Derleme Makalesi


DOI :10.26650/acin.813736   IUP :10.26650/acin.813736    Tam Metin (PDF)

Yapay Zekâ ve Tıbbi Görüntüleme Teknolojilerine Genel Bakış

Furkan Atlanİhsan Pençe

Günümüzde yapay zekânın kullanıldığı alanlar her geçen gün artmakta olup, bu alanlardan biri de sağlık sektörüdür. Özellikle görüntü işlemede oldukça başarılı sonuçlar vermesi sebebi ile yapay zekânın bir alt dalı olan derin öğrenme, tıbbi görüntülerin işlenmesinde ve yorumlanmasında sıkça tercih edilmektedir. Her ne kadar tıbbi görüntüleme teknolojilerinin gelişmesi ile hastalık tanısı ve teşhisi gibi işlemlerdeki doğruluk oranı artsa da bu görüntülerin uzmanlar tarafından doğru bir şekilde yorumlanması zaman açısından maliyetli ve tedavi süreci açısından da olumsuz bir durum sergilemektedir. Bu sebeple, yapay zekâ kullanılarak otomatik tanı sistemleri oluşturulmakta ve bu sistemler gelişen teknoloji ve algoritmalar sayesinde her geçen gün ilerleme kat etmektedir. Çalışmanın amacı, tıbbi görüntülemede yapay zekâ kullanımı konusunda tüm bileşenlerin ele alınarak bilgi verilmesi ve bu alanda çalışma yapacak araştırmacılara bir temel teşkil edecek bir alt yapı oluşturmaktır. Bunun sağlanması için yapay zekâ ve tıbbi görüntüleme konusu öncelikle ayrı bir şekilde ele alınmış, tıbbi görüntüleme teknolojileri kapsamlı bir şekilde anlatılmış ve tıbbi görüntülemede yapay zekâ kullanımının mevcut durumu, geleceği, sorunları ve çözümleri açık bir şekilde belirtilmiştir. Son olarak yapay zekâ teknikleri ile tıbbi görüntülerin işlenmesine dair çalışmalar verilerek çalışmanın teorik anlam bütünlüğü sağlanmıştır. 

DOI :10.26650/acin.813736   IUP :10.26650/acin.813736    Tam Metin (PDF)

An Overview of Artificial Intelligence and Medical Imaging Technologies

Furkan Atlanİhsan Pençe

Nowadays, the use of artificial intelligence is increasing steadily, particularly in the health sector. Deep learning, which is a sub-branch of artificial intelligence, is frequently preferred in the processing and interpretation of medical images, because it provides fruitful outcomes in image processing. Despite the development in medical imaging technologies and the increasing accuracy rate of disease diagnosis, accurate interpretation of these images by experts is time consuming, and unfavorable conditions may arise during treatment. For this reason, automated diagnostic systems are created using artificial intelligence, and these systems are improving gradually, owing to the evolution of several technologies and algorithms. This study aimed to provide information on the use of artificial intelligence in medical imaging with due consideration of all factors and create a base infrastructure for researchers in this field. To achieve this, previously artificial intelligence and medical imaging were discussed separately, placing more emphasis on medical imaging technologies. However, at present, potential problems and solutions in the use of artificial intelligence in medical imaging are clearly stated. In conclusion, by conducting more studies on the processing of medical images using artificial intelligence, the theoretical integrity of this field will become possible.


