big Data Interoperability Framework: Volume 6, Reference Architecture. https://bigdatawg.nist. gov/_uploadfiles/NIST.SP.1500-6.pdf Erişim: Şubat, 2020 google scholar
  • Nonaka, I., & Konno, N. (1998). The concept of “Ba”: Building a foundation for knowledge creation. California management review, 40(3), 40-54. google scholar
  • North, K. & Kumta, G. (2018). Knowledge Management: Value Creation Through Organizational Learning. 2. Baskı. İsviçre: Springer google scholar
  • Özer, S. (2019). Büyük Veri Teknolojileri Ve Veri Madenciliği Yöntemleri İle Medikal Veri Analizi. Marmara Üniversitesi Fen Bilimleri Enstitüsü Yayınlamamış Yüksek Lisans Tezi. [https://katalog.marmara.edu.tr/veriler/yor-dambt/cokluortam/E62F2EBE-B1E3-9141-A526-FDC18D4913A3/5d763ce40fa96.pdf]Erişim: Mayıs, 2020 google scholar
  • Patz, J. A., Epstein, P. R., Burke, T. A., & Balbus, J. M. (1996). Global climate change and emerging infectious diseases. Jama, 275(3), 217-223. google scholar
  • Ram, S., Zhang, W., Williams, M., & Pengetnze, Y. (2015). Predicting asthma-related emergency department visits using big data. IEEE journal of biomedical and health informatics, 19(4), 1216-1223. google scholar
  • Reiter, P. (2001). Climate change and mosquito-borne disease. Environmental health perspectives, 109(suppl 1), 141-161. google scholar
  • Resmi Gazete (2019) Kişisel Sağlik Verileri Hakkinda Yönetmelik [https://dosyasb.saglik.gov.tr/Eklenti/31003,-kisisel-saglik-verileri-hakkinda-yonetmelikpdf.pdf?0] Erişim: Mayıs, 2020 google scholar
  • Rowley, J. (2007). The wisdom hierarchy: representations of the DIKW hierarchy. Journal of information scien-ce, 33(2), 163-180. google scholar
  • Ruggles, R. (1997) Tools for Knowledge Management: An Introduction Knowledge Management Tools, But-terworth-Heinemann, Boston Aktaran: Rubenstein-Montano, B., Liebowitz, J., Buchwalter, J., McCaw, D., Newman, B., Rebeck, K., & Team, T. K. M. M. (2001). A systems thinking framework for knowledge management. Decision support systems, 31(1), 5-16. google scholar
  • Saadatdoost, R. Sim, A. T. H. Jafakarimi, H. Hee, J. M. (2018) Knowledge Discovery for Large Databases in Education Institutes içinde: Information Retrival and Management: Concepts, Methodologies, Tools and Applications Editör: Management Association, Information Resources USA: IGI Global google scholar
  • Sağlık Aktüel (2019). [https://www.saglikaktuel.com/haber/teletip-sistemi-ile-yuzde-17lik-tasarruf-saglan-di-67941.htm] Erişim: Mayıs, 2020 google scholar
  • Samsudin, A. Big data: Related technologies, security challenges, and research opportunities. 2017-6-22]. http:// repository. nauss. edu. sa/bitstream/handle/123456789/64343/002.pdf .Erişim: Şubat, 2020 google scholar
  • Sasnett, B., & Ross, T. (2007). Leadership frames and perceptions of effectiveness among health information management program directors. Perspectives in health information management/AHIMA, American Health Information Management Association, 4. google scholar
  • Sauerborn, R. & Lippeveld, T. (2000) Introduction içinde: Design and implementation of health information systems. Ed: Sauerborn, R. Lippeveld, T.& Bodart, C. World Health Organization google scholar
  • Shafer, T. (2017). The 42 V’s of Big Data and Data Science. [https://www.kdnuggets.com/2017/04/42-vs-big-data-data-science.html] Erişim: Şubat, 2020 google scholar
  • Sharma, S. (2016). Expanded cloud plumes hiding Big Data ecosystem. Future Generation Computer Systems, 59, 63-92. google scholar
  • Sheffield, J. (2008). Inquiry in health knowledge management. Journal of Knowledge Management. Vol. 12 No. 4 2008, Pp. 160-172 google scholar
  • Shelly, G. B. & Rosenblatt, H. J. (2009). Systems Analysis and Design. 8. Baskı Kanada: Course Technology, Cengage Learning google scholar
  • Shen, Y., Li, Y., Wu, L., Liu, S., & Wen, Q. (2014). Big data overview. In Enabling the new era of cloud com-puting: Data security, transfer, and management (pp. 156-184). IGI Global. google scholar
  • Sofroniou, A. (2012). Computing, A Precis On Systems, Software And Hardware. [https://books.google.com. tr/books?id=I5boAwAAQBAJ&pg=PA39&dq=%27information+system%27+software+hardware+databa-se&hl=tr&sa=X&ved=0ahUKEwiOzpP6ournAhVfRhUIHby4A90Q6AEIVTAE#v=onepage&q=’informa-tion%20system’%20software%20hardware%20database&f=false] Erişim: Şubat, 2020 google scholar
  • Sultana, A. (2018). Unraveling the Data Structures of Big Data, the HDFS Architecture and Importance of Data Replication in HDFS. International Research Journal of Engineering and Technology (IRJET), 5(01). google scholar
