Araştırma Makalesi


DOI :10.26650/ASE20251577446   IUP :10.26650/ASE20251577446    Tam Metin (PDF)

Investigating the Suitability of Remineralized Aquaponics Sludge for Microalgae Culture: Biomass Production and Nutritional Composition

Murat YeşiltaşMehmet Ali Turan KoçerFaruk PakÖzgür AktaşEdis Koru

Microalgae are promising resources for valuable products, and cultivating them requires a suitable culture medium to optimize growth and desired biochemical content. Aquaponic sludge, a byproduct of aquaponics systems, offers a sustainable and cost-effective alternative to conventional media by recycling waste and reducing environmental impact. This study aimed to compare the performance of standard BG-11 (Blue-Green 11) medium with remineralized sludge-water (RSW) and RSW supplemented with micronutrient solution (RSW+Mn) for cultivating Chlorella minutissima, Botryococcus braunii, and Haematococcus pluvialis. The highest specific growth rate (μ) of 0.097±0.011 was observed for C. minutissima in BG-11 medium, nearly 28% higher than in RSW medium. However, the highest dry biomass productivity (Pb ) of 0.012±0.011 was achieved by H. pluvialis in RSW+Mn medium, significantly 94% higher than in RSW medium. Additionally, the volumetric productivity of biomass (Qx ) for H. pluvialis in RSW medium was 0.045±0.017, nearly 50% higher than in BG-11 medium. The best doubling time (td) of 8.83±0.93 days was observed for H. pluvialis in RSW medium. Notably, C. minutissima cultured in RSW medium yielded the highest crude protein (55.77±1.81%) and total lipid (4.69±0.88%) contents. These results demonstrate that RSW medium can be tailored to achieve desired outcomes, such as optimizing growth rate or lipid content. This study highlights the potential of remineralized aquaponic sludge as a sustainable culture medium for microalgae, contributing to waste recycling and resource efficiency in aquaponics systems. Future studies should focus on optimizing RSW medium for large-scale cultivation of target microalgae species with specific biochemical profiles.


PDF Görünüm

Referanslar

  • Abbey, M., Anderson, N. O., Yue, C., Schermann, M., Phelps, N., Venturelli, P., & Vickers, Z. (2019). Lettuce (Lactuca sativa) production in northern latitudinal aquaponic growing conditions. HortScience, 54(10), 17571761. https://doi.org/10.21273/HORTSCI14088-19 google scholar
  • Addy, M. M., Kabir, F., Zhang, R., Lu, Q., Deng, X., Current, D., Griffith, R., Ma, Y., Zhou, W., Chen, P., Ruan, R. (2017). Co-cultivation of microalgae in aquaponic systems. Bioresource technology, 245, 27-34. https:// doi.org/10.1016/j.biortech.2017.08.151 google scholar
  • Ahmad, A., Bhat, A. H., Buang, A., Shah, S. M. U., Afzal, M. (2019). Biotechnological application of microalgae for integrated palm oil mill effluent (POME) remediation: a review. International Journal of Environmental Science and Technology, 16, 1763-1788. https://doi. org/10.1007/s13762-018-2118-8 google scholar
  • Al-Ajeel, S., Spasov, E., Sauder, L. A., McKnight, M. M., Neufeld, J. D. (2022). Ammonia-oxidizing archaea and complete ammonia-oxidizing Nitrospira in water treatment systems. Water Research X, 15, 100131. https://doi.org/10.1016/j.wroa.2022.100131 google scholar
  • Andreeva, A., Budenkova, E., Babich, O., Sukhikh, S., Dolganyuk, V., Michaud, P., Ivanova, S. (2021). Influence of carbohydrate additives on the growth rate of microalgae biomass with an increased carbohydrate content. Marine drugs, 19(7), 381. https://doi.org/10.3390/md19070381 google scholar
  • Ansari, F. A., Guldhe, A., Gupta, S. K., Rawat, I., Bux, F. (2021). Improving the feasibility of aquaculture feed by using microalgae. Environmental Science and Pollution Research, 28(32), 43234-43257. https://doi. org/10.1007/s11356-021-14989-x google scholar
  • APHA (1997). Standard Methods for the Examination of Water and Wastewater. Washington DC. google scholar
  • Ashokkumar, V., Rengasamy, R. (2012). Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Bioresource Technology, 104, 394-399. https://doi.org/10.1016/j. biortech.2011.10.093 google scholar
  • Badrey, A. E., El-Sawy, M. F., Mahdy, A., Farrag, M. M., Kloas, W., & Osman, A. G. (2024). The Impact of Water Quality on the Production of Lettuce (Lactuca sativa L.) Using Polyculture Effluent in ASTAF- Pro Aquaponic System. Journal of Soil Science and Plant Nutrition, 1-7. https://doi.org/10.1007/s42729-024-01669-1 google scholar
