Building a Collaborative Aquaculture Research Ecosystem with APIs and AI
Soner Sevin, Suat DikelRecently, the mission of the aquaculture production sector in achieving sustainable development goals has become increasingly critical. Synthesizing large data sets with advanced technological tools in aquaculture is no longer a luxury but a necessity for significant progress. This article examines the pivotal role of Application Programming Interface (API) integration in advancing open science and collaborative research in aquaculture. It also explores the use of Artificial Intelligence (AI) to facilitate data analysis across disparate databases and proposes the establishment of a ChatGPT-like virtual environment to catalyze seamless global collaboration among researchers. A comprehensive overview is presented on the feasibility of a unified AI-driven database that collects, analyzes, and shares data, overcomes geographical constraints, and supports a shared information ecosystem. The article scrutinizes current implementations, identifies gaps in existing infrastructures, and outlines a robust framework for API integration that could significantly enhance innovation and operational efficiency in aquaculture research.
PDF Görünüm
Referanslar
- Abdul Kari, Z. ., Kabir, M. A. ., Abdul Razab, M. K. A. ., Munir, M. . B. ., Lim, P. T., & Wei, L. S. . (2020). A replacement of plant protein sources as an alternative of fish meal ingredient for African catfish, Clarias gariepinus: A review. Journal of Tropical Resources and Sustainable Science (JTRSS), 8(1), 47-59. https://doi.org/10.47253/jtrss.v8i1.164 google scholar
- Adams, S., Henderson, R., Xin, Y., & Babyn, P. (2020). Artificial intelligence solutions for analysis of x-ray images. Canadian Association of Radiologists Journal, 72(1), 60-72. https://doi.org/10.1177/0846537120941671 google scholar
- Ala-Pietila, P. and Smuha, N. (2021). A framework for global cooperation on artificial intelligence and its governance., 237-265. https://doi. org/10.1007/978-3-030-69128-8_15 google scholar
- Arcelay, I., Goti, A., Oyarbide-Zubillaga, A., Akyazi, T., Alberdi, E., & Bringas, P. (2021). Definition of the future skills needs of job profiles in the renewable energy sector. Energies, 14(9), 2609. https://doi. org/10.3390/en14092609 google scholar
- Ayling, J. and Chapman, A. (2021). Putting ai ethics to work: are the tools fit for purpose? Ai and Ethics, 2(3), 405-429. https://doi.org/10.1007/ s43681-021-00084-x google scholar
- Cabello, F. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology, 8(7), 1137-1144. https:// doi.org/10.1111/j.1462-2920.2006.01054.x google scholar
- Chandrasekaran, G., Antoanela, N., Andrei, G., Monica, C., & Hemanth, J. (2022). Visual sentiment analysis using deep learning models with social media data. Applied Sciences, 12(3), 1030. google scholar
- Chang, C., Wang, J., Wu, J., Hsieh, Y., Wu, T., Cheng, S., ... & Lin, C. (2021). Applying artificial intelligence (ai) techniques to implement a practical smart cage aquaculture management system. Journal of Medical and Biological Engineering. https://doi.org/10.1007/s40846-021-00621-3 google scholar
- Chang, C., Ubina, N., Cheng, S., Lan, H., Chen, K., & Huang, C. (2022). A two-mode underwater smart sensor object for precision aquaculture based on aiot technology. Sensors, 22(19), 7603. https://doi. org/10.3390/s22197603 google scholar
- Chen, F., Sun, M., Du, Y., Xu, J., Zhou, L., Qiu, T., . & Sun, J. (2022). Intelligent feeding technique based on predicting shrimp growth in recirculating aquaculture system. Aquaculture Research, 53(12), 4401-4413. https://doi.org/10.1111/are.15938 google scholar
