Araştırma Makalesi


DOI :10.26650/ASE20241600044   IUP :10.26650/ASE20241600044    Tam Metin (PDF)

Fermented Rainbow Trout Production Using Lactobacillus sakei and Saccharomyces cerevisiae: Effects on Microbiological, Biochemical, and Sensory Quality

Göknur SürengilAbdullah Diler

The aim of this study was to evaluate the microbiological, biochemical and sensory properties of fermented rainbow trout (Oncorhynchus mykiss) using Lactobacillus sakei ATCC® 15521™ (L), Saccharomyces cerevisiae ATCC® 9080™ (S) and their combination (M) as starter cultures and without starter culture as spontaneous fermentation (F). Rainbow trout slices (94% w/w) were mixed with curing ingredients—sucrose (2% w/w), salt (3% w/w), garlic powder (0.3% w/w), ginger powder (0.3% w/w), and sweet red pepper powder (0.3% w/w)—and kept at 4 °C for 2 days. After the cured trout were dried at 60 °C for 3 hours, starter cultures were evenly injected into the trout slices at a rate of 1% (1 mL starter culture: 100 g cured fish). The fermentation process was conducted at 24 °C for 14 days. During fermentation of the trout, the recommended 6 log CFU/g value for LAB, which is beneficial for gastrointestinal health, was reached on different days depending on the group: on day 12 in the F group (6.07 ± 0.25 log cfu/g), on day 4 in the S group (6.25 ± 0.11 log cfu/g), and on day 2 in the M group (6.52 ± 0.09 log cfu/g). Additionally, the highest value in the L group was 7.21±0.11 log cfu/g on day 2, indicating rapid fermentation. Enterobacteriaceae counts remained low across all groups, with values dropping to <1 log cfu/g by the end of fermentation. The results showed that the pH of fresh fish, initially 6.70, decreased significantly to 4.01, 4.18, and 4.09 in L, S, and M groups, respectively, by the end of fermentation. Nutritional analysis revealed higher protein content and reduced lipid oxidation levels in the M group, which also exhibited the lowest levels of total volatile basic nitrogen and thiobarbituric acid, indicating improved freshness and oxidative stability. Sensory evaluation identified the M group as the most preferred due to its balanced acidity, texture, and flavor. These findings suggest the potential of combining L. sakei and S. cerevisiae to produce highquality fermented trout with enhanced safety, nutritional value, and consumer acceptance. This study represents the first effort to produce the fermentation process specifically for rainbow trout, marking a contribution to the field of fermented fish production.


