Growth Performance, Survival Rate, and Water Quality in an Aquaculture System Using Different Feeding Strategies for Juveniles of Nile Tilapia (Oreochromis niloticus)
Dagon Ribeiro, Emerson De Carvalho, Gustavo FonsecaAquaculture is a rapidly growing industry worldwide, with Nile tilapia (Oreochromis niloticus) being one of the most intensively farmed fish species. This study aimed to evaluate the growth performance and water quality parameters in different culture systems for Nile tilapia. Six treatments were tested, including variations in feed type (commercial or microalgae), aeration, and their combinations. The results showed that the presence of commercial feed and aeration (T2) resulted in the highest weight gain and specific growth rates, while treatments without commercial feed showed lower growth performance. The addition of microalgae supplementation did not significantly improve growth compared to commercial feed alone. Water quality parameters, particularly nitrite levels and dissolved oxygen, played crucial roles in the production of tilapia. It was observed that high nitrite levels were associated with decreased growth and survival rates. Proper monitoring and management of water quality, including nitrite levels and dissolved oxygen, are essential to ensure the survival and growth of tilapia in aquaculture systems. These findings highlight the importance of implementing sustainable practices and appropriate feeding strategies to optimize the growth and well-being of farmed tilapia while minimizing environmental impacts.
PDF Görünüm
Referanslar
- Abdel-Tawwab, M., Hagras, A. E., Elbaghdady, H. A. M. & Monier, M. N. (2015). Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): growth performance, whole-body composition, and innate immunity. Aquacul. Int. 23(5), 1261-1274. doi:10.1007/s10499-015-9882-y. google scholar
- Ahmed, H. A. & Naim, U. (2003). Quantitative and qualitative studies on bacterial flora of hybrid tilapia (Orecochromis niloticus x O. arcus) cultured in earthen ponds in Saudi Arabia. Aquacul. Res. 34(1), 43-48. doi:10.1046/j.1365-2109.2003.00791.x. google scholar
- APHA (1998). Standard Methods for the Examination of Water and Wastewater, 20th edn. Washington, DC. google scholar
- Assano, M., Ramirez, A. P. M., Stech, M. R., Honorato, C. A., Malheiros, E. google scholar
- B. & Carneiro, D. J. (2011). Desempenho de tilapia-do-Nilo cultivadas em viveiros alimentadas com diferentes fontes e nıveis proteicos. Ens. Cien. 15(5), 81-90. google scholar
- Batista, S., Pintado, M., Marques, A., Abreu, H., Silva, J. L., Jessen, F., Tulli, F. & Valente, L. M. (2020). Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles. J. Appl. Phycol. 32, 3429-3446. doi:10.1007/s10811-020-02185-2. google scholar
- Bischoff, H. W. & Bold, H. C. (1963). Phycological studies. IV. Some soil algae from enchanted rock and related algal species. Univ. Texas Pub. 6318, 1-95. google scholar
- Bhatnagar, A. & P. Devi. 2013. Water quality guidelines for the management of pond fish culture. Int. J. Environ. Sci., 3(6):1980-1997. doi:10.6088/ijes.2013030600019. google scholar
- Boyd, C. E., Torrans, E. L. & Tucker, C. S. (2018). Dissolved oxygen and aeration in ictalurid catfish aquaculture. World Aquacul. Soc. 49(1):7-70. doi:10.1111/jwas.12469. google scholar
- Brazil (2005). National Council for the Environment (CONAMA) Resolution n. 357. Available at: <http://www.mma.gov.br/port/conama/res/ res05/res>. google scholar
- Caldini, N. N., Pereira, N. V, Rebouças, V. T. & Sa M. V. C. (2013). Can a small change in the tilapia’s on-going feeding strategy impair its growth? Acta Scient. Anim. Sci. 35(3), 227-234. doi:10.4025/ actascianimsci.v35i3.18290. google scholar