- Chopin, T., Buschmann, A., Halling, C., Troell, M., Kautsky, N., Neori, A., . & Neefus, C. (2001). Integrating seaweeds into marine aquaculture systems: a key toward sustainability. Journal of Phycology, 37(6), 975986. https://doi.org/10.1046/j.1529-8817.2001.01137.x google scholar
- Cranford, P., Kamermans, P., Krause, G., Mazurie, J., Buck, B., Dolmer, P., ... & Strand, 0. (2012). An ecosystem-based approach and management framework for the integrated evaluation of bivalve aquaculture impacts. Aquaculture Environment Interactions, 2(3), 193-213. https://doi.org/10.3354/aei00040 google scholar
- Cunha, M., Raposo, A., & Fuks, H. (2008, April). Educational technology for collaborative virtual environments. In 2008 12th international conference on computer supported cooperative work in design (pp. 716-720). IEEE. google scholar
- Deng, L., Chen, F., & Yuan, Y. (2022). Data and knowledge dual-driven architecture for autonomous networks. Itu Journal on Future and Evolving Technologies, 3(3), 602-611. https://doi.org/10.52953/wmup9519 google scholar
- Dikici, E., Bigelow, M., Prevedello, L., White, R., & Erdal, B. (2020). Integrating ai into radiology workflow: levels of research, production, and feedback maturity. Journal of Medical Imaging, 7(01), 1. https:// doi.org/10.1117/1.jmi.7.1.016502 google scholar
- Donca, I. C., Stan, O. P., Misaros, M., Gota, D., & Miclea, L. (2022). Method for continuous integration and deployment using a pipeline generator for agile software projects. Sensors, 22(12), 4637. google scholar
- Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina, L. (2017). Microservices: yesterday, today, and tomorrow. Present and ulterior software engineering, 195-216. google scholar
- Dwivedi, Y., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., . & Williams, M. (2021). Artificial intelligence (ai): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002 google scholar
- Erol, S. (2022). Financial and economic impacts of the covid-19 pandemic on aquaculture in Türkiye and financial policy recommendations. Marine Policy, 146, 105313. https://doi.org/10.1016/j.marpol.2022.105313 google scholar
- Fry, J., Ceryes, C., Voorhees, J., Barnes, N., & Barnes, M. (2019). Occupational safety and health in u.s. aquaculture: a review. Journal of Agromedicine, 24(4), 405-423. https://doi.org/10.1080/105992 4x.2019.1639574 google scholar
- Gentry, R., Froehlich, H., Grimm, D., Kareiva, P., Parke, M., Rust, M., ... & Halpern, B. (2017). Mapping the global potential for marine aquaculture. Nature Ecology & Evolution, 1(9), 1317-1324. https:// doi.org/10.1038/s41559-017-0257-9 google scholar
- Gephart, J., Golden, C., Asche, F., Belton, B., Brugere, C., Froehlich, H., . & Allison, E. (2020). Scenarios for global aquaculture and its role in human nutrition. Reviews in Fisheries Science & Aquaculture, 29(1), 122-138. https://doi.org/10.1080/23308249.2020.1782342 google scholar
- Han, P., Lu, Q., & Li, F. (2019). A review on the use of microalgae for sustainable aquaculture. Applied Sciences, 9(11), 2377. https://doi. org/10.3390/app9112377 google scholar
- Holetschek, J., Droege, G., Güntsch, A., Köster, N., Marquardt, J., & Borsch, T. (2019). Gardens4science: setting up a trusted network for german botanic gardens using open source technologies. Biodiversity Information Science and Standards, 3. https://doi. org/10.3897/biss.3.35368 google scholar
- Hughes, A. (2021). Defining nature-based solutions within the blue economy: the example of aquaculture. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.711443 google scholar
