Yapay Zekâ ve Tıbbi Görüntüleme Teknolojilerine Genel Bakış
Furkan Atlan, İhsan PençeGünümüzde yapay zekânın kullanıldığı alanlar her geçen gün artmakta olup, bu alanlardan biri de sağlık sektörüdür. Özellikle görüntü işlemede oldukça başarılı sonuçlar vermesi sebebi ile yapay zekânın bir alt dalı olan derin öğrenme, tıbbi görüntülerin işlenmesinde ve yorumlanmasında sıkça tercih edilmektedir. Her ne kadar tıbbi görüntüleme teknolojilerinin gelişmesi ile hastalık tanısı ve teşhisi gibi işlemlerdeki doğruluk oranı artsa da bu görüntülerin uzmanlar tarafından doğru bir şekilde yorumlanması zaman açısından maliyetli ve tedavi süreci açısından da olumsuz bir durum sergilemektedir. Bu sebeple, yapay zekâ kullanılarak otomatik tanı sistemleri oluşturulmakta ve bu sistemler gelişen teknoloji ve algoritmalar sayesinde her geçen gün ilerleme kat etmektedir. Çalışmanın amacı, tıbbi görüntülemede yapay zekâ kullanımı konusunda tüm bileşenlerin ele alınarak bilgi verilmesi ve bu alanda çalışma yapacak araştırmacılara bir temel teşkil edecek bir alt yapı oluşturmaktır. Bunun sağlanması için yapay zekâ ve tıbbi görüntüleme konusu öncelikle ayrı bir şekilde ele alınmış, tıbbi görüntüleme teknolojileri kapsamlı bir şekilde anlatılmış ve tıbbi görüntülemede yapay zekâ kullanımının mevcut durumu, geleceği, sorunları ve çözümleri açık bir şekilde belirtilmiştir. Son olarak yapay zekâ teknikleri ile tıbbi görüntülerin işlenmesine dair çalışmalar verilerek çalışmanın teorik anlam bütünlüğü sağlanmıştır.
An Overview of Artificial Intelligence and Medical Imaging Technologies
Furkan Atlan, İhsan PençeNowadays, the use of artificial intelligence is increasing steadily, particularly in the health sector. Deep learning, which is a sub-branch of artificial intelligence, is frequently preferred in the processing and interpretation of medical images, because it provides fruitful outcomes in image processing. Despite the development in medical imaging technologies and the increasing accuracy rate of disease diagnosis, accurate interpretation of these images by experts is time consuming, and unfavorable conditions may arise during treatment. For this reason, automated diagnostic systems are created using artificial intelligence, and these systems are improving gradually, owing to the evolution of several technologies and algorithms. This study aimed to provide information on the use of artificial intelligence in medical imaging with due consideration of all factors and create a base infrastructure for researchers in this field. To achieve this, previously artificial intelligence and medical imaging were discussed separately, placing more emphasis on medical imaging technologies. However, at present, potential problems and solutions in the use of artificial intelligence in medical imaging are clearly stated. In conclusion, by conducting more studies on the processing of medical images using artificial intelligence, the theoretical integrity of this field will become possible.