- Canosa, L. F. & Bertucci, J. I. (2023). The effect of environmental stressors on growth in fish and its endocrine control. Front. Endocrinol. 14, 1109461. doi: 10.3389/fendo.2023.1109461. google scholar
- Carvalho, J. S. O., Azevedo, R. V., Ramos, A. P. S. & Braga, L. G. T. (2012). Agroindustrial by-products in diets for Nile tilapia juveniles. Rev. Bras. Zootec. 41(3), 479-484. doi:10.1590/S1516-35982012000300002. google scholar
- Coelho, A. A. C., Bezerra, J. H. C., Silva, J. W. A., Moreira, R. T., Albuquerque, L. F. G. & Farias, W. R. L. (2014). Growth performance of Nile tilapia cultured in a recirculating water system with microalgae Spirulina platensis. Rev. Bras. Saude Prod. Anim. 15(1), 149-159. doi:10.1590/S1519-99402014000100024. google scholar
- Costa, F. T. M., Reis, F. R. C., Santos, J. M. S., Maciel, S. M., Biserra, T. S., Moreira, R. L. & Farias, W. R. L. (2011). Chlorella sp. as a food supplement during the Nile tilapia larviculture. Rev. Bras. Saude Prod. Anim. 12(4), 1103-1115. google scholar
- de Cruz, C. R., Lubrano, A. & Gatlin, D. M. (2018). Evaluation of microalgae concentrates as partial fishmeal replacements for hybrid striped bass Morone sp. Aquaculture 493, 130-136. doi:10.1016/j.aquaculture.2018.04.060. google scholar
- Dewi, R. R., Hassan, L., Daud, H. M., Matori, M. F., Nordin, F., Ahmad, N. I. & Zakaria, Z. (2022). Prevalence and antimicrobial resistance of Escherichia coli, Salmonella and Vibrio derived from farm-raised red hybrid tilapia (Oreochromis spp.) and Asian sea bass (Lates calcarifer, Bloch 1970) on the West Coast of Peninsular Malaysia. Antibiotics 11(2):136. doi:10.3390/antibiotics11020136. google scholar
- FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. doi:10.4060/cc0461en. google scholar
- Fonseca, G. G., Cavenaghi-Altemio, A. D., Silva, M. F., Arcanjo, V. & Sanjinez-Argandona, E. J. (2013). Influence of treatments in the quality of Nile tilapia (Oreochromis niloticus) fillets. Food Sci. Nutr. 1(3):246-253. doi:10.1002/fsn3.33. google scholar
- Furuya, W. M., Pezzato, L. E. & Miranda, E. C. (2001). Digestibility coefficients and digestible amino acids values of some ingredients for Nile tilapia (Oreochromis niloticus). Rev. Bras. Zootec. 30(4), 11861192. doi:10.1590/S1516-35982001000500002. google scholar
- Gorlach-Lira, K., Pacheco, C., Carvalho, L. C. T., Melo-Junior, H. N. & Crispim, M. C. (2013). The influence of fish in floating net cages on microbial indicators of water quality. Braz. J. Biol. 73(3), 457-463. doi:10.1590/S1519-69842013000300001. google scholar
- Haque, M.R., Das, D.R., Sarkar, M.R., Begum, N., Pandit, D. & Jaman, A. (2023). Effect of stocking densities on growth and production performance of Bheda (Nandus nandus) in pond aquaculture. Aquat. Sci. Eng., 38(2), 97-105. doi:10.26650/ASE20231247849. google scholar
- Hvas, M., Stien, L. H. & Oppedal, F. (2020). The metabolic rate response to feed withdrawal in Atlantic salmon post-smolts. Aquaculture 529, 735690. doi: 10.1016/j.aquaculture.2020.735690. google scholar
- Jung, J.-Y., Damusaru, J. H., Park, Y., Kim, K., Seong, M., Je, H.-W., Kim, S. & Bai, S. C. (2017). Autotrophic biofloc technology system (ABFT) using Chlorella vulgaris and Scenedesmus obliquus positively affects performance of Nile tilapia (Oreochromis niloticus). Algal Res., 27, 259-264. doi:10.1016/j.algal.2017.09.021. google scholar
- Kroupova, H., Machova, J. & Svobodova, Z. (2005). Nitrite influence on fish: a review. Vet. Med. 50(11), 461-471. doi:10.17221/5650-VETMED. google scholar