PDF Görünüm

Referanslar

  • 3 Boyutlu Mamogram Görüntüsü. WAKE RADIOLOGY. (2020, 8 Haziran). Erişim Adresi: https://www.wakerad.com/whats-new/ study-3-d-scans-accurate-standard-mammograms/ google scholar
  • ABD’li ve Çinli şirketler Yapay Zekaya hükmetmek için yarışıyor. (2020, 17 Ekim). Erişim Adresi: https://www.wsj.com/articles/ why-u-s-companies-may-losethe-ai-race-1516280677 google scholar
  • Alp, H., Akıncı, T. Ç., & Albora, M. (2008). Jeofizik Uygulamalarda Fourier ve Dalgacık Dönüşümlerinin Karşılaştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 67-76. google scholar
  • Al-shamasneh, A. R. M., & Obaidellah, U. H. B. (2017). Artificial intelligence techniques for cancer detection and classification: review study. European Scientific Journal, 13(3), 342-370. google scholar
  • Arslan, T. X Işınları ve Kullanım Alanları. Gazi Üniversitesi Tezi, 2010. google scholar
  • Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495. google scholar
  • Bailey, D. L., Maisey, M. N., Townsend, D. W., & Valk, P. E. (2005). Positron emission tomography (Vol. 2). London: Springer. google scholar
  • Bankman, I. N. (2009). Handbook of medical image processing and analysis. Boston: Academic Press. google scholar
  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, vol. 6, no. 8, pp. 394-424. google scholar
  • Buck, A. K., Nekolla, S., Ziegler, S., Beer, A., Krause, B. J., Herrmann, K., ... & Drzezga, A. (2008). Spect/ct. Journal of Nuclear Medicine, 49(8), 1305-1319. google scholar
  • Budak, Ü. (2019). SegNet Mimarisi ile Bilgisayarlı Tomografi Görüntülerinden Karaciğer Bölgesinin Bölütlenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31(1), 215-222. google scholar
  • Bushberg, J. T., Seibert, J. A., Leidholdt Jr, E. M., Boone, J. M., & Goldschmidt Jr, E. J. (2011). Introduction to Medical Imaging. The essential physics of medical imaging. 3 rd edition: Lippincott Williams & Wilkins. google scholar
  • Buxton, R. B. (2009). Introduction to Functional Magnetic Resonance Imaging Principles and Techniques. Cambridge: Cambridge University Press. google scholar
  • Cai, C., Wang, C., Zeng, Y., Cai, S., Liang, D., Wu, Y., Chen, Z, Ding, X. and Zhong, J. (2018). Single-shot T2 mapping using overlapping-echo detachment planar imaging and a deep convolutional neural network. Magnetic resonance in medicine, 80(5), 2202-2214. google scholar
  • Cheng, H. D., Cai, X., Chen, X., Hu, L., & Lou, X. (2003). Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern recognition, 36(12), 2967-2991. google scholar
  • Chow, J. C., Boyd, S. K., Lichti, D. D., & Ronsky, J. L. (2020). Robust Self-Supervised Learning of Deterministic Errors in Single-Plane (Monoplanar) and Dual-Plane (Biplanar) X-ray Fluoroscopy. IEEE Transactions on Medical Imaging, 39(6), 2051-2060. google scholar
  • Coşkun, Y. (2019). Ayrık dalgacık dönüşümü tabanlı paralel görüntü sıkıştırma sistemi tasarımı (Master’s thesis, Maltepe Üniversitesi, Fen Bilimleri Enstitüsü). google scholar
  • Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27. google scholar
  • Çelik, G., & Talu, M. F. (2019). Çekişmeli üretken ağ modellerinin görüntü üretme performanslarının incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 181-192. google scholar
  • Dandıl, E., Serin, Z. (2020). Derin Sinir Ağları Kullanarak Histopatolojik Görüntülerde Meme Kanseri Tespiti . Avrupa Bilim ve Teknoloji Dergisi , Ejosat Özel Sayı 2020 (HORA): 451-463. google scholar
  • Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., & Fei-Fei, L. (2012). Imagenet large scale visual recognition competition 2012 (ILSVRC2012). google scholar
  • Doi, K. (2007). Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Computerized medical imaging and graphics, 31(4-5), 198-211. google scholar
  • Dong, X., Lei, Y., Wang, T., Higgins, K., Liu, T., Curran, W. J., ... & Yang, X. (2020). Deep learning-based attenuation correction in the absence of structural information for whole-body positron emission tomography imaging. Physics in Medicine & Biology, 65(5), 055011. google scholar
  • Düzleştirme Katmanı ile görüntü matrislerinin vektör hâline getirilmesi. (2021, 14 Ocak). Erişim Adresi: https://medium.com/@tuncerergin/ convolutional-neural-network-convnet-yada-cnn-nedir-nasil-calisir-97a0f5d34cad google scholar
  • Ehrlich, Ruth Ann., Daly, Joan A. (2008). Patient Care in Radiography: With an introduction to medical imaging (Seventh Edition). MO: Elsevier. google scholar
  • El-Baz, A. S., & Suri, J. S. (2019). Lung imaging and CADx. Boca Raton, FL: CRC Press/Taylor & Francis. google scholar
  • El-Baz, A., Beache, G. M., Gimel’farb, G., Suzuki, K., Okada, K., Elnakib, A., ... & Abdollahi, B. (2013). Computer-aided diagnosis systems for lung cancer: challenges and methodologies. International journal of biomedical imaging. google scholar
  • Ertel, W., Black, N., & Mast, F. (2017). Introduction to artificial intelligence. Cham, Switzerland: Springer. google scholar