  • Barahoei, M., Hatamipour, M. S., Afsharzadeh, S. (2021). Direct brackish water desalination using Chlorella vulgaris microalgae. Process Safety and Environmental Protection, 148, 237-248. https://doi. org/10.1016/j.psep.2020.10.006 google scholar
  • Baßmann, B., Brenner, M., Palm, H. W. (2017). Stress and welfare of African catfish (Clarias gariepinus Burchell, 1822) in a coupled aquaponic system. Water, 9(7), 504. https://doi.org/10.3390/w9070504 google scholar
  • Baßmann, B., Harbach, H., Weißbach, S., Palm, H. W. (2018). Effect of plant density in coupled aquaponics on the welfare status of African catfish, Clarias gariepinus. Journal of World Aquaculture Society, 51, 183-199. https://doi.org/10.1111/jwas.12574 google scholar
  • Berge, T., Daugbjerg, N., Hansen, P. J. (2012). Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH. Harmful Algae, 20, 101-110. https://doi.org/10.1016/j.hal.2012.08.006 google scholar
  • Bligh, E. G., Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 37:911-917. https://doi.org/10.1139/o59-099 google scholar
  • Boedijn, A., van Serooskerken, A. V. T., Romero, E. B., Poot, E., & Espinal, C. (2021). GEOFOOD-Additional heat utilization processes for geothermal aquaponics (No. WPR-1100). Wageningen Plant Research. google scholar
  • Borowitzka, M. A., Huisman, J. M., Osborn, A. (1991). Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. Journal of Applied Phycology, 3, 295-304. https://doi.org/10.1007/BF02392882 google scholar
  • Byrd, G. V., Jha, B. R. (2022). Relative Growth of Lettuce (Lactuca sativa) and Common Carp (Cyprinus carpio) in Aquaponics with Different Types of Fish Food. Water, 14(23), 3870. https://doi.org/10.3390/ w14233870 google scholar
  • Cabanelas, I. T. D., Marques, S. S. I., de Souza, C. O., Druzian, J. I., Nascimento, I. A. (2015). Botryococcus, what to do with it? Effect of nutrient concentration on biorefinery potential. Algal Research, 11, 43-49. https://doi.org/10.1016/j.algal.2015.05.009 google scholar
  • Calone, R., Pennisi, G., Morgenstern, R., Sanyé-Mengual, E., Lorleberg, W., Dapprich, P., Winkler, P., Orsini, F., Gianquinto, G. (2019). Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics. Science of the Total Environment, 687, 759-767. https://doi.org/10.1016/j. scitotenv.2019.06.167 google scholar
  • Chakraborty, S., Mohanty, D., Ghosh, S., Das, D. (2016). Improvement of lipid content of Chlorella minutissima MCC 5 for biodiesel production. Journal of Bioscience and Bioengineering. 122(3), 294-300. https:// doi.org/10.1016/j.jbiosc.2016.01.015 google scholar
  • Chamoli, A., Bhambri, A., Karn, S. K., Raj, V. (2024). Ammonia, nitrite transformations and their fixation by different biological and chemical agents. Chemistry and Ecology, 1-34. https://doi.org/10.1080/027575 40.2023.2300780 google scholar
  • Chen, X., Zhou, T., Wang, X., Xu, P., Yang, C., Sun, X., Wang, S. (2019). Cultivation of Chlorella vulgaris in sludge extract from resorcinol‐rich wastewater: the removal and inhibitory effect of sludge toxicity. Journal of Chemical Technology & Biotechnology. 94 (4), 1240-1248. https://doi.org/10.1002/jctb.5876 google scholar
  • Cheng, P., Ji, B., Gao, L., Zhang, W., Wang, J., Liu, T. (2013). The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresource Technology, 138, 95-100. https:// doi.org/10.1016/j.biortech.2013.03.150 google scholar
  • Chiacchierini, E., D’Ascenzo, F., Restuccia, D., Vinci, G. (2003). Milk soluble whey proteins: fast and precise determination with Dumas Method. Analytical Letters. 36(11), 2473-2484. https://doi.org/10.1081/AL-120024336 google scholar
  • Chioccioli, M., Hanhamer, B., Ross, I. L. (2014). Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLoS One. 9(5), e 97269. https://doi.org/10.1371/journal.pone.0097269 google scholar
  • Chiu, S. Y., Kao, C. Y., Chen, T. Y., Chang, Y. B., Kuo, C. M., Lin, C. S. (2015). Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology. 184, 179-189. https://doi.org/10.1016/j.biortech.2014.11.080 google scholar
  • Choi, Y. Y., Joun, J. M., Lee, J., Hong, M. E., Pham, H. M., Chang, W. S., Sim, S. J. (2017). Development of large-scale and economic pH control system for outdoor cultivation of microalgae Haematococcus pluvialis using industrial flue gas. Bioresource Technology, 244, 12351244. https://doi.org/10.1016/j.biortech.2017.05.147 google scholar
  • Colt, J., Schuur, A. M., Weaver, D., Semmens, K. (2022). Engineering design of aquaponics systems. Reviews in Fisheries Science & Aquaculture, 30(1), 33-80. https://doi.org/10.1080/23308249.2021.1886240 google scholar