- Leonardo, A. F. G., Tachibana, L., Correa, C. F., Gonçalves, T. G. & Baccarin, A. E. (2009). Water quality of rearing ponds and productive performance of Nile tilapia juveniles using three feeding systems. Rev. Acad.: Cien. Agrar. Amb. 7(4), 383-393. google scholar
- Lima, F. R. S., Cavalcante, D. H., Rebouças, V T & Sa, M. V. C. (2016). Interaction between afternoon aeration and tilapia stocking density. Acta Scient. Anim. Sci. 38(1), 23-30. doi:10.4025/actascianimsci. v38i1.27093. google scholar
- Lui, T. A., Neu, D. H., Boscolo, W. R., Bittencourt, F., Freitas, J. M. A., Feiden, A. (2012). Use of organic wheat in the diet of Nile tilapia juveniles. Pesq. Agrop. Trop. 42(4), 383-389. doi:10.1590/S1983-40632012000400015. google scholar
- Martins, C. I., Galhardo, L., Noble, C., Damsgârd, B., Spedicato, M. T., Zupa, W., Beauchaud, M., Kulczykowska, E., Massabuau, J. C., Carter, T., Planellas, S. R. & Kristiansen, T. (2012). Behavioural indicators of welfare in farmed fish. Fish Physiol Biochem. 38, 17-41. doi: 10.1007/ s10695-011-9518-8. google scholar
- Moreira, r. l., silveira, l. p., teixeira, e. g., moreira, a. g. l., moura, p. s. & farias, w. r. l. (2012). growth and gastrointestinal indices in Nile tilapia fed with different diets. Acta Scient. Anim. Sci. 34(3), 223-229. doi:10.4025/actascianimsci.v34i3.13327. google scholar
- Ntengwe, F. W. & Edema, M. O. (2008). Physico-chemical and microbiological characteristics of water for fish production using small ponds. Phys. Chem. Earth, Parts A, B and C 33(1), 701-707. doi:10.1016/j.pce.2008.06.032. google scholar
- Obirikoranga, K. A., Acheamponga, J. N., Duodua, C. P., Skov, P. V. (2020). Growth, metabolism and respiration in Nile tilapia (Oreochromis niloticus) exposed to chronic or periodic hypoxia. Comp. Biochem. Physiol. Part A 248, 110768. doi:10.1016/j.cbpa.2020.110768. google scholar
- Pauly D. (1983). Some simple methods for the assessment of tropical fish stocks. FAO Fisheries Tech. Pap., FAO Rome, 234, 52. google scholar
- Pereira, C. M. & Lapolli F. R. (2009). Nile tilapia culture on domestic effluent treated in stabilization ponds. Biotemas 22(1), 93-102. google scholar
- Rocha R. S., Leite, L. O., de Sousa, O. V. & Vieira, R. H. (2014). Antimicrobial susceptibility of Escherichia coli isolated from fresh-marketed Nile tilapia (Oreochromis niloticus). J. Pathog. 2014, 756539. doi:10.1155/2014/756539. google scholar
- Santos, V. B., Mareco, E. A. & Silva, M. D. P. (2013). Growth curves of Nile tilapia (Oreochromis niloticus) strains cultivated at different temperatures. Acta Scient. Anim. Sci. 35(3), 235-242. doi:10.4025/ actascianimsci.v35i3.19443. google scholar
- Sarker, P. K., Gamble, M. M., Kelson, S. & Kapuscinski, A. R. (2016). Nile tilapia (Oreochromis niloticus) show high digestibility of lipid and fatty acids from marine Schizochytrium sp. and of protein and essential amino acids from freshwater Spirulina sp. feed ingredients. Aquacul. Nutr. 22(1), 109-119. doi:10.1111/anu.12230. google scholar
- Schwarz, K. K., Furuya, W. M., Natali, M. R. M., Michelato, M. & Gualdezi, M. C. (2010). Mannanoligosaccharides in diets for Nile tilapia, juveniles. Acta Scient. Anim. Sci. 32(2), 197-203. doi:10.4025/ actascianimsci.v32i2.7724. google scholar
- Scorvo-Filho, J. D. S., Frasca-Scorvo, C. M. D., Alves, J. M. C. & Souza, F. R. A. (2010). Tilapia culture and its inputs, economic relations. Rev. Bras. Zootec. 39(sp.), 112-118. doi:10.1590/S1516-35982010001300013. google scholar
- Signor, A. A., Boscolo, W. R., Bittencourt, F., Feiden, A., Gonçalves, G. S. & Freitas, J. M. A. (2010). Performance of juvenile Nile tilapia fed diets with enzymatic complex. Rev. Bras. Zootec. 39(5), 977-983. doi:10.1590/S1516-35982010000500006. google scholar