  • European Society of Radiology (ESR. (2015). ESR position paper on imaging biobanks. Insights into imaging, 6(4), 403-410. google scholar
  • Floroskopi Prosedürü ve Görüntüsü, Angela Betsaida B. Laguipo. (2020, 8 Haziran). Erişim Adresi: https://www.news-medical.net/health/FluoroscopyProcedure.aspx google scholar
  • Fotin, S. V., Yin, Y., Haldankar, H., Hoffmeister, J. W., & Periaswamy, S. (2016, March). Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches. In Medical Imaging 2016: Computer-Aided Diagnosis (Vol. 9785, p. 97850X). International Society for Optics and Photonics. google scholar
  • Ghoneim, A., Muhammad, G., & Hossain, M. S. (2020). Cervical cancer classification using convolutional neural networks and extreme learning machines. Future Generation Computer Systems. 102: 643-649. google scholar
  • Gonzalez, Rafael (2018). Digital image processing. New York, NY: Pearson. google scholar
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27, 2672-2680. google scholar
  • Greenspan, H., Van Ginneken, B., & Summers, R. M. (2016). Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Transactions on Medical Imaging, 35(5), 1153-1159. google scholar
  • Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with TensorFlow 2 and Keras: Regression, ConvNets, GANs, RNNs, NLP, and more with TensorFlow 2 and the Keras API. Birmingham: Packt Publishing. google scholar
  • Haidekker, M. A. (2013). Medical Imaging Technology. New York, NY: Springer. google scholar
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). google scholar
  • Hou, W., Zhang, D., Wei, Y., Guo, J., & Zhang, X. (2020). Review on Computer Aided Weld Defect Detection from Radiography Images. Applied Sciences, 10(5), 1878. google scholar
  • Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging (Vol. 1). Sunderland, MA: Sinauer Associates. google scholar
  • Hutton, L., & Henderson, T. (2017). Beyond the EULA: Improving consent for data mining. In Transparent Data Mining for Big and Small Data (pp. 147-167). Cham: Springer International Publishing. google scholar
  • ILSVRC2012. Large Scale Visual Recognition Challenge 2012. (2020, 22 Aralık). Erişim Adresi: https://www.kdnuggets.com/2018/12/deep-learning-major-advances-review.html google scholar
  • Imagenet’te Görüntü Sınıflandırması. (2020, 6 Eylül). Erişim Adresi: https://paperswithcode.com/sota/image-classification-on-imagenet google scholar
  • Kiani, A., Uyumazturk, B., Rajpurkar, P., Wang, A., Gao, R., Jones, E., ... & Martin, B. A. (2020). Impact of a deep learning assistant on the histopathologic classification of liver cancer. NPJ digital medicine. 3(1): 1-8. google scholar
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. 1097-1105. google scholar
  • Kubat, M. (2018). Introductıon To Machıne Learnıng. Place of publication not identified: SPRINGER INTERNATIONAL PU. google scholar
  • Lameka, K., Farwell, M. D., & Ichise, M. (2016). Positron emission tomography. In Handbook of clinical neurology (Vol. 135, pp. 209-227). Amsterdam: Elsevier. google scholar
  • Larson, C., Lionhart, P., Roh, A., & Colglazier, R. (2018). Introduction to fluoroscopy: For residents & professionals alike. Place of publication not identified: Prometheus Liionhart. google scholar
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. google scholar
  • Leighton, T. G. (2007). What is ultrasound? Progress in biophysics and molecular biology, 93(1-3), 3-83. google scholar
  • Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sanchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88. google scholar
  • Maulik, D., & Zalud, I. (Eds.). (2005). Doppler ultrasound in obstetrics and gynecology (pp. 363-374). Berlin: Springer. google scholar
  • Mettler, F. A., & Guiberteau, M. J. (2012). Essentials of nuclear medicine imaging. Philadelphia, PA: Elsevier/Saunders. google scholar
  • Morra, L., Delsanto, S., & Correale, L. (2019). Artificial Intelligence in Medical Imaging: From Theory to Clinical Practice. Boca Raton: CRC Press. google scholar
  • Murino, V., Puppo, E., Sona, D., Cristani, M., & Sansone, C. (Eds.). (2015). New Trends in Image Analysis and Processing--ICIAP 2015 Workshops: ICIAP 2015 International Workshops, BioFor, CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM, Genoa, Italy, September 7-8, 2015, Proceedings (Vol. 9281). Heidelberg: Springer. google scholar
  • Neri, E., & Regge, D. (2017). Imaging biobanks in oncology: European perspective. Future Oncology, 13(5), 433-441. google scholar
  • Ortaklama katmanı türleri. (2021, 14 Ocak). Erişim Adresi: https://towardsdatascience. google scholar
  • com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 google scholar
  • Öner, İ. V., Yeşilyurt, M. K., & Yılmaz, E. Ç. (2017). WAVELET ANALİZ TEKNİĞİ VE UYGULAMA ALANLARI. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 42-56. google scholar