- Jeong, S., Kim, S., & Kim, J. (2020). City data hub: implementation of standard-based smart city data platform for interoperability. Sensors, 20(23), 7000. https://doi.org/10.3390/s20237000 google scholar
- Jogdand, M. (2024). Unified ai: a revolutionary solution for content generation. International Journal of Advanced Research in Science Communication and Technology, 476-479. https://doi.org/10.48175/ ijarsct-15069 google scholar
- Kaivo-oja, J. R. L., & Stenvall, J. (2022). A Critical Reassessment: The European Cloud University Platform and New Challenges of the Quartet Helix Collaboration in the European University System. European Integration Studies, (16), 9-23. google scholar
- Kaur, G., Adhikari, N., Krishnapriya, S., Wawale, S., Malik, R., Zamani, A., . & Osei-Owusu, J. (2023). Recent advancements in deep learning frameworks for precision fish farming opportunities, challenges, and applications. Journal of Food Quality, 2023, 1-11. https://doi. org/10.1155/2023/4399512 google scholar
- Kondoro, A., Rwegasira, D., Dhaou, I. B., Kelati, A., Naiman, D., Tenhunen, H., ... & Taajamaa, V. (2017). Training the future ICT innovators on open science platform. In EDULEARN17 Proceedings (pp. 19881994). IATED. google scholar
- Kraus, K., Kraus, N., & Shtepa, O. (2021). Synergetic effects of network interconnections in the conditions of virtual reality. Journal of Entrepreneurship Management and Innovation, 17(3), 149-188. https://doi.org/10.7341/20211735 google scholar
- Kukyte, A. (2021). A conceptual management model of virtual project team in international companies. Vilnius University Open Series, 6168. https://doi.org/10.15388/vgisc.2021.8 google scholar
- Laufs D, Peters M, Schultz C (2022) Data platforms for open life sciences-A systematic analysis of management instruments. PLoS ONE 17(10): e0276204. https://doi.org/10.1371/journal.pone.0276204 google scholar
- Lewis, S., Ellis, J., & Kellogg, W. (2010). Using virtual interactions to explore leadership and collaboration in globally distributed teams.. https://doi.org/10.1145/1841853.1841856 google scholar
- Li, J., Herdem, M. S., Nathwani, J., & Wen, J. Z. (2023). Methods and applications for Artificial Intelligence, Big Data, Internet of Things, and Blockchain in smart energy management. Energy and AI, 11, 100208. google scholar
- Li, X., Li, J., Li, H., Fu, L., Fu, Y., Li, B., . & Jiao, B. (2011). Aquaculture industry in china: current state, challenges, and outlook. Reviews in Fisheries Science, 19(3), 187-200. google scholar
- Lu, W., Liu, S., Yang, Y., Fu, R., Xiang, X., Qu, Y., & Huang, H. (2015). Design for the emergency command information system architecture of ocean oil spill. Aquatic Procedia, 3, 41-49. google scholar
- Lu, X., Wijayaratna, K., Huang, Y., & Qiu, A. (2022). Ai-enabled opportunities and transformation challenges for smes in the post-pandemic era: a review and research agenda. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.88506 google scholar
- Lv, T., Tang, P., & Zhang, J. (2023). A real-time ais data cleaning and indicator analysis algorithm based on stream computing. Scientific Programming, 2023, 1-12. https://doi.org/10.1155/2023/8345603 google scholar
- Mac Coombea, P. N., Pasanena, J., Petersa, C., Sharmana, C., & Taylora, P. (2017). Senaps: A platform for integrating time-series with modelling systems. In Proceedings of the 22nd International Congress on Modelling and Simulation (MODSIM 2017), Hobart, Tasmania, Australia (pp. 438-444). google scholar
- Malic, M., Dobrilovic, D., Malic, D., & Stojanov, Z. (2019). Approach in the development of lightweight microservice architecture for small data center monitoring system. International Journal of Electrical Engineering and Computing, 3(2), 61-69. google scholar