PDF Görünüm

Referanslar

  • Abdel-Rahman, M. A., Hassan, S. E. D., Fouda, A., Radwan, A. A., Barghoth, M. G., & Desouky, S. G. (2021). Evaluating the effect of lignocellulose-derived microbial inhibitors on the growth and lactic acid production by Bacillus coagulans Azu-10. Fermentation, 7(1), 17. https://doi.org/10.3390/fermentation7010017 google scholar
  • Acton, J. C., & Keller, J. E. (1974). Effect of fermented meat pH on summer sausage properties. Journal of Food Protection, 37(11), 570-576. https://doi.org/10.4315/0022-2747-37.11.570 google scholar
  • Adab, S. E., Zaghbib, I., Tekiki, A., & Hassouna, M. (2018). Shelf-life determination of dry fermented poultry mest sausage using Arrhenius model. International Journal of Advanced Engineering and Management Research, 3(2), 85-94. ISSN : 2456-3676 google scholar
  • An, Y., Cai, X., Cong, L., Hu, Y., Liu, R., Xiong, S., & Hu, X. (2022). Quality improvement of Zhayu, a fermented fish product in China: effects of inoculated fermentation with three kinds of lactic acid bacteria. Foods, 11(18), 2756. https://doi.org/10.3390/foods12091768 google scholar
  • Anihouvi, V. B., Sakyi-Dawson, E., Ayernor, G. S., & Hounhouigan, J. D. (2007). Microbiological changes in naturally fermented cassava fish (Pseudotolithus sp.) for lanhouin production. International journal of food microbiology, 116(2), 287-291. https://doi.org/10.1016/j. ijfoodmicro.2006.12.009 google scholar
  • Antonocoupoulos, N., & Vyncke, W. (1989). Determination of volatile basic nitrogen in fish. Z. Lebensm Unters Forsch., 189, 309-316. google scholar
  • AOAC (1990). Associattion Official Analytical Chemists. Methods Analysis of the Association of Official Analytical Chemists, 15th Edition, Washington, DC. google scholar
  • AOAC (2000). Association of Official Methods of Analysis. The Association of Official Analytical Chemists, Gaithersburg, 17th Edition, MD, USA. Methods No: 925.10, 65.17, 974.24, 992.16, 1126-1141. google scholar
  • Bao, R., Liu, S., Ji, C., Liang, H., Yang, S., Yan, X., Zhou, Y., Lin, X., & Zhu, B. (2018). Shortening fermentation period and quality improvement of fermented fish, Chouguiyu, by co-inoculation of Lactococcus lactis M10 and Weissella cibaria M3. Frontiers in Microbiology, 9, 3003. https://doi.org/10.3389/fmicb.2018.03003 google scholar
  • Belleggia, L., & Osimani, A. (2023). Fermented fish and fermented fish-based products, an ever-growing source of microbial diversity: a literature review. Food Research International, 172, 113112. https:// doi.org/10.1016/j.foodres.2023.113112 google scholar
  • Benkerroum, N. (2013). Traditional fermented foods of North African countries: technology and food safety challenges with regard to microbiological risks. Comprehensive Reviews in Food Science and Food Safety, 12(1), 54-89. 10.1111/j.1541-4337.2012.00215.x google scholar
  • Bernbom, N., Ng, Y. Y., Paludan-Müller, C., & Gram, L. (2009). Survival and growth of Salmonella and Vibrio in som-fak, a Thai low-salt garlic containing fermented fish product. International journal of food microbiology, 134(3), 223-229. doi:10.1016/j.ijfoodmicro.2009.06.012 google scholar
  • Cai, H., Tao, L., Zhou, X., Liu, Y., Sun, D., Ma, Q., Yu, Z., & Jiang, W. (2024). Lactic Acid Bacteria in Fermented Fish: Enhancing Flavor and Ensuring Safety. Journal of Agriculture and Food Research, 101206. https://doi.org/10.1016/j.jafr.2024.101206 google scholar
  • Carvalho, R. S., Cruz, I. A., Americo-Pinheiro, J. H. P., Soriano, R. N., de Souza, R. L., Bilal, M., Iqbal, H. M. N. , Bharagava, R. N., & Ferreira, L. F. R. (2020). Interaction between Saccharomyces cerevisiae and Lactobacillus fermentum during co-culture fermentation. Biocatalysis and Agricultural Biotechnology, 29, 101756. https://doi.org/10.1016/j. bcab.2020.101756 google scholar