  • Öztad, E. (2020). Meme Kanseri Tespitinde Sınıflandırma ve Sinir Ağları Yöntemlerinin Karşılaştırılması. İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi. 1(1): 49-54. google scholar
  • Öztemel, E. (2006). Yapay Sinir Ağları. 2. Baskı. Papatya Yayıncılık: İstanbul. google scholar
  • Pisano, E. D., & Yaffe, M. J. Digital mammography. Radiology, vol. 234, no. 2, pp. 353-362, 2005. google scholar
  • Ranschaert, E. R., Morozov, S., & Algra, P. R. (2019). Artificial Intelligence in Medical Imaging: Opportunities, Applications and Risks. Cham: Springer International Publishing. google scholar
  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. google scholar
  • Sağlık hizmetleri verileri ve gevşek kurallar Çin’in Yapay Zekâ konusunda başarılı olmasına nasıl yardımcı oluyor? (2020, 17 Ekim). Erişim Adresi: https://www.wired.com/story/health-care-data-laxrules-help-china-prosper-ai/ google scholar
  • Sahiner, B., Pezeshk, A., Hadjiiski, L. M., Wang, X., Drukker, K., Cha, K. H., ... & Giger, M. L. (2019). Deep learning in medical imaging and radiation therapy. Medical physics, 46(1), e1-e36. google scholar
  • Sarhan, A. M. (2020). Brain Tumor Classification in Magnetic Resonance Images Using Deep Learning and Wavelet Transform. Journal of Biomedical Science and Engineering, 13(06), 102. google scholar
  • Sato, E., Nakayama, K., Nakamura, K., Ishikawa, M., Katagiri, H., & Kyo, S. (2015). A case with life-threatening uterine bleeding due to postmenopausal uterine arteriovenous malformation. BMC Women’s Health, 15(1), 1-5. google scholar
  • Shi, L., Onofrey, J. A., Liu, H., Liu, Y. H., & Liu, C. (2020). Deep learning-based attenuation map generation for myocardial perfusion SPECT. European Journal of Nuclear Medicine and Molecular Imaging, 1-13. google scholar
  • Shia, W., & Chen, D. (2020). Abstract P1-02-10: Using deep residual networks for malignant and benign classification of two-dimensional Doppler breast ultrasound imaging. google scholar
  • Shung, K. K. (2015). Diagnostic ultrasound: Imaging and blood flow measurements. Boca Raton, BR: CRC press. google scholar
  • Sluimer, I., Schilham, A., Prokop, M., & Van Ginneken, B. (2006). Computer analysis of computed tomography scans of the lung: a survey. IEEE transactions on medical imaging, 25(4), 385-405. google scholar
  • Smith, N. & Webb, A. (2010). Nuclear medicine: Planar scintigraphy, SPECT and PET/CT. In Introduction to Medical Imaging: Physics, Engineering and Clinical Applications (Cambridge Texts in Biomedical Engineering, pp. 89-144). Cambridge: Cambridge University Press. doi:10.1017/ CBO9780511760976.003 google scholar
  • SPECT görüntüleri ile Alzheimer Hastalığı Teşhisi. (2020, 10 Haziran). Erişim Adresi: https://www.pinterest.co.uk/pin/350717889706920247/ google scholar
  • Szabo, T.L. Doppler Models. (2004). Diagnostic ultrasound imaging: inside out. 2 nd edition: Academic Press. google scholar
  • Talo, M. (2019, April). Pneumonia Detection from Radiography Images using Convolutional Neural Networks. In 2019 27th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE. google scholar
  • The Economist. “Çalışmamaktan Sinir Ağına”. (2020, 3 Eylül). Erişim Adresi: https://www.economist.com/special-report/2016/06/23/ from-not-working-to-neural-networking google scholar
  • The, L. (2018). Artificial intelligence in health care: within touching distance. Lancet (London, England), 390(10114), 2739. google scholar
  • Tiryaki, V. (2020). Mamografi görüntülerindeki anormalliklerin yerel ikili örüntü ve varyantları kullanılarak sınıflandırılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi , 9 (1) , 297-305 . DOI: 10.17798/bitlisfen.557411. google scholar
  • Vakanski, A., Xian, M., & Freer, P. E. (2020). Attention-Enriched Deep Learning Model for Breast Tumor Segmentation in Ultrasound Images. Ultrasound in Medicine & Biology, 46(10), 2819-2833. google scholar
  • Wang, H., & Raj, B. (2017). On the origin of deep learning. arXiv preprint arXiv:1702.07800. google scholar
  • Webb, S., & Flower, M. A. (2016). Webb’s physics of medical imaging. Place of publication not identified: CRC Press. google scholar
  • Wilhelm Conrad Röntgen’in eşine ait ilk radyografi görüntüsü. (2020, 8 Ekim). Erişim Adresi: https://www.winally.com/2018/09/ yeni-nesil-goruntuleme/ google scholar
  • Wu, X., Xu, K., & Hall, P. (2017). A survey of image synthesis and editing with generative adversarial networks. Tsinghua Science and Technology, 22(6), 660-674. google scholar
  • Yapay Zekâ, Tıbbi Teşhise karşı. Teşhis otomatikleştirildiğinde ne olur? (2020, 15 Eylül). Erişim Adresi:https://www.newyorker.com/magazine/2017/04/03/ ai-versus-md google scholar
  • Zekâ teriminin tanımı. Türk Dil Kurumu. (10 Eylül, 2020). Erişim Adresi: https://www.sozluk.gov.tr (Erişim zamanı: 10.10.2020). google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Atlan, F., & Pençe, İ. (2021). Yapay Zekâ ve Tıbbi Görüntüleme Teknolojilerine Genel Bakış. Acta Infologica, 5(1), 207-230. https://doi.org/10.26650/acin.813736


