Araştırma Makalesi


DOI :10.26650/ASE20241596033   IUP :10.26650/ASE20241596033    Tam Metin (PDF)

Determination of the Antibacterial Activity of Microalgae Isolated from Giresun Streams

Sibel Altürk KaracaElif Neyran Soylu

 The rapid emergence of antibiotic resistance has become a global crisis, threatening public health, food security, and agriculture. Particularly, the control of zoonotic diseases and the assurance of microbial safety in animal products necessitate the development of new and sustainable solutions. In this context, research on antimicrobial agents derived from natural sources has been gaining significant importance. Microalgae, with their ability to synthesize bioactive compounds, represent a promising natural resource in this regard. Studies on the antibacterial properties of freshwater microalgae in Türkiye remain limited. However, the rich biodiversity of these ecosystems provides valuable opportunities for the discovery of novel antimicrobial agents. This study investigates the antibacterial activity of Chlorococcum hypnosporum, Stichococcus bacillaris, Chlorella vulgaris, Chlorolilaea pamvotia, and Desmodesmus opoliensis isolated from the Aksu, Batlama, and Büyük Güre streams in Giresun, Türkiye. Bioactive compounds were extracted using acetone, ethanol, and methanol, and their antibacterial effects were tested against five bacterial strains via the agar well diffusion method. Notably, the acetone extract of Chlorella vulgaris exhibited significant activity against Bacillus subtilis at 40 µl/petri, and also showed high antibacterial activity against Escherichia coli. Additionally, the ethanol extract of Chlorococcum hypnosporum exhibited antibacterial activity against both Salmonella Typhimurium and Staphylococcus aureus. Other microalgae species also demonstrated significant antibacterial properties against the tested bacterial strains. These findings enhance our understanding of the antibacterial potential of Türkiye's freshwater microalgae and highlight their potential as sustainable antimicrobial agents for ensuring microbial safety in animal products. This study further emphasizes the importance of microalgae as natural and environmentally friendly alternatives in combating antibiotic resistance and preventing agricultural microbial contamination.