- Taelman, S. E., Meester, S. D. e., Roef, L., Michiels, M. & Dewulf, J. (2013). The environmental sustainability of microalgae as feed for aquaculture: A life cycle perspective. Biores. Technol. 150(1), 513522. doi:10.1016/j.biortech.2013.08.044. google scholar
- Teuling, E., Schrama, J. W., Gruppen, H. & Wierenga, P. A. (2017). Effect of cell wall characteristics on algae nutrient digestibility in Nile tilapia (Oreochromis niloticus) and African catfish (Clarus gariepinus). Aquaculture 479, 490-500. doi:10.1016/j.aquaculture.2017.06.025. google scholar
- Tibbetts, S. M., Mann, J. & Dumas, A. (2017). Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture, 481, 25-39. doi:10.1016/j.aquaculture.2017.08.018. google scholar
- Toni, M., Angiulli, E., Malavasi, S., Alleva, E. & Cioni, C. (2017). Variation in environmental parameters in research and aquaculture: Effects on behaviour, physiology and cell biology of teleost fish. J Aquac. Mar. Biol. 5(6), 00137. doi:10.15406/jamb.2017.05.00137. google scholar
- Turker, H., Eversole, A. G. & Brune, D. E. (2003). Filtration of green algae and cyanobacteria by Nile tilapia, Oreochromis niloticus, in the Partitioned Aquaculture System. Aquaculture 215, 93-101.S0044-8486(02)00133-3 google scholar
- Ungsethaphand, T., Peerapornpisal, Y., Whangchai, N. & Sardsud, U. (2010). Effect of feeding Spirulina platensis on growth and carcass composition of hybrid red tilapia (Oreochromis mossambicus x O. niloticus). Maejo Int. J. Sci. Technol. 4(2), 331-336. google scholar
- Verdegem, M., Buschmann, A. H., Latt, U. W., Dalsgaard, A. J. T. & Lovatelli, A. (2023). The contribution of aquaculture systems to global aquaculture production. J. World Aquacult. Soc. 54(2), 206-250. doi:10.1111/jwas.12963. google scholar
- Workagegn, K. B., Ababboa, E. D., Yimer, G. T. & Amare, T. A. (2014). Growth performance of the Nile tilapia (Oreochromis niloticus L.) fed different types of diets formulated from varieties of feed ingredients. J. Aquacul. Res. Develop. 5(3), 1000235(1-4). doi:10.4172/2155-9546.1000235. google scholar
- Yavuzcan, Y H, Robaina, L., Pirhonen, J., Mente, E., Domınguez, D. & Parisi, G. (2017). Fish welfare in aquaponic systems: Its relation to water quality with an emphasis on feed and faeces - A review. Water 9(1), 13. doi:10.3390/w9010013. google scholar
- Zeinab, A. K., Aly, M. S., Faiza, A. K. & Fatma, E. M. (2015). Effect of Spirulina platensis and Lactobacillus rhamnosus on growth and biochemical performance of Nile tilapia (Oreochromis niloticus) fingerlings. Int. J. Curr. Microbiol. Appl. Sci. 4(4), 747-76 google scholar
Atıflar
Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın
DIŞA AKTAR
APA
Ribeiro, D., Carvalho, E.D., & Fonseca, G. (2023). Growth Performance, Survival Rate, and Water Quality in an Aquaculture System Using Different Feeding Strategies for Juveniles of Nile Tilapia (Oreochromis niloticus). Aquatic Sciences and Engineering, 39(1), 17-23. https://doi.org/10.26650/ASE20241338060
AMA
Ribeiro D, Carvalho E D, Fonseca G. Growth Performance, Survival Rate, and Water Quality in an Aquaculture System Using Different Feeding Strategies for Juveniles of Nile Tilapia (Oreochromis niloticus). Aquatic Sciences and Engineering. 2023;39(1):17-23. https://doi.org/10.26650/ASE20241338060
ABNT
Ribeiro, D.; Carvalho, E.D.; Fonseca, G. Growth Performance, Survival Rate, and Water Quality in an Aquaculture System Using Different Feeding Strategies for Juveniles of Nile Tilapia (Oreochromis niloticus). Aquatic Sciences and Engineering, [Publisher Location], v. 39, n. 1, p. 17-23, 2023.