- Malik, Shaveta, Tapas Kumar, Sahoo, A.K., ‘‘Image processing techniques foridentification of fish disease.” In 2017 IEEE 2nd International Conference onSignal and Image Processing (ICSIP), pp. 55-59. IEEE, 2017. google scholar
- Muzumdar, P., Bhosale, A., Basyal, G. P., & Kurian, G. (2024). Navigating the Docker Ecosystem: A Comprehensive Taxonomy and Survey. arXiv preprint arXiv:2403.17940. google scholar
- Mia, M. J., Mahmud, R. B., Sadad, M. S., Al Asad, H., & Hossain, R. (2022). An in-depth automated approach for fish disease recognition. Journal of King Saud University-Computer and Information Sciences, 34(9), 7174-7183. google scholar
- Montani, S. and Striani, M. (2019). Artificial intelligence in clinical decision support: a focused literature survey. Yearbook of Medical Informatics, 28(01), 120-127. https://doi.org/10.1055/s-0039-1677911 google scholar
- Mueller, J., Hutter, K., Fueller, J., & Matzler, K. (2010). Virtual worlds as knowledge management platform - a practice-perspective. Information Systems Journal, 21(6), 479-501. https://doi.org/10.1111/ j.1365-2575.2010.00366.x google scholar
- Mustafa, S., Shaleh, S., Shapawi, R., Estim, A., Ching, F., Ibrahim, A., . & Japar, B. (2021). Application of fourth industrial revolution technologies to marine aquaculture for future food: imperatives, challenges and prospects. Sustainable Marine Structures, 3(1), 22-31. https://doi.org/10.36956/sms.v3i1.378 google scholar
- Nankervis, L., Cobcroft, J., Nguyen, N., & Rimmer, M. (2021). Advances in practical feed formulation and adoption for hybrid grouper (epinephelus fuscoguttatusŞ x e. lanceolatus^) aquaculture. Reviews in Aquaculture, 14(1), 288-307. https://doi.org/10.1111/raq.12 google scholar
- Nawaz, M., Khan, S., Hussain, S., & Iqbal, J. (2022). A study on application programming interface recommendation: state-of-the-art techniques, challenges and future directions. Library Hi Tech, 41(2), 355-385. https://doi.org/10.1108/lht-02-2022-0103598 google scholar
- Ottinger, M., Bachofer, F., Huth, J., & Kuenzer, C. (2021). Mapping aquaculture ponds for the coastal zone of asia with sentinel-1 and sentinel-2 time series. Remote Sensing, 14(1), 153. https://doi. org/10.3390/rs14010153 google scholar
- Ottinger, M., Clauss, K., & Kuenzer, C. (2018). Opportunities and challenges for the estimation of aquaculture production based on earth observation data. Remote Sensing, 10(7), 1076. https://doi. org/10.3390/rs10071076 google scholar
- Pridgeon, J. and Klesius, P. (2012). Major bacterial diseases in aquaculture and their vaccine development.. Cab Reviews Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources, 1-16. https://doi.org/10.1079/pavsnnr20127048 google scholar
- Rodrîguez, C., Bâez, M., Daniel, F., Casati, F., Trabucco, J., Canali, L., ... & Percannella, G. (2016). Rest apis: a large-scale analysis of compliance with principles and best practices., 21-39. https://doi.org/10.1007/978-3-319-38791-8_2 google scholar
- Rosenberg, L. (2023). The metaverse and conversational ai as a threat vector for targeted influence.. https://doi.org/10.1109/ccwc57344.2023.10099167 google scholar
- Saboor, A., Hassan, M. F., Akbar, R., Shah, S. N. M., Hassan, F., Magsi, S. A., & Siddiqui, M. A. (2022). Containerized microservices orchestration and provisioning in cloud computing: A conceptual framework and future perspectives. Applied Sciences, 12(12), 5793. google scholar