PDF Görünüm

Referanslar

  • Adhithya, S., Ramkumar, R., Arjunan, S., Vignesh, S. M., & Abirami, K. (2022). A review on application and future prospects of algae in the pharmaceutical and food industry. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10(10), 1469-1481. google scholar
  • Allen, M. M. (1984). Cyanobacterial cell inclusions. Annual Review of Microbiology, 38, 1-25. https://doi.org/10.1146/annurev.mi.38.100184.000245 google scholar
  • Allen, M. M., & Stanier, R. Y. (1968). Growth and division of some unicellular blue-green algae. Journal of General Microbiology, 51(2), 199-202. https://doi.org/10.1099/00221287-51-2-199. google scholar
  • Altürk Karaca, S., & Soylu, E. (accepted, 2025). Chlorolilaea pamvotia(Lortou&Gkelis) Lortou & Gkelis 2023 : A new record of freshwater green algae (Chlorophyta) in Türkiye. google scholar
  • Amaro, H. M. M., Guedes, A. C., & Malcata, F. X. (2011). Antimicrobial activities of macro- and microalgae: An invited review. In M. Mendez-Vilas (Ed.), Science against microbial pathogens: Communicating current research and technological advances (Vol. 3, pp. 1272-1280). Formatex Research Center. google scholar
  • Bennour, N., Mighri, H., Eljani, H., Zammouri, T., & Akrout, A. (2020). Effect of solvent evaporation method on phenolic compounds and the antioxidant activity of Moringa oleifera cultivated in Southern Tunisia. South African Journal of Botany, 129, 181-190. https://doi. org/10.1016/j.sajb.2019.05.005 google scholar
  • Besednova, N.N., Andryukov, B.G., Zaporozhets, T.S., Kryzhanovsky, S.P., Kuznetsova, T.A., Fedyanina, L.N., Makarenkova, I.D., & Zvyagintseva, T.N. (2020). Algae Polyphenolic Compounds and Modern Antibacterial Strategies:CurrentAchievementsandImmediateProspects. Biomedicines, 8. https://doi.org/10.3390/biomedicines8090342. google scholar
  • Bhowmick, S., Mazumdar, A., Moulick, A., & Adam, V. (2020). Algal metabolites: An inevitable substitute for antibiotics. Biotechnology advances, 107571. https://doi.org/10.1016/j.biotechadv.2020.107571. google scholar
  • Borowitzka, M. A. (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology, 7(1), 3-15. https://doi.org/10.1007/BF00003675 google scholar
  • Bozkurt, E. (2019). Çeşitli tatlı su örneklerinden izole edilen bazı mikroalglerin antimikrobiyal özelliklerinin ve anti-çoğunluk aktivitelerinin belirlenmesi [Master’s thesis, Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji ABD]. google scholar
  • Demiriz, T. (2008). Bazı alglerin antibakteriyal etkileri (Master’s thesis). Ankara University, Institute of Science, Department of Biology. google scholar
  • Demyanyuk, O., Symochko, L., Naumovska, O.I., Vlasenko, I.S., & Symochko, V. (2023). Antibiotic Resistance As A Global Problem In The Context Of Bıosecurıty. Naukovi Dopovidi Nacional'nogo Universitetu Bioresursiv i Prirodokoristuvannâ UkraTni. https://doi. org/10.31548/dopovidi1(101).2023.00. google scholar
  • Elshobary, M. E., El-Shenody, R. A., Ashour, M., Zabed, H. M., & Qi, X. (2020). Antimicrobial and antioxidant characterization of bioactive components from Chlorococcum minutum. Food Bioscience, 100567. doi:10.1016/j.fbio.2020.100567. google scholar
  • Fawley, M.W., Fawley, K.P., & Buchheim, M.A. (2004). Molecular diversity amongcommunities of freshwater microchlorophytes. Microbial Ecology,48:489-499. google scholar
  • Fawley, M. W., Fawley, K. P., & Owen, H. A. (2005). Diversity and ecology of small coccoid green algae from Lake Itasca, Minnesota, USA, including Meyerella planktonca, gen. et sp. nov. Phycologia, 44(1), 35-48. google scholar
  • Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of Infection and Public Health, 10(4), 369-378. https://doi.org/10.1016/j. jiph.2017.03.010. google scholar
  • Foerster, I., Seames, W., Oleksik, J., Kubatova, A., & Ross, A. (2023). A Comprehensive Study of Techniques to Optimize the Extraction of Lipids from the Autotrophic Strain of the Microalgae Chlorella vulgaris. Life, 13(10), 1997. https://doi.org/10.3390/life13101997. google scholar
  • Guiry, M. D., & Guiry, G. M. (2023). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Retrieved November 27, 2023, from http://www.algaebase.org google scholar
  • Harder, R., & Oppermann, A. (1953). Über antibiotische Stoffe bei den Grünalgen Stichococcus bacillaris und Protosiphon botryoides. Archiv für Mikrobiologie, 19(4), 398-401. https://doi.org/10.1007/ BF00412158. google scholar
  • Hoshina, R. (2014). DNA analyses of a private collection of microbial green algae contribute to a better understanding of microbial diversity. BioMed Central. google scholar
  • Hosseini, H., Jaoua, S., & Saadaoui, I. (2020). Assessment of anti-proliferative and anti-bacterial Activity of a Desert Microalgal Strain Desmodesmus sp. University of the Future: Re-Imagining Research and Higher Education. https://doi.org/10.29117/quarfe.2020.0036. google scholar
  • Hussein, J. J., Naji, S., & Sahi, N. (2018). Antibacterial properties of the Chlorella vulgaris isolated from polluted water in Iraq. Journal of Pharmaceutical Sciences and Research, 10(10), 2457-2460. google scholar
  • Karpinski, T.M., Ozarowski, M., Alam, R., tochynska, M., & Stasiewicz, M. (2021). What Do We Know about Antimicrobial Activity of Astaxanthin and Fucoxanthin? Marine Drugs, 20. https://doi.org/10.3390/ md20010036. google scholar
  • Kolackova, M., Janova, A., Dobesova, M., Zvalova, M., Chaloupsky, P., Krystofova, O., Adam, V., & Huska, D. (2023). Role of secondary metabolites in distressed microalgae. Environmental research, 115392. google scholar
  • Kumar, A., P, N., Kumar, M., Jose, A., Tomer, V., Oz, E., Proestos, C., Zeng, M., Elobeid, T., K, S., & Oz, F. (2023). Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules, 28(2), 887. https://doi.org/10.3390/molecules28020887. google scholar
  • Lee, K.W. (1970). New taxonomic studies on six Chlorococcum species.A thesis. Fresno State College. Pages:39. google scholar
  • Lee Ventola, C. (2015). The antibiotic resistance crisis. Pharmacy and Therapeutics, 40(6), 277-283. google scholar