AMA

Atlan F, Pençe İ. Yapay Zekâ ve Tıbbi Görüntüleme Teknolojilerine Genel Bakış. Acta Infologica. 2021;5(1):207-230. https://doi.org/10.26650/acin.813736


ABNT

Atlan, F.; Pençe, İ. Yapay Zekâ ve Tıbbi Görüntüleme Teknolojilerine Genel Bakış. Acta Infologica, [Publisher Location], v. 5, n. 1, p. 207-230, 2021.


Chicago: Author-Date Style

Atlan, Furkan, and İhsan Pençe. 2021. “Yapay Zekâ ve Tıbbi Görüntüleme Teknolojilerine Genel Bakış.” Acta Infologica 5, no. 1: 207-230. https://doi.org/10.26650/acin.813736


Chicago: Humanities Style

Atlan, Furkan, and İhsan Pençe. Yapay Zekâ ve Tıbbi Görüntüleme Teknolojilerine Genel Bakış.” Acta Infologica 5, no. 1 (Nov. 2024): 207-230. https://doi.org/10.26650/acin.813736


Harvard: Australian Style

Atlan, F & Pençe, İ 2021, 'Yapay Zekâ ve Tıbbi Görüntüleme Teknolojilerine Genel Bakış', Acta Infologica, vol. 5, no. 1, pp. 207-230, viewed 22 Nov. 2024, https://doi.org/10.26650/acin.813736


Harvard: Author-Date Style

Atlan, F. and Pençe, İ. (2021) ‘Yapay Zekâ ve Tıbbi Görüntüleme Teknolojilerine Genel Bakış’, Acta Infologica, 5(1), pp. 207-230. https://doi.org/10.26650/acin.813736 (22 Nov. 2024).


MLA

Atlan, Furkan, and İhsan Pençe. Yapay Zekâ ve Tıbbi Görüntüleme Teknolojilerine Genel Bakış.” Acta Infologica, vol. 5, no. 1, 2021, pp. 207-230. [Database Container], https://doi.org/10.26650/acin.813736


Vancouver

Atlan F, Pençe İ. Yapay Zekâ ve Tıbbi Görüntüleme Teknolojilerine Genel Bakış. Acta Infologica [Internet]. 22 Nov. 2024 [cited 22 Nov. 2024];5(1):207-230. Available from: https://doi.org/10.26650/acin.813736 doi: 10.26650/acin.813736


ISNAD

Atlan, Furkan - Pençe, İhsan. Yapay Zekâ ve Tıbbi Görüntüleme Teknolojilerine Genel Bakış”. Acta Infologica 5/1 (Nov. 2024): 207-230. https://doi.org/10.26650/acin.813736



ZAMAN ÇİZELGESİ


Gönderim20.10.2020
Kabul16.01.2021
Çevrimiçi Yayınlanma01.03.2021

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.