Chicago: Author-Date Style
Ribeiro, Dagon, and Emerson De Carvalho and Gustavo Fonseca. 2023. “Growth Performance, Survival Rate, and Water Quality in an Aquaculture System Using Different Feeding Strategies for Juveniles of Nile Tilapia (Oreochromis niloticus).” Aquatic Sciences and Engineering 39, no. 1: 17-23. https://doi.org/10.26650/ASE20241338060
Chicago: Humanities Style
Ribeiro, Dagon, and Emerson De Carvalho and Gustavo Fonseca. “Growth Performance, Survival Rate, and Water Quality in an Aquaculture System Using Different Feeding Strategies for Juveniles of Nile Tilapia (Oreochromis niloticus).” Aquatic Sciences and Engineering 39, no. 1 (Dec. 2024): 17-23. https://doi.org/10.26650/ASE20241338060
Harvard: Australian Style
Ribeiro, D & Carvalho, ED & Fonseca, G 2023, 'Growth Performance, Survival Rate, and Water Quality in an Aquaculture System Using Different Feeding Strategies for Juveniles of Nile Tilapia (Oreochromis niloticus)', Aquatic Sciences and Engineering, vol. 39, no. 1, pp. 17-23, viewed 23 Dec. 2024, https://doi.org/10.26650/ASE20241338060
Harvard: Author-Date Style
Ribeiro, D. and Carvalho, E.D. and Fonseca, G. (2023) ‘Growth Performance, Survival Rate, and Water Quality in an Aquaculture System Using Different Feeding Strategies for Juveniles of Nile Tilapia (Oreochromis niloticus)’, Aquatic Sciences and Engineering, 39(1), pp. 17-23. https://doi.org/10.26650/ASE20241338060 (23 Dec. 2024).
MLA
Ribeiro, Dagon, and Emerson De Carvalho and Gustavo Fonseca. “Growth Performance, Survival Rate, and Water Quality in an Aquaculture System Using Different Feeding Strategies for Juveniles of Nile Tilapia (Oreochromis niloticus).” Aquatic Sciences and Engineering, vol. 39, no. 1, 2023, pp. 17-23. [Database Container], https://doi.org/10.26650/ASE20241338060
Vancouver
Ribeiro D, Carvalho ED, Fonseca G. Growth Performance, Survival Rate, and Water Quality in an Aquaculture System Using Different Feeding Strategies for Juveniles of Nile Tilapia (Oreochromis niloticus). Aquatic Sciences and Engineering [Internet]. 23 Dec. 2024 [cited 23 Dec. 2024];39(1):17-23. Available from: https://doi.org/10.26650/ASE20241338060 doi: 10.26650/ASE20241338060
ISNAD
Ribeiro, Dagon - Carvalho, EmersonDe - Fonseca, Gustavo. “Growth Performance, Survival Rate, and Water Quality in an Aquaculture System Using Different Feeding Strategies for Juveniles of Nile Tilapia (Oreochromis niloticus)”. Aquatic Sciences and Engineering 39/1 (Dec. 2024): 17-23. https://doi.org/10.26650/ASE20241338060