  • Lewis, L. A., & Lewis, P. O. (2005). Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Systematic Biology, 54(6), 936-947. google scholar
  • Little, S. M., Senhorinho, G. N. A., Saleh, M., Basiliko, N., & Scott, J. A. (2021). Antibacterial compounds in green microalgae from extreme environments: A review. Algae, 36(1), 61-72. https://doi.org/10.4490/ algae.2021.36.3.6 google scholar
  • Lortou, U., & Gkelis, S. (2023). Antibacterial activity, pigments, and biomass content of microalgae isolated from Greece. Journal of Biological Research-Thessaloniki, 30(0). https://doi.org/10.26262/ jbrt.v30i0.9636. google scholar
  • Maadane, A., Merghoub, N., El Mernissi, N., Ainane, T., Amzazi, S., Wahby, I. &Bakri, Y. (2017). Antimicrobial Activity of Marine Microalgae Isolated FromMoroccan Coastlines. Journal of Microbiology, Biotechnology and Food Sciences,6(6), 1257-1260. https://doi. org/10.15414/jmbfs.2017.6.6.1257-1260 google scholar
  • Medard, M.L, Ndiku, L., Ntumbula, M., Ndofunsu, D. 2018. Identification and taxonomic studies of Scenedesmus and Desmodesmus species in some Mbanza-Ngungu ponds in Kongo Central Province, DR Congo.International Journal of Modern Biological Research. IJMBR6. 20-26. google scholar
  • Neustupa, J., Eliâs, M., Sejnohova, L. (2007). A taxonomic study of two Stichococcus species (Trebouxiophyceae, Chlorophyta) with a starch-enveloped pyrenoid. Nova Hedwigia 84:51-63. google scholar
  • Ördög, V., Stirk, WA., Lenobel, R., Bancırovâ, M., Strnad, M., Van Staden, J., Szigeti, J. & Nemeth, L. (2004). Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. Journal Applied of Phycology 16:309-314. google scholar
  • Perez, C., Pauli, M., & Bazerque, P. (1990). An antibiotic assay by agar well diffusion method. Acta Biologica et Medica Experimentalis, 15, 113115. google scholar
  • Rao, A. R., Reddy, A. H. & Aradhya, S. M. (2010). Antibacterial properties of Spirulina platensis, Haematococcus pluvialis, Botryococcus braunii micro algal extracts. Current Trends in Biotechnology and. Pharmacy,4(3), 809-819. google scholar
  • Rinaldi, K.L., Senhorinho, G.N., Laamanen, C.A., & Scott, J.A. (2024). A review of extremophilic microalgae: Impacts of experimental cultivation conditions for the production of antimicrobials. Algal Research. https://doi.org/10.1016/j.algal.2024.103427 google scholar
  • Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. (2023).Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare, 11, 1946. https:// doi.org/10.3390/ healthcare11131946. google scholar
  • Sarkar, A., Akhtar, N., & Mannan, M.A. (2021). Antimicrobial property of cell wall lysed Chlorella, an edible alga. Research Journal of Pharmacy and Technology. google scholar
  • Saritha, S.R., Peter, K.J., & Nair, S.M. (2018). In Vitro Antibacterial Screening of Fatty Acid Fractions from Three Different Microalgae. Phytopathology, 9. DOI: 10.25258/phyto.v9i11.11182. google scholar
  • Shanmugapriya, K.; Kim, H.; Saravana, P.S.; Chun, B.-S.; Kang, H.W. (2018).Astaxanthin-Alpha Tocopherol Nanoemulsion Formulation by Emulsification Methods: Investigation on Anticancer, Wound Healing, and Antibacterial Effects. Colloids Surf. B Biointerfaces, 172, 170-179. google scholar
  • Sivakumar, G., Jeong, K., & Lay, J. O. (2014). Bioprocessing of Stichococcus bacillaris strain siva2011. Biotechnology for Biofuels, 7(62). https:// doi.org/10.1186/s13068-014-0062-7 google scholar
  • Sivasubramanian, V. (2011). Preliminary phycochemical analysis and in vitro antibacterial screening of green micro algae, Desmococcus olivaceous, Chlorococcum humicola and Chlorella vulgaris. google scholar
  • Sukhikh, S., Prosekov, A., Ivanova, S., Maslennikov, P., Andreeva, A., Budenkova, E., Kashirskikh, E., Tcibulnikova, A., Zemliakova, E., Samusev, I., & Babich, O. (2022). Identification of metabolites with antibacterial activities by analyzing the FTIR spectra of microalgae. Life, 12(1395). https://doi.org/10.3390/life12091395 google scholar
  • Syed, S., Arasu, A., & Ponnuswamy, I. (2015). The uses of Chlorella vulgaris as antimicrobial agent and as a diet: The presence of bioactive compounds which cater the vitamins, minerals in general. International Journal of Bio-Science and Bio-Technology, 7(1), 185190. https://doi.org/10.21742/ijbsbt.2015.7.1.19. google scholar
  • Vanegas-Munera, J. M., & Jimenez-Quiceno, J. N. (2020). Resistencia antimicrobiana en el siglo XXI: ^hacia una era postantibiotica? Revista Facultad Nacional de Salud Publica, 38(1), e337759. https:// doi.org/10.17533/udea.rfnsp.v38n1e337759 google scholar
  • Vehapi, M. (2016). Antimicrobial and antioxidant properties of microalgae extracts: A study of Chlorella vulgaris and other species (Master’s thesis, Yıldız Technical University, Institute of Science and Technology). Yıldız Technical University Library. google scholar
  • Vehapi, M., Yilmaz, A., & Özçimen, D. (2018). Antifungal activities of Chlorella vulgaris and Chlorella minutissima microalgae cultivated in Bold basal medium, wastewater, and tree extract water against Aspergillus niger and Fusarium oxysporum. Romanian Biotechnological Letters, 23(5), 14401-14407. google scholar
  • Yuan, J.-P., Chen, F., Liu, X., Li, X.-Z. (2002). Carotenoid composition in the green microalga Chlorococcum. Food Chemistry, 76, 319-325. google scholar
  • Wehr, J., & Sheath, R. G. (2003). Freshwater algae of North America: Ecology and classification. Academic Press. google scholar
  • Wright, G.D. (2014). Something old, something new: revisiting natural products in antibiotic drug discovery. Canadian journal of microbiology, 60, 3, 147-54. google scholar
  • Zhang, D.H., Lee, Y.K. (1999). Ketocarotenoid production by a mutant of Chlorococcum sp. in an outdoor tubular photobioreactor. Biotechnology Letters 21, 7-10. https://doi. org/10.1023/A:1005462529999. google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Altürk Karaca, S., & Soylu, E.N. (2019). Determination of the Antibacterial Activity of Microalgae Isolated from Giresun Streams. Aquatic Sciences and Engineering, 0(0), -. https://doi.org/10.26650/ASE20241596033