- Shwartz-Asher, D. and Ahituv, N. (2019). Comparison between face-to-face teams and virtual teams with respect to compliance with directives. Journal of Service Science and Management, 12(04), 549571. https://doi.org/10.4236/jssm.2019.12438 google scholar
- Soklaski, R., Goodwin, J., Brown, O., Yee, M., & Jason, M. (2022). Tools and practices for responsible ai engineering. https://doi. org/10.48550/arxiv.2201.05647 google scholar
- Song, A. (2020). Artificial Intelligence Technology in Intelligent Farm. Scholar Publishing Group International Journal of Multimedia Computing Vol. 1, Issue 3: 16-28 https://doi.org/10.38007/ IJMC.2020.010302 google scholar
- Sultan, H., Rashid, W., Shi, J., Rahim, I., Nafees, M., Bohnett, E., ... & Ariza-Montes, A. (2022). Horizon scan of transboundary concerns impacting snow leopard landscapes in asia. Land, 11(2), 248. https:// doi.org/10.3390/land11020248 google scholar
- Subasinghe, R., Soto, D., & Jia, J. (2009). Global aquaculture and its role in sustainable development. Reviews in Aquaculture, 1(1), 2-9. https://doi.org/10.1111/j.1753-5131.2008.01002.x google scholar
- Troell, M., Naylor, R., Metian, M., Beveridge, M., Tyedmers, P., Folke, C., . & Zeeuw, A. (2014). Does aquaculture add resilience to the global food system?. Proceedings of the National Academy of Sciences, 111(37), 13257-13263. https://doi.org/10.1073/pnas.1404067111 google scholar
- Ubina, N. and Cheng, S. (2022). A review of unmanned system technologies with its application to aquaculture farm monitoring and management. Drones, 6(1), 12. https://doi.org/10.3390/drones6010012 google scholar
- Ubina, N., Cheng, S., Chen, H., Chang, C., & Lan, H. (2021). A visual aquaculture system using a cloud-based autonomous drones. Drones, 5(4), 109. https://doi.org/10.3390/drones5040109 google scholar
- Vo, T., Ko, H., & Kim, Y. (2021). Overview of smart aquaculture system: focusing on applications of machine learning and computer vision. Electronics, 10(22), 2882. https://doi.org/10.3390/electronics10222882 google scholar
- Wang, J., Yang, X., Wang, Z., & Ge, D. (2022). Monitoring marine aquaculture and implications for marine spatial planning—an example from shandong province, china. Remote Sensing, 14(3), 732. https://doi.org/10.3390/rs14030732 google scholar
- Wang, Y. (2023). Synergy in silicon: the evolution and potential of academia-industry collaboration in ai and software engineering. https://doi.org/10.36227/techrxiv.23961540 google scholar
- Watterson, A., Jeebhay, M. F., Neis, B., Mitchell, R., & Cavalli, L. (2020). The neglected millions: the global state of aquaculture workers’ occupational safety, health and well-being. Occupational and environmental medicine, 77(1), 15-18. google scholar
- Xiang, L., Zhang, Z., Zuo, D., & Yang, X. (2013). Multi-layered system robustness testing strategy based on abnormal parameter. Journal of Computers, 8(7). https://doi.org/10.4304/jcp.8.7.1882-1891 google scholar
- Watterson, A., Jeebhay, M., Neis, B., Mitchell, R., & Cavalli, L. (2019). The neglected millions: the global state of aquaculture workers’ occupational safety, health and well-being. Occupational and Environmental Medicine, 77(1), 15-18. https://doi.org/10.1136/ oemed-2019-105753 google scholar
- Yang, X., Zhang, S., Liu, J., Gao, Q., Dong, S., & Zhou, C. (2020). Deep learning for smart fish farming: applications, opportunities and challenges. Reviews in Aquaculture, 13(1), 66-90. https://doi. org/10.1111/raq.12464 google scholar
- Zhang, Q., Lin, J., Wei, W., & Wei, Y. (2022). Evolutionary path and influences on marine ecological farming: dual perspective of government intervention and enterprise participation. Discrete Dynamics in Nature and Society, 2022, 1-12. https://doi. org/10.1155/2022/3250863 google scholar