  • Chan, S. X. Y., Fitri, N., Mio Asni, N. S., Sayuti, N. H., Azlan, U. K., Qadi, W. S., Dawoud, E. A., Kamal, N., Sarian, M. N. Lazaldin, M. A., Low, C. F., Harun, S., Hamezah, H. S., Rohani, E. R., & Mediani, A. (2023). A comprehensive review with future insights on the processing and safety of fermented fish and the associated changes. Foods, 12(3), 558. https://doi.org/10.3390/foods12030558 google scholar
  • Christ-Ribeiro, A., Chiattoni, L. M., Mafaldo, C. R. F., Badiale-Furlong, E., & de Souza-Soares, L. A. (2021). Fermented rice-bran by Saccharomyces cerevisiae: Nutritious ingredient in the formulation of gluten-free cookies. Food Bioscience, 40, 100859. https://doi. org/10.1016/j.fbio.2020.100859 google scholar
  • Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M., Emamie, A. D., Ghanavati, R., & Kakanj, M. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36(1), e24093. google scholar
  • Debevere, J., & Boskou, G. (1996). Effect of modified atmosphere packaging on the TVB/TMA-producing microflora of cod fillets. International Journal of Food Microbiology, 31(1-3), 221-229. https:// doi.org/10.1016/0168-1605(96)01001-X google scholar
  • Escamilla-Rosales, M. F., Perez-Escalante, E., Jara-Gutierrez, C. E., Santana-Sepulveda, P A., Âlvarez-Âlvarez, C. A., Castaneda-Ovando, A., & Gonzalez-Olivares, L. G. (2024). Rainbow trout (Oncorhynchus mykiss) proteins as a source of antioxidant peptides with promising anticancer activity. Future Foods, 100509. https://doi.org/10.1016/j. fufo.2024.10050 google scholar
  • Gassem, M. A. (2019). Microbiological and chemical quality of a traditional salted-fermented fish (Hout-Kasef) product of Jazan Region, Saudi Arabia. Saudi Journal of Biological Sciences, 26(1), 137-140. https:// doi.org/10.1016/j.sjbs.2017.04.003 google scholar
  • Gelman, A., Drabkin, V., & Glatman, L. (2000). Evaluation of lactic acid bacteria, isolated from lightly preserved fish products, as starter cultures for new fish-based food products. Innovative Food Science & Emerging Technologies, 1(3), 219-226. DOI: 10.1016/S1466-8564(00)00023-0 google scholar
  • Glover, R. L. K., Sawadogo-Lingani, H., Diawara, B., Jespersen, L., & Jakobsen, M. (2009). Utilization of Lactobacillus fermentum and Saccharomyces cerevisiae as starter cultures in the production of’dolo’. Journal of Applied Biosciences, 22: 1312 - 1319. ISSN 19975902. google scholar
  • Hemarajata, P., & Versalovic, J. (2013). Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6(1), 39-51. DOI: 10.1177/1756283X12459294 google scholar
  • Hu, Y., Xia, W., & Ge, C. (2008). Characterization of fermented silver carp sausages inoculated with mixed starter culture. LWT-Food Science and Technology, 41(4), 730-738. https://doi.org/10.1016/j.lwt.2007.04.004 google scholar
  • Huss, H. H. (1988). Fresh fish--quality and quality changes: a training manual prepared for the FAO/DANIDA Training Programme on Fish Technology and Quality Control (No. 29). Food & Agriculture Org, İtaly. google scholar
  • Hwanhlem, N., Buradaleng, S., Wattanachant, S., Benjakul, S., Tani, A., & Maneerat, S. (2011). Isolation and screening of lactic acid bacteria from Thai traditional fermented fish (Plasom) and production of Plasom from selected strains. Food control, 22(3-4), 401-407. google scholar
  • Kılınç, B. (2004). Laktik asit fermentasyonu ile üretilen fermente su ürünleri. Ege University Journal of Fisheries & Aquatic Sciences, 21(3-4), 371-374. google scholar
  • Kılınç, B., & Çaklı, Ş. (2021). Production of dry fermented fish sausages by using different fish species and determination of the microbiological qualities. Ege Journal of Fisheries and Aquatic Sciences, 38(3), 329336. https://doi.org/10.12714/egejfas.38.3.09 google scholar