AMA

Altürk Karaca S, Soylu E N. Determination of the Antibacterial Activity of Microalgae Isolated from Giresun Streams. Aquatic Sciences and Engineering. 2019;0(0):-. https://doi.org/10.26650/ASE20241596033


ABNT

Altürk Karaca, S.; Soylu, E.N. Determination of the Antibacterial Activity of Microalgae Isolated from Giresun Streams. Aquatic Sciences and Engineering, [Publisher Location], v. 0, n. 0, p. -, 2019.


Chicago: Author-Date Style

Altürk Karaca, Sibel, and Elif Neyran Soylu. 2019. “Determination of the Antibacterial Activity of Microalgae Isolated from Giresun Streams.” Aquatic Sciences and Engineering 0, no. 0: -. https://doi.org/10.26650/ASE20241596033


Chicago: Humanities Style

Altürk Karaca, Sibel, and Elif Neyran Soylu. Determination of the Antibacterial Activity of Microalgae Isolated from Giresun Streams.” Aquatic Sciences and Engineering 0, no. 0 (Mar. 2025): -. https://doi.org/10.26650/ASE20241596033


Harvard: Australian Style

Altürk Karaca, S & Soylu, EN 2019, 'Determination of the Antibacterial Activity of Microalgae Isolated from Giresun Streams', Aquatic Sciences and Engineering, vol. 0, no. 0, pp. -, viewed 10 Mar. 2025, https://doi.org/10.26650/ASE20241596033


Harvard: Author-Date Style

Altürk Karaca, S. and Soylu, E.N. (2019) ‘Determination of the Antibacterial Activity of Microalgae Isolated from Giresun Streams’, Aquatic Sciences and Engineering, 0(0), pp. -. https://doi.org/10.26650/ASE20241596033 (10 Mar. 2025).


MLA

Altürk Karaca, Sibel, and Elif Neyran Soylu. Determination of the Antibacterial Activity of Microalgae Isolated from Giresun Streams.” Aquatic Sciences and Engineering, vol. 0, no. 0, 2019, pp. -. [Database Container], https://doi.org/10.26650/ASE20241596033


Vancouver

Altürk Karaca S, Soylu EN. Determination of the Antibacterial Activity of Microalgae Isolated from Giresun Streams. Aquatic Sciences and Engineering [Internet]. 10 Mar. 2025 [cited 10 Mar. 2025];0(0):-. Available from: https://doi.org/10.26650/ASE20241596033 doi: 10.26650/ASE20241596033


ISNAD

Altürk Karaca, Sibel - Soylu, ElifNeyran. Determination of the Antibacterial Activity of Microalgae Isolated from Giresun Streams”. Aquatic Sciences and Engineering 0/0 (Mar. 2025): -. https://doi.org/10.26650/ASE20241596033



ZAMAN ÇİZELGESİ


Gönderim06.12.2024
Kabul31.01.2025
Çevrimiçi Yayınlanma21.02.2025

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.