  • Da Silva, V. M., Silva, L. A., Andrade, J.B., Veloso, M. C. D. Santos, G.V. (2008) Determination of moisture content and water activity in algae and fish by thermoanalytical techniques. Quimica Nova 31: 901–905. https://doi.org/10.1590/S0100-40422008000400030 google scholar
  • Damiani, M. C., Popovich, C. A., Constenla, D., Leonardi, P. I. (2010). Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresource Technology, 101(11), 3801-3807. https://doi.org/10.1016/j.biortech.2009.12.136 google scholar
  • Danish, M. S. S., Senjyu, T., Sabory, N. R., Khosravy, M., Grilli, M. L., Mikhaylov, A., Majidi, H. (2021). A forefront framework for sustainable aquaponics modeling and design. Sustainability, 13(16), 9313. https:// doi.org/10.3390/su13169313 google scholar
  • Das, C., Naseera, K., Ram, A., Meena, R. M., Ramaiah, N. (2017). Bioremediation of tannery wastewater by a salt-tolerant strain of Chlorella vulgaris. Journal of Applied Phycology, 29(1), 235-243. https://doi.org/10.1007/s10811-016-0910-8 google scholar
  • de Medeiros, V. P. B., Pimentel, T. C., Varandas, R. C. R., Dos Santos, S. A., de Souza Pedrosa, G. T., da Costa Sassi, C. F., da Conceição, M. M., Magnani, M. (2020). Exploiting the use of agro-industrial residues from fruit and vegetables as alternative microalgae culture medium. Food Research International, 137, 109722. https://doi. org/10.1016/j.foodres.2020.109722 google scholar
  • Do, T. T., Ong, B. N., Le, T. L., Nguyen, T. C., Tran-Thi, B. H., Thu Hien, B. T., Melkonian, M., Tran, H. D. (2021). Growth of Haematococcus pluvialis on a small-scale angled porous substrate photobioreactor for green stage biomass. Applied Sciences, 11(4), 1788. https://doi. org/10.3390/app11041788 google scholar
  • Elisabeth, B., Rayen, F., & Behnam, T. (2021). Microalgae culture quality indicators: a review. Critical reviews in Biotechnology, 41(4), 457-473. https://doi.org/10.1080/07388551.2020.1854672 google scholar
  • Endut, A., Lananan, F., Jusoh, A., Cik, W. N. W. (2016). Aquaponics recirculation system: A sustainable food source for the future water conserves and resources. Malaysian Journal of Applied Sciences, 1(1), 1-12. google scholar
  • Eyeson, K. K., Ankrah, E. K. (1975). Composition of foods commonly used in Ghana. Food Research Institute, Council for Scientific and Industrial Research. google scholar
  • Fan, L., Vonshak, A., Boussiba, S. (1994). Effect of temperature and irradiance on growth of Haematococcus pluvialis (chlorophyceae) 1. Journal of Phycology, 30(5), 829-833. https://doi.org/10.1111/j.0022-3646.1994.00829.x google scholar
  • Fang, Y., Hu, Z., Zou, Y., Zhang, J., Zhu, Z., Zhang, J., Nie, L. (2017). Improving nitrogen utilization efficiency of aquaponics by introducing algal-bacterial consortia. Bioresource Technology, 245, 358-364. https://doi.org/10.1016/j.biortech.2017.08.116 google scholar
  • Feng, Y., Li, C., Zhang, D. (2011). Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technology. 102(1), 101-105. https://doi.org/10.1016/j.biortech.2010.06.016 google scholar
  • Fernandes, F., Silkina, A., Gayo-Peláez, J. I., Kapoore, R. V., de La Broise, D., Llewellyn, C. A. (2022). Microalgae cultivation on nutrient rich digestate: The importance of strain and digestate tailoring under pH control. Applied Sciences, 12(11), 5429. https://doi.org/10.3390/ app12115429 google scholar
  • Ferreira, A., Ribeiro, B., Ferreira, A. F., Tavares, M. L., Vladic, J., Vidović, S., Cvetkovic, D., Melkonyan, L., Avetisova, G., Goginyan, V., Gouveia, L. (2019). Scenedesmus obliquus microalga‐based biorefinery–from brewery effluent to bioactive compounds, biofuels and biofertilizers– aiming at a circular bioeconomy. Biofuels, Bioproducts and Biorefining, 13(5), 1169-1186. https://doi.org/10.1002/bbb.2032 google scholar
  • Fimbres‐Acedo, Y. E., Servín‐Villegas, R., Garza‐Torres, R., Endo, M., Fitzsimmons, K. M., Emerenciano, M. G., Magallón‐Servin, P., López-Vela, M., Magallón‐Barajas, F. J. (2020). Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae. Aquaculture Research, 51(10), 4340-4360. https://doi. org/10.1111/are.14779 google scholar
  • Freitas, B. C. B., Cassuriaga, A. P. A., Morais, M. G., Costa, J. A. V. (2017). Pentoses and light intensity increase the growth and carbohydrate production and alter the protein profile of Chlorella minutissima. Bioresource Technology, 238, 248-253. https://doi.org/10.1016/j. biortech.2017.04.031 google scholar
  • Gao, F., Li, C., Yang, Z. H., Zeng, G. M., Feng, L. J., Liu, J. Z., Liu, M., Cai, H. W. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55-61. https://doi. org/10.1016/j.ecoleng.2016.03.046 google scholar