  • Kılınç, B., & Sürengil, G. (2016). Microbiological changes in whiting (Merlangius merlangus Linneaus, 1758) fillets during short-term cold storage and a traditional ‘pastrami-like’treatment. Journal of Applied Ichthyology, 32(3), 548-551. https://doi.org/10.1111/jai.13043 google scholar
  • Kuley, E., Özyurt, G., Özogul, I., Boga, M., Akyol, I., Rocha, J. M., & Özogul, F. (2020). The role of selected lactic acid bacteria on organic acid accumulation during wet and spray-dried fish-based silages. Contributions to the winning combination of microbial food safety and environmental sustainability. Microorganisms, 8(2), 172. https:// doi.org/10.3390/microorganisms8020172 google scholar
  • Laranjo, M., Potes, M. E., & Elias, M. (2019). Role of starter cultures on the safety of fermented meat products. Frontiers in Microbiology, 10, 853. https://doi.org/10.3389/fmicb.2019.00853 google scholar
  • Li, L., & Xu, Y. (2021). Influence of Lactobacillus plantarum on managing lipolysis and flavor generation of Staphylococcus xylosus and Saccharomyces cerevisiae in fish paste. LWT, 140, 110709. https:// doi.org/10.1016/j.lwt.2020.110709 google scholar
  • Liu, J., Lin, C., Zhang, W., Yang, Q., Meng, J., He, L., Deng, L., & Zeng, X. (2021). Exploring the bacterial community for starters in traditional high-salt fermented Chinese fish (Suanyu). Food Chemistry, 358, 129863. DOI: 10.1016/j.foodchem.2021.129863 google scholar
  • Lv, J., Lin, X., Wang, W., Xu, W., Li, C., Ji, C., Liang, H., Li, S., Zhang, S., & Zhu, B. (2022). Effects of papain, Lactiplantibacillus plantarum 1-24-LJ and their combinations on bacterial community changes and flavour improvement in Suanzhayu, a Chinese traditional fish. International Journal of Food Science & Technology, 57(8), 53665375. https://doi.org/10.1111/ijfs.15868 google scholar
  • Oyelese, O. A., Sao, O. M., Adeuya, M. A., & Oyedokun, J. O. (2013). Acidity/Rancidity levels, chemical studies, bacterial count/flora of fermented and unfermented silver catfish (Chrysichthys nigrodigitatus). Food & Nutrition Sciences, 4(11), 1155-1166. https:// doi.org/10.4236/fns.2013.411149 google scholar
  • Panda, S. H., Ray, R. C., El Sheikha, A. F., Montet, D., & Worawattanamateekul, W. (2011). Fermented fish and fish products: an overview. 1st Edition, CRC Press, Aquaculture Microbiology and Biotechnology, 2, 132-172. google scholar
  • Paludan-Müller, C., Madsen, M., Sophanodora, P., Gram, L., & M0İler, P. L. (2002). Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations. International Journal of Food Microbiology, 73(1), 61-70. DOI: 10.1016/S0168-1605(01)00688-2 google scholar
  • Siddiqui, S. A., Lakshmikanth, D., Pradhan, C., Farajinejad, Z., Castro-Munoz, R., & Sasidharan, A. (2023). Implementing fermentation technology for comprehensive valorisation of seafood processing by-products: A critical review on recovering valuable nutrients and enhancing utilisation. Critical Reviews in Food Science and Nutrition, 1-28. https://doi.org/10.1080/10408398.2023.2286623 google scholar
  • Sikorski, Z. E. (1990). Seafood: Resources, Nutritional Composition, and Preservation. CRC Press. google scholar
  • Sun, Q., Chen, Q., Li, F., Zheng, D., & Kong, B. (2016). Biogenic amine inhibition and quality protection of Harbin dry sausages by inoculation with Staphylococcus xylosus and Lactobacillus plantarum. Food Control, 68, 358-366. 10.1016/j.foodcont.2016.04.021 google scholar
  • Sürengil, G. (2024). Use of starter culture (Lactobacillus sakei and Saccharomyces cerevisiae) in fermented rainbow trout production and determination of product quality. Fishing and Processing Technology Department, Isparta University of Applied Sciences, PhD Thesis, Isparta. google scholar
  • Tavares, J., Martins, A., Fidalgo, L. G., Lima, V., Amaral, R. A., Pinto, C. A., Silva, A.M., & Saraiva, J. A. (2021). Fresh fish degradation and advances in preservation using physical emerging technologies. Foods, 10(4), 780. doi: 10.3390/foods10040780 google scholar