- Zheng, W., Lan, Y., Zhang, W., Ouyang, L., & Wen, D. (2023). D >k >i: data-knowledge-driven group intelligence framework for smart service in education metaverse. Ieee Transactions on Systems Man and Cybernetics Systems, 53(4), 2056-2061. https://doi.org/10.1109/ tsmc.2022.3228849 google scholar
- Zhuang, Y., Wu, F., Chen, C., & Pan, Y. (2017). Challenges and opportunities: from big data to knowledge in ai 2.0. Frontiers of Information Technology & Electronic Engineering, 18(1), 3-14. https:// doi.org/10.1631/fitee.1601883 google scholar
- Zhou, X., Zhao, X., Zhang, S., & Lin, J. (2019). Marine ranching construction and management in East China Sea: Programs for sustainable fishery and aquaculture. Water, 11(6), 1237. google scholar
- Zhou, C., Wong, K., Tsou, J., & Zhang, Y. (2022). Detection and statistics of offshore aquaculture rafts in coastal waters. Journal of Marine Science and Engineering, 10(6), 781. https://doi.org/10.3390/ jmse10060781 google scholar
- Zhou, L., Tan, S., Ahmad, A., & Low, S. (2021). High-flux strategy for electrospun nanofibers in membrane distillation to treat aquaculture wastewater: a review. Journal of Chemical Technology & Biotechnology, 96(12), 3259-3272. https://doi.org/10.1002/jctb.6828 google scholar
Atıflar
Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın
DIŞA AKTAR
APA
Sevin, S., & Dikel, S. (2025). Building a Collaborative Aquaculture Research Ecosystem with APIs and AI. Aquatic Sciences and Engineering, 40(1), 42-52. https://doi.org/10.26650/ASE20241564766
AMA
Sevin S, Dikel S. Building a Collaborative Aquaculture Research Ecosystem with APIs and AI. Aquatic Sciences and Engineering. 2025;40(1):42-52. https://doi.org/10.26650/ASE20241564766
ABNT
Sevin, S.; Dikel, S. Building a Collaborative Aquaculture Research Ecosystem with APIs and AI. Aquatic Sciences and Engineering, [Publisher Location], v. 40, n. 1, p. 42-52, 2025.
Chicago: Author-Date Style
Sevin, Soner, and Suat Dikel. 2025. “Building a Collaborative Aquaculture Research Ecosystem with APIs and AI.” Aquatic Sciences and Engineering 40, no. 1: 42-52. https://doi.org/10.26650/ASE20241564766
Chicago: Humanities Style
Sevin, Soner, and Suat Dikel. “Building a Collaborative Aquaculture Research Ecosystem with APIs and AI.” Aquatic Sciences and Engineering 40, no. 1 (Feb. 2025): 42-52. https://doi.org/10.26650/ASE20241564766
Harvard: Australian Style
Sevin, S & Dikel, S 2025, 'Building a Collaborative Aquaculture Research Ecosystem with APIs and AI', Aquatic Sciences and Engineering, vol. 40, no. 1, pp. 42-52, viewed 5 Feb. 2025, https://doi.org/10.26650/ASE20241564766
Harvard: Author-Date Style
Sevin, S. and Dikel, S. (2025) ‘Building a Collaborative Aquaculture Research Ecosystem with APIs and AI’, Aquatic Sciences and Engineering, 40(1), pp. 42-52. https://doi.org/10.26650/ASE20241564766 (5 Feb. 2025).
MLA
Sevin, Soner, and Suat Dikel. “Building a Collaborative Aquaculture Research Ecosystem with APIs and AI.” Aquatic Sciences and Engineering, vol. 40, no. 1, 2025, pp. 42-52. [Database Container], https://doi.org/10.26650/ASE20241564766
Vancouver
Sevin S, Dikel S. Building a Collaborative Aquaculture Research Ecosystem with APIs and AI. Aquatic Sciences and Engineering [Internet]. 5 Feb. 2025 [cited 5 Feb. 2025];40(1):42-52. Available from: https://doi.org/10.26650/ASE20241564766 doi: 10.26650/ASE20241564766
ISNAD
Sevin, Soner - Dikel, Suat. “Building a Collaborative Aquaculture Research Ecosystem with APIs and AI”. Aquatic Sciences and Engineering 40/1 (Feb. 2025): 42-52. https://doi.org/10.26650/ASE20241564766