  • Giraldo, N. D., Correa, S. M., Arbeláez, A., Figueroa, F. L., Ríos-Estepa, R., Atehortúa, L. (2021). Metabolic response of Botryococcus braunii to high bicarbonate dosages and other conditions: analysis of photosynthetic performance, productivity, and lipidomic profile. Journal of Applied Phycology, 33(5), 2875-2896. https://doi. org/10.1007/s10811-021-02544-7 google scholar
  • Goddek, S., Keesman, K. J. (2020). Improving nutrient and water use efficiencies in multi-loop aquaponics systems. Aquaculture International, 28(6), 24812490. https://doi.org/10.1007/s10499-020-00600-6 google scholar
  • Gouveia, J. D., Ruiz, J., van den Broek, L. A., Hesselink, T., Peters, S., Kleinegris, D. M., Smith, A. G., van der Veen, D., Barbosa, M. J., Wijffels, R. H. (2017). Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content. Journal of Biotechnology, 248, 77-86. https://doi.org/10.1016/j. jbiotec.2017.03.008 google scholar
  • Gouveia, L., Graça, S., Sousa, C., Ambrosano, L., Ribeiro, B., Botrel, E. P., Neto, P. C., Ferreira, A. F., Silva, C. M. (2016). Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Research, 16, 167-176. https://doi.org/10.1016/j. algal.2016.03.010 google scholar
  • Guccione, A., Biondi, N., Sampietro, G., Rodolfi, L., Bassi, N., Tredici, M. R. (2014). Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnology for Biofuels. 7(1), 84. https://doi.org/10.1186/1754-6834-7-84 google scholar
  • Hagar, E. A., Musa, A. M. (2019). Effects of replacing fish by-product meal with poultry by-product meal on growth performance of African catfish (Clarias gariepinus, Burchell 1822) in Recirculation Aquaculture System (RAS). https://doi.org/10.13140/RG.2.2.34719.59044 google scholar
  • Halfhide, T., Åkerstrøm, A., Lekang, O. I., Gislerød, H. R., Ergas, S. J. (2014). Production of algal biomass, chlorophyll, starch and lipids using aquaculture wastewater under axenic and non-axenic conditions. Algal Research, 6, 152-159. https://doi.org/10.1016/j. algal.2014.10.009 google scholar
  • Hawrot-Paw, M., Koniuszy, A., Gałczyńska, M., Zając, G., Szyszlak-Bargłowicz, J. (2020). Production of microalgal biomass using aquaculture wastewater as growth medium. Water, 12(1), 106. https:// doi.org/10.3390/w12010106 google scholar
  • Helrich, K. (1990). Official methods of analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists. google scholar
  • Hosseinizand, H., Lim, C. J., Webb, E., Sokhansanj, S. (2017). Economic analysis of drying microalgae Chlorella in a conveyor belt dryer with recycled heat from a power plant. Applied Thermal Engineering, 124, 525-532. https://doi.org/10.1016/j.applthermaleng.2017.06.047 google scholar
  • Hughes, E. O., Gorham, P. R., Zehnder, A. (1958). Toxicity of a unialgal culture of Microcystis aeruginosa. Canadian Journal of Microbiology, 4(3), 225-236. https://doi.org/10.1139/m58-024 google scholar
  • Indrayani, I., Egeland, E. S., Moheimani, N. R., Borowitzka, M. A. (2022). Carotenoid production of Botryococcus braunii CCAP 807/2 under different growth conditions. Journal of Applied Phycology, 34(3), 1177-1188. https://doi.org/10.1007/s10811-022-02682-6 google scholar
  • Jackson, B. A., Bahri, P. A., Moheimani, N. R. (2020). Non-destructive extraction of lipids from Botryococcus braunii and its potential to reduce pond area and nutrient costs. Algal Research, 47, 101833. https://doi.org/10.1016/j.algal.2020.101833 google scholar
  • Jasmin, M. Y., Syukri, F., Kamarudin, M. S., Karim, M. (2020). Potential of bioremediation in treating aquaculture sludge. Aquaculture, 519, 734905. https://doi.org/10.1016/j.aquaculture.2019.734905 google scholar
  • Kapsalis, V. C., Kalavrouziotis, I. K. (2021). Eutrophication—A worldwide water quality issue. Chemical Lake Restoration: Technologies, Innovations and Economic Perspectives, 1-21. https://doi.org/10.1007/978-3-030-76380-0_1 google scholar
  • Kates, M. (1972). Technology of lipidology. Isolation, analysis and identification of lipids. In work TS, Work E (eds), Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier, Amsterdam, 268-681. google scholar
  • Krasaesueb, N., Incharoensakdi, A., Khetkorn, W. (2019). Utilization of shrimp wastewater for poly-β-hydroxybutyrate production by Synechocystis sp. PCC 6803 strain ∆SphU cultivated in photobioreactor. Biotechnology Reports, 23, e00345. https://doi. org/10.1016/j.btre.2019.e00345 google scholar
  • Kyriacou, M. C., Soteriou, G. A., Colla, G., Rouphael, Y. (2019). The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chemistry, 285, 468-477. https://doi. org/10.1016/j.foodchem.2019.02.001 google scholar