  • Wang, Y., Li, C., Li, L., Yang, X., Chen, S., Wu, Y., Zhao, Y., Wang, J., Wei, Y., & Yang, D. (2019). Application of UHPLC-Q/TOF-MS-based metabolomics in the evaluation of metabolites and taste quality of Chinese fish sauce (Yu-lu) during fermentation. Food Chemistry, 296, 132-141. https://doi.org/10.1016/j.foodchem.2019.05.043 google scholar
  • Wang, Y., Ya-Ting, J., Jin-Xuan, C., Yin-Ji, C., Yang-Ying, S., Xiao-Qun, Z., Dao-Dong, P., Chang-Rong, O., & Ning, G. (2016). Study on lipolysis-oxidation and volatile flavour compounds of dry-cured goose with different curing salt content during production. Food Chemistry, 190, 33-40. https://doi.org/10.1016/j.foodchem.2015.05.048 google scholar
  • Wang, Z., Xu, Z., Sun, L., Dong, L., Wang, Z., & Du, M. (2020). Dynamics of microbial communities, texture and flavor in Suan zuo yu during fermentation. Food Chemistry, 332, 127364. https://doi.org/10.1016/j. foodchem.2020.127364 google scholar
  • Weiner, I. D., Mitch, W. E., & Sands, J. M. (2015). Urea and ammonia metabolism and the control of renal nitrogen excretion. Clinical Journal of the American Society of Nephrology, 10(8), 1444-1458. https://doi.org/10.2215/CJN.10311013 google scholar
  • Wilburn, J. R., & Ryan, E. P. (2017). Fermented foods in health promotion and disease prevention: An overview. In Fermented Foods in Health and Disease Prevention. (pp. 3-19) google scholar
  • Xu, Y., Xia, W., Yang, F., & Nie, X. (2010). Physical and chemical changes of silver carp sausages during fermentation with Pediococcus pentosaceus. Food Chemistry, 122(3), 633-637. https://doi. org/10.1016/j.foodchem.2010.03.023 google scholar
  • Varlık, C. (1993). Su urunlerinde kalite kontrol ilke ve yöntemleri. Gıda Teknolojisi Derneği, 17, 16-17. google scholar
  • Yang, E., Fan, L., Jiang, Y., Doucette, C., & Fillmore, S. (2012). Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. Amb Express, 2(1), 1-12. https://doi. org/10.1186/2191-0855-2-48 google scholar
  • Zang, J., Xu, Y., Xia, W., & Regenstein, J. M. (2020). Quality, functionality, and microbiology of fermented fish: a review. Critical Reviews in Food Science and Nutrition, 60(7), 1228-1242. https://doi.org/10.108 0/10408398.2019.1565491 google scholar
  • Zang, J., Xu, Y., Xia, W., Yu, D., Gao, P., Jiang, Q., & Yang, F. (2018). Dynamics and diversity of microbial community succession during fermentation of Suan yu, a Chinese traditional fermented fish, determined by high throughput sequencing. Food Research International, 111, 565-573. https://doi.org/10.1016/j.foodres.2018.05.076 google scholar
  • Zeng, X., Xia, W., Jiang, Q., & Yang, F. (2013). Effect of autochthonous starter cultures on microbiological and physico-chemical characteristics of Suan yu, a traditional Chinese low salt fermented fish. Food Control, 33(2), 344-351. https://doi.org/10.1016/j. foodcont.2013.03.001 google scholar
  • Zeng, X., Xia, W., Wang, J., Jiang, Q., Xu, Y., Qiu, Y., & Wang, H. (2014). Technological properties of Lactobacillus plantarum strains isolated from Chinese traditional low salt fermented whole fish. Food Control, 40, 351-358. https://doi.org/10.1016/j.foodcont.2013.11.048 google scholar
  • Zhu, L., Yang, F., Gao, P., Yu, D., Yu, P., Jiang, Q., Xu, Y., & Xia, W. (2019). Comparative study on quality characteristics of pickled and fermented sturgeon (Acipenser sinensis) meat in retort cooking. International Journal of Food Science & Technology, 54(8), 25532562. https://doi.org/10.1111/ijfs.14166 google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Sürengil, G., & Diler, A. (2025). Fermented Rainbow Trout Production Using Lactobacillus sakei and Saccharomyces cerevisiae: Effects on Microbiological, Biochemical, and Sensory Quality. Aquatic Sciences and Engineering, 40(2), 107-115. https://doi.org/10.26650/ASE20241600044