  • Thuemmler, C., & Bai, C. (2017). Health 4.0: Application of industry 4.0 design principles in future asthma management. In Health 4.0: How virtualization and big data are revolutionizing healthcare (pp. 23-37). Springer, Cham. google scholar
  • T.C. Sağlık Bakanlığı (2020a). [https://play.google.com/store/apps/details?id=tr.gov.saglik.sina&hl=en_US] Erişim: Mayıs, 2020 google scholar
  • T.C. Sağlık Bakanlığı (2020b). [https://sbsgm.saglik.gov.tr/TR,63748/saglikta-istatistik-ve-nedensel-analizler-si-na-bilgilendirme-ve-degerlendirme-calistaylari-basladi.html] Erişim: MAyıs, 2020 google scholar
  • T.C. Sağlık Bakanlığı (2020c). [https://teletip.saglik.gov.tr/#service] Erişim: Mayıs, 2020 google scholar
  • T.C. Sağlık Bakanlığı (2020d). [https://sbsgm.saglik.gov.tr/TR,1278/teskilat-semasi.html] Erişim: Nisan, 2020 google scholar
  • T.C. Sağlık Bakanlığı (2020e). [https://play.google.com/store/apps/details?id=tr.gov.saglik.koronaonlem&hl=tr] Erişim: Mayıs, 2020 google scholar
  • T.C. Sağlık Bakanlığı (2020f). [https://play.google.com/store/apps/details?id=tr.gov.saglik.hayatevesigar&hl=tr] Erişim: Mayıs, 2020 google scholar
  • T.C. Sağlık Bakanlığı (2020g). [https://play.google.com/store/apps/details?id=tr.gov.saglik.fitas&hl=tr] Erişim: Mayıs, 2020 google scholar
  • Türk Ceza Kanunu (2004). [https://www.mevzuat.gov.tr/MevzuatMetin/1.5.5237.pdf] Erişim: Mayıs, 2020 google scholar
  • Tyagi, V. (2017). Content-Based Image Retrieval: Ideas, Influences, and Current Trends. Singapore: Springer Nature. google scholar
  • U.S. Congress, Office of Technology Assessment (1995). Bringing Health Care Online: The Role of Information Technologies. OTA-ITC-624. Washington, DC: U.S. Government Printing Office URL: https://ota.fas.org/ reports/9507.pdf Erişim: Şubat, 2020 google scholar
  • Van der Spek, R. & de Hoog, R. (1998) Knowledge Management Network, U. of Amsterdam, The Nether-lands (working paper) Boston Aktaran: Rubenstein-Montano, B., Liebowitz, J., Buchwalter, J., McCaw, D., Newman, B., Rebeck, K., & Team, T. K. M. M. (2001). A systems thinking framework for knowledge management. Decision support systems, 31(1), 5-16. google scholar
  • Vayena, E., Dzenowagis, J., Brownstein, J. S., & Sheikh, A. (2018). Policy implications of big data in the health sector. Bulletin of the World Health Organization, 96(1), 66. google scholar
  • Wager, K. A. Lee, F. W. & Glaser, J. P. (2005). Managing Health Care Information Systems: A Practical Appro-ach for Health Care Executives. 4. Baskı. US: John Wiley & Sons, Inc google scholar
  • Wager, K. A. Lee, F. W. & Glaser, J. P. (2017). Health Care Information Systems: A Practical Approach or Health Care Management. 4. Baskı. US: John Wiley & Sons, Inc google scholar
  • Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3-13. google scholar
  • Washington Teknoloji Değerlendirme Ofisi (1979). Selected Topics in Federal Health Statistics. US: Congress, Office of Technology Assessment. google scholar
  • WHO (2019). World Health Statistics. [https://apps.who.int/iris/bitstream/handle/10665/324835/97892415657 07-eng.pdf?sequence=9&isAllowed=y] Erişim: Mayıs, 2020 google scholar
  • Winter, A. Haux, R. Ammenwerth, E. Brigl, B. Hellrung, N. & Jahn, F. (2011) Health Information Systems: Architectures and Strategies. İngiltere: Springer google scholar
  • Yang, M. (2016, July). Research Progress on Data Analysis in Big Data Technology. In 2nd International Con-ference on Computer Engineering, Information Science & Application Technology (ICCIA 2017). Atlantis Press. google scholar
  • Young, R. (1999) Knowledge Management Overview: From Information to Knowledge, http: //www.knowled-geassociates.com/website/km.nsf/notesdocs/Overview/OpenDocument Aktaran: Rubenstein-Montano, B., Liebowitz, J., Buchwalter, J., McCaw, D., Newman, B., Rebeck, K., & Team, T. K. M. M. (2001). A systems thinking framework for knowledge management. Decision support systems, 31(1), 5-16. google scholar
  • Zillner, S., & Neururer, S. (2016). Big data in the health sector. In New Horizons for a Data-Driven Economy (pp. 179-194). Springer, Cham. google scholar
  • Zillner, S., Oberkampf, H., Bretschneider, C., Zaveri, A., Faix, W., & Neururer, S. (2014, August). Towards a technology roadmap for big data applications in the healthcare domain. In Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014) (pp. 291-296). IEEE. google scholar
  • Wikipedia (2020). Liquid Biopsy. [https://en.wikipedia.org/wiki/Liquid_biopsy] Erişim: Mayıs, 2020 google scholar


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.