  • Lee, Y. K., Chen, W., Shen, H., Han, D., Li, Y., Jones, H. D. T., Timlin, J. A., Hu, Q. (2013). Basic culturing and analytical measurement techniques. Handbook of microalgal culture: applied phycology and biotechnology, 37-68. https://doi.org/10.1002/9781118567166.ch3 google scholar
  • Li, C., Zhang, B., Luo, P., Shi, H., Li, L., Gao, Y., Wu, W. M. (2019). Performance of a pilot-scale aquaponics system using hydroponics and immobilized biofilm treatment for water quality control. Journal of Cleaner Production. 208, 274-284. https://doi.org/10.1016/j. jclepro.2018.10.170 google scholar
  • Li, G., Xiao, W., Yang, T., Lyu, T. (2023). Optimization and process effect for microalgae carbon dioxide fixation technology applications based on carbon capture: a comprehensive review. C, 9(1), 35. https://doi.org/10.3390/c9010035 google scholar
  • Li, S., Qu, W., Chang, H., Li, J., Ho, S. H. (2022). Microalgae-driven swine wastewater biotreatment: Nutrient recovery, key microbial community and current challenges. Journal of Hazardous Materials, 440, 129785. https://doi.org/10.1016/j.jhazmat.2022.129785 google scholar
  • Liang, C., Zhai, Y., Xu, D., Ye, N., Zhang, X., Wang, Y., Zhang, W., Yu, J. (2015). Correlation between lipid and carotenoid synthesis and photosynthetic capacity in Haematococcus pluvialis grown under high light and nitrogen deprivation stress. Grasas y Aceites, 66(2), e077-e077. http://dx.doi.org/10.3989/gya.0708142 google scholar
  • Liu, J., Ge, Y., Cheng, H., Wu, L., Tian, G. (2013). Aerated swine lagoon wastewater: a promising alternative medium for Botryococcus braunii cultivation in open system. Bioresource Technology, 139, 190-194. https://doi.org/10.1016/j.biortech.2013.04.036 google scholar
  • Lourenço, S. O., Barbarino, E., Lavín, P. L., Lanfer Marquez, U. M., Aidar, E. (2004). Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. European Journal of Phycology, 39(1), 17-32. https://doi.org/10.1080/0967026032000157156 google scholar
  • Lubitz, J. A. (1963). The Protein Quality, Digestibility, and Composition of Algae, Chlorella 71105 a. Journal of Food Science. 28(2), 229-232. https://doi.org/10.1111/j.1365-2621.1963.tb00189.x google scholar
  • Matysiak, B., Kaniszewski, S., & Mieszczakowska-Frąc, M. (2023). Growth and quality of leaf and romaine lettuce grown on a vertical farm in an aquaponics system: Results of farm research. Agriculture, 13(4), 897. https://doi.org/10.3390/agriculture13040897 google scholar
  • Maucieri, C., Nicoletto, C., Zanin, G., Birolo, M., Trocino, A., Sambo, P., Borin, M., Xiccato, G. (2019). Effect of stocking density of fish on water quality and growth performance of European Carp and leafy vegetables in a low-tech aquaponic system. PloS One, 14(5), e0217561. https://doi.org/10.1371/journal.pone.0217561 google scholar
  • Miura, R., Furuhashi, K., Hasegawa, F., Kaizu, Y., Imou, K. (2022). Calcium carbonate prevents Botryococcus braunii growth inhibition caused by medium acidification. Journal of Applied Phycology, 1-7. https:// doi.org/10.1007/s10811-021-02622-w google scholar
  • Mkpuma, V. O., Ishika, T., Moheimani, N. R., Ennaceri, H. (2023). The potential of coupling wastewater treatment with hydrocarbon production using Botryococcus braunii. Algal Research, 103214. https://doi.org/10.1016/j.algal.2023.103214 google scholar
  • Mourya, M., Khan, M. J., Sirotiya, V., Ahirwar, A., Schoefs, B., Marchand, J., Varjani, S., Vinayak, V. (2023). Enhancing the biochemical growth of Haematococcus pluvialis by mitigation of broad-spectrum light stress in wastewater cultures. RSC Advances, 13(26), 17611-17620. https://doi.org/10.1039/D3RA01530K google scholar
  • Mtaki, K., Kyewalyanga, M. S., Mtolera, M. S. (2023). Replacing expensive synthetic media with banana stem compost extract medium for production of Chlorella vulgaris. Applied Phycology, 4(1), 34-43. https://doi.org/10.1080/26388081.2022.2140073 google scholar
  • Mularczyk, M., Michalak, I., Marycz, K. (2020). Astaxanthin and other nutrients from Haematococcus pluvialis—Multifunctional applications. Marine Drugs, 18(9), 459. https://doi.org/10.3390/ md18090459 google scholar
  • Mutanda, T., Karthikeyan, S., Bux, F. (2011). The utilization of postchlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions. Applied Biochemistry and Biotechnology. 164, 1126-1138. https://doi. org/10.1007/s12010-011-9199-x google scholar
  • Nagarajan, D., Kusmayadi, A., Yen, H. W., Dong, C. D., Lee, D. J., Chang, J. S. (2019). Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresource Technology, 289, 121718. https://doi.org/10.1016/j.biortech.2019.121718 google scholar
  • Nagi, M., He, M., Li, D., Gebreluel, T., Cheng, B., Wang, C. (2020). Utilization of tannery wastewater for biofuel production: New insights on microalgae growth and biomass production. Scientific Reports, 10(1), 1-14. https://doi.org/10.1038/s41598-019-57120-4 google scholar
  • Nazloo, E. K., Danesh, M., Sarrafzadeh, M. H., Moheimani, N. R., Ennaceri, H. (2024). Biomass and hydrocarbon production from Botryococcus braunii: A review focusing on cultivation methods. Science of the Total Environment, 171734. https://doi.org/10.1016/j.scitotenv.2024.171734 google scholar
  • Nishshanka, G. K. S. H., Liyanaarachchi, V. C., Nimarshana, P. H. V., Ariyadasa, T. U., & Chang, J. S. (2022). Haematococcus pluvialis: a potential feedstock for multiple-product biorefining. Journal of Cleaner Production, 344, 131103. https://doi.org/10.1016/j.jclepro.2022.131103 google scholar
  • Nugroho, R. A., Subagyono, R. D. J. N., Arung, E. T. (2020). Isolation and characterization of Botryococcus braunii from a freshwater environment in Tenggarong, Kutai Kartanegara, Indonesia. Biodiversitas Journal of Biological Diversity, 21(5). https:// doi.org/10.13057/biodiv/d210565 google scholar
  • Oladimeji, S. A., Okomoda, V. T., Olufeagba, S. O., Solomon, S. G., Abol‐ Munafi, A. B., Alabi, K. I., Ikhwanuddin, M., Martins, C. O., Umaru, J., Hassan, A. (2020). Aquaponics production of catfish and pumpkin: Comparison with conventional production systems. Food Science & Nutrition, 8(5), 2307-2315. https://doi.org/10.1002/fsn3.1512 google scholar
  • Ozturk, B. Y., Asikkutlu, B., Akkoz, C., Atici, T. (2019). Molecular and morphological characterization of several cyanobacteria and Chlorophyta species isolated from lakes in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 19(8), 635-643. http://doi. org/10.4194/1303-2712-v19_8_01 google scholar
  • Órpez, R., Martínez, M. E., Hodaifa, G., El Yousfi, F., Jbari, N., Sánchez, S. (2009). Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination, 246(1-3), 625-630. https://doi. org/10.1016/j.desal.2008.07.016 google scholar
  • Ördög, V., Stirk, W. A., Bálint, P., van Staden, J., Lovász, C. (2012). Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. Journal of Applied Phycology, 24, 907-914. https://doi.org/10.1007/s10811-011-9711-2 google scholar
  • Palm, H. W., Bissa, K., Knaus, U. (2014). Significant factors affecting the economic sustainability of closed aquaponic systems. Part II: fish and plant growth. Aquaculture, Aquarium, Conservation & Legislation, 7(3), 162-175. google scholar
  • Pan, M., Zhu, X., Pan, G., Angelidak, I. (2021). Integrated valorization system for simultaneous high strength organic wastewater treatment and astaxanthin production from Haematococcus pluvialis. Bioresource Technology, 326, 124761. https://doi. org/10.1016/j.biortech.2021.124761 google scholar
  • Qin, J. G., Li, Y. (2006). Optimization of the growth environment of Botryococcus braunii strain CHN 357. Journal of Freshwater Ecology, 21(1), 169-176. https://doi.org/10.1080/02705060.2006.9664110 google scholar
  • Ratomski, P., Hawrot-Paw, M. (2021). Production of Chlorella vulgaris biomass in tubular photobioreactors during different culture conditions. Applied Sciences, 11(7), 3106. https://doi.org/10.3390/ app11073106 google scholar
  • Ribeiro, D. M., Roncaratti, L. F., Possa, G. C., Garcia, L. C., Cançado, L. J., Williams, T. C. R., Brasil, B. D. S. A. F. (2020). A low-cost approach for Chlorella sorokiniana production through combined use of urea, ammonia and nitrate based fertilizers. Bioresource Technology Reports, 9, 100354. https://doi.org/10.1016/j.biteb.2019.100354 google scholar
  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1-61. https://doi. org/10.1099/00221287-111-1-1 google scholar
  • Robles, Á., Capson-Tojo, G., Galès, A., Ruano, M. V., Sialve, B., Ferrer, J., Steyer, J. P. (2020). Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions. Journal of Environmental Management, 261, 110244. https://doi.org/10.1016/j.jenvman.2020.110244 google scholar
  • Rodrigues, O. H. C., Itokazu, A. G., Rörig, L., Maraschin, M., Corrêa, R. G., Pimentel-Almeida, W., Moresco, R. (2021). Evaluation of astaxanthin biosynthesis by Haematococcus pluvialis grown in culture medium added of cassava wastewater. International Biodeterioration & Biodegradation, 163, 105269. https://doi.org/10.1016/j.ibiod.2021.105269 google scholar
  • dos Santos, W. R., Tagliaferro, G. V., dos Santos, J. C., Pereira, P., Roma, C., Silva, M. B., Guimarães, D. H. P. (2022). Semi-continuous Cultivation of Chlorella minutissima in Landfill Leachate: Effect of Process Variables on Biomass Composition. Waste and Biomass Valorization, 1-12. https://doi.org/10.1007/s12649-021-01614-8 google scholar
  • Sawayama, S., Minowa, T., Dote, Y., Yokoyama, S. (1992). Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Applied Microbiology and Biotechnology, 38(1), 135-138. https://doi.org/10.1007/BF00169433 google scholar
  • Schüler, L., Greque de Morais, E., Trovão, M., Machado, A., Carvalho, B., Carneiro, M., Maia, I., Soares, M., Duarte, P., Barros, A., Pereira, H., Silva, J., Varela, J. (2020). Isolation and characterization of novel Chlorella vulgaris mutants with low chlorophyll and improved protein contents for food applications. Frontiers in Bioengineering and Biotechnology, 8, 469. https://doi.org/10.3389/fbioe.2020.00469 google scholar
  • Shah, M. M. R. (2019). Astaxanthin production by microalgae Haematococcus pluvialis through wastewater treatment: waste to resource. Application of Microalgae in Wastewater Treatment: Volume 2: Biorefinery Approaches of Wastewater Treatment, 17-39. https://doi.org/10.1007/978-3-030-13909-4 google scholar
  • Simonazzi, M., Pezzolesi, L., Galletti, P., Gualandi, C., Pistocchi, R., De Marco, N., Paganelli, Z., Samorì, C. (2021). Production of polyhydroxybutyrate by the cyanobacterium cf. Anabaena sp. International Journal of Biological Macromolecules, 191, 92-99. https://doi.org/10.1016/j.ijbiomac.2021.09.054 google scholar
  • Singh, V., Dey, S. (2024). Biological and Microbiological Characteristics of Activated Sewage Sludge. Application of Sewage Sludge in Industrial Wastewater Treatment, 87-106. https://doi.org/10.1002/9781119857396.ch5 google scholar
  • Siqwepu, O., Salie, K., Goosen, N. (2020). Evaluation of potassium diformate and potassium chloride in the diet of the African catfish, Clarias gariepinus in a recirculating aquaculture system. Aquaculture, 526, 735414. https://doi.org/10.1016/j.aquaculture.2020.735414 google scholar
  • Sirotiya, V., Ahirwar, A., Mourya, M., Khan, M. J., Rai, A., Kwatra, R., Sharma, A. K., Harish, Schoefs, B., Marchand, J., Varjani, S., Vinayak, V. (2023). Astaxanthin bioaccumulation in microalgae under environmental stress simulated in industrial effluents highlighting prospects of Haematococcus pluvialis: knowledge gaps and prospective approaches. Phytochemistry Reviews, 22(4), 1041-1066. https://doi.org/10.1007/s11101-022-09807-2 google scholar
  • Sonkar, S., Tiwari, R., Devadiga, S., Koley, S., Mallick, N. (2023). Cultivation of Chlorella minutissima under a novel phosphate application strategy for biodiesel production: A pilot scale study. Renewable Energy, 217, 119141. https://doi.org/10.1016/j.renene.2023.119141 google scholar
  • Stramarkou, M., Papadaki, S., Kyriakopoulou, K., Krokida, M. (2017). Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris. Journal of Applied Phycology, 29, 2947-2960. https://link.springer.com/article/10.1007/s10811-017-1181-8 google scholar
  • Su, M. H., Azwar, E., Yang, Y., Sonne, C., Yek, P. N. Y., Liew, R. K., Cheng, C. C., Show, P. L., Lam, S. S. (2020). Simultaneous removal of toxic ammonia and lettuce cultivation in aquaponic system using microwave pyrolysis biochar. Journal of Hazardous Materials, 396, 122610. https://doi.org/10.1016/j.jhazmat.2020.122610 google scholar
  • Subashini, P. S., Rajiv, P. (2018). Chlorella vulgaris dpsf 01: A unique tool for removal of toxic chemicals from tannery wastewater. African Journal of Biotechnology, 17(8), 239-248. https://doi.org/10.5897/ AJB2017.16359 google scholar
  • Subramanian, S., Barry, A. N., Pieris, S., Sayre, R. T. (2013). Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: implications for biomass and biofuel production. Biotechnology for biofuels, 6(1), 1-12. https://doi. org/10.1186/1754-6834-6-150 google scholar
  • Suhl, J., Dannehl, D., Baganz, D., Schmidt, U., Kloas, W. (2018). An innovative suction filter device reduces nitrogen loss in double recirculating aquaponic systems. Aquacultural Engineering, 82, 6372. https://doi:10.1016/j.aquaeng.2018.06.008 google scholar
  • Sydney, E. D., Da Silva, T. E., Tokarski, A., Novak, A. D., De Carvalho, J. C., Woiciecohwski, A. L., Larroche, C., Soccol, C. R. (2011). Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy. 88(10), 3291-3294. https://doi.org/10.1016/j.apenergy.2010.11.024 google scholar
  • Tan, X. B., Zhang, Y. L., Yang, L. B., Chu, H. Q., Guo, J. (2016). Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia. Bioresource Technology, 200, 606-615. https://doi.org/10.1016/j. biortech.2015.10.095 google scholar
  • Tanikawa, D., Nakamura, Y., Tokuzawa, H., Hirakata, Y., Hatamoto, M., Yamaguchi, T. (2018). Effluent treatment in an aquaponics-based closed aquaculture system with single-stage nitrification– denitrification using a down-flow hanging sponge reactor. International Biodeterioration & Biodegradation, 132, 268-273. https://doi.org/10.1016/j.ibiod.2018.04.016 google scholar
  • Tarhan, S. Z., Koçer, A. T., Özçimen, D., Gökalp, İ. (2021). Cultivation of green microalgae by recovering aqueous nutrients in hydrothermal carbonization process water of biomass wastes. Journal of Water Process Engineering, 40, 101783. https://doi.org/10.1016/j.jwpe.2020.101783 google scholar
  • Thakur, K., Kuthiala, T., Singh, G., Arya, S. K., Iwai, C. B., Ravindran, B., Khoo, K. S., Chang, S. W., Awasthi, M. K. (2023). An alternative approach towards nitrification and bioremediation of wastewater from aquaponics using biofilm-based bioreactors: A review. Chemosphere, 316, 137849. https://doi.org/10.1016/j. chemosphere.2023.137849 google scholar
  • Tunçelli, G., & Memiş, D. (2024). The effect of swimming activity and feed restriction of rainbow trout (Oncorhynchus mykiss) on water quality and fish‐plant growth performance in aquaponics. Journal of Fish Biology, 104(5), 1493-1502. https://doi.org/10.1111/jfb.15697 google scholar
  • Vonshak, A. (1986). Laboratory techniques for the cultivation of microalgae. In Handbook of microalgal mass culture (pp. 117-146). CRC Press. google scholar
  • Wang, L., Addy, M., Lu, Q., Cobb, K., Chen, P., Chen, X., Ruan, R. (2019). Cultivation of Chlorella vulgaris in sludge extracts: Nutrient removal and algal utilization. Bioresource Technology. 280, 505-510. https:// doi.org/10.1016/j.biortech.2019.02.017 google scholar
  • Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162(4), 1174-1186. https://doi. org/10.1007/s12010-009-8866-7 google scholar
  • Widjaja, A., Chien, C. C., Ju, Y. H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers. 40(1), 13-20. https://doi. org/10.1016/j.jtice.2008.07.007 google scholar
  • Wong, M. H. (1977). The comparison of activated and digested sludge extracts in cultivating Chlorella pyrenoidosa and Chlorella salina. Environmental Pollution. 14, 207-211. https://doi.org/10.1016/0013-9327(77)90120-3 google scholar
  • Wong, M. H., Yip, S. W., Fan, K. Y. (1977). Chlorella cultivation in sludge extracts. Environmental Pollution. 12, 205-209. https://doi.org/10.1016/0013-9327(77)90054-4 google scholar
  • Wongkiew, S., Hu, Z., Lee, J. W., Chandran, K., Nhan, H. T., Marcelino, K. R., Khanal, S. K. (2021). Nitrogen Recovery via Aquaponics–Bioponics: Engineering Considerations and Perspectives. ACS ES&T Engineering. https://doi.org/10.1021/acsestengg.0c00196 google scholar
  • Wu, J. Y., Lay, C. H., Chen, C. C., Wu, S. Y., Zhou, D., Abdula, P. M. (2020). Textile wastewater bioremediation using immobilized Chlorella sp. Wu-G23 with continuous culture. Clean Technologies and Environmental Policy, 1-9. https://doi.org/10.1007/s10098-020-01847-6 google scholar
  • Yang, J., Rasa, E., Tantayotai, P., Scow, K. M., Yuan, H., Hristova, K. R. (2011). Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresource Technology, 102(3), 3077-3082. https://doi. org/10.1016/j.biortech.2010.10.049 google scholar
  • Yap, S. M., Lan, J. C. W., Kee, P. E., Ng, H. S., Yim, H. S. (2022). Enhancement of protein production using synthetic brewery wastewater by Haematococcus pluvialis. Journal of Biotechnology. https://doi. org/10.1016/j.jbiotec.2022.03.008 google scholar
  • Yonezawa, N., Matsuura, H., Shiho, M., Kaya, K., Watanabe, M. M. (2012). Effects of soybean curd wastewater on the growth and hydrocarbon production of Botryococcus braunii strain BOT-22. Bioresource Technology, 109, 304-307. https://doi.org/10.1016/j.biortech.2011.07.090 google scholar
  • Yoshimura, T., Okada, S., Honda, M. (2013). Culture of the hydrocarbon producing microalga Botryococcus braunii strain Showa: Optimal CO2, salinity, temperature, and irradiance conditions. Bioresource Technology, 133, 232-239. http://dx.doi.org/10.1016/j.biortech.2013.01.095 google scholar
  • Yu, H., Kim, J., Lee, C. (2019). Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Scientific Reports, 9(1), 1-13. https://doi.org/10.1038/s41598-019-42521-2 google scholar
  • Zhang, P., Xu, J. L., Zhang, J. B