AMA

Sürengil G, Diler A. Fermented Rainbow Trout Production Using Lactobacillus sakei and Saccharomyces cerevisiae: Effects on Microbiological, Biochemical, and Sensory Quality. Aquatic Sciences and Engineering. 2025;40(2):107-115. https://doi.org/10.26650/ASE20241600044


ABNT

Sürengil, G.; Diler, A. Fermented Rainbow Trout Production Using Lactobacillus sakei and Saccharomyces cerevisiae: Effects on Microbiological, Biochemical, and Sensory Quality. Aquatic Sciences and Engineering, [Publisher Location], v. 40, n. 2, p. 107-115, 2025.


Chicago: Author-Date Style

Sürengil, Göknur, and Abdullah Diler. 2025. “Fermented Rainbow Trout Production Using Lactobacillus sakei and Saccharomyces cerevisiae: Effects on Microbiological, Biochemical, and Sensory Quality.” Aquatic Sciences and Engineering 40, no. 2: 107-115. https://doi.org/10.26650/ASE20241600044


Chicago: Humanities Style

Sürengil, Göknur, and Abdullah Diler. Fermented Rainbow Trout Production Using Lactobacillus sakei and Saccharomyces cerevisiae: Effects on Microbiological, Biochemical, and Sensory Quality.” Aquatic Sciences and Engineering 40, no. 2 (May. 2025): 107-115. https://doi.org/10.26650/ASE20241600044


Harvard: Australian Style

Sürengil, G & Diler, A 2025, 'Fermented Rainbow Trout Production Using Lactobacillus sakei and Saccharomyces cerevisiae: Effects on Microbiological, Biochemical, and Sensory Quality', Aquatic Sciences and Engineering, vol. 40, no. 2, pp. 107-115, viewed 2 May. 2025, https://doi.org/10.26650/ASE20241600044


Harvard: Author-Date Style

Sürengil, G. and Diler, A. (2025) ‘Fermented Rainbow Trout Production Using Lactobacillus sakei and Saccharomyces cerevisiae: Effects on Microbiological, Biochemical, and Sensory Quality’, Aquatic Sciences and Engineering, 40(2), pp. 107-115. https://doi.org/10.26650/ASE20241600044 (2 May. 2025).


MLA

Sürengil, Göknur, and Abdullah Diler. Fermented Rainbow Trout Production Using Lactobacillus sakei and Saccharomyces cerevisiae: Effects on Microbiological, Biochemical, and Sensory Quality.” Aquatic Sciences and Engineering, vol. 40, no. 2, 2025, pp. 107-115. [Database Container], https://doi.org/10.26650/ASE20241600044


Vancouver

Sürengil G, Diler A. Fermented Rainbow Trout Production Using Lactobacillus sakei and Saccharomyces cerevisiae: Effects on Microbiological, Biochemical, and Sensory Quality. Aquatic Sciences and Engineering [Internet]. 2 May. 2025 [cited 2 May. 2025];40(2):107-115. Available from: https://doi.org/10.26650/ASE20241600044 doi: 10.26650/ASE20241600044


ISNAD

Sürengil, Göknur - Diler, Abdullah. Fermented Rainbow Trout Production Using Lactobacillus sakei and Saccharomyces cerevisiae: Effects on Microbiological, Biochemical, and Sensory Quality”. Aquatic Sciences and Engineering 40/2 (May. 2025): 107-115. https://doi.org/10.26650/ASE20241600044



ZAMAN ÇİZELGESİ


Gönderim13.12.2024
Kabul05.04.2025
Çevrimiçi Yayınlanma14.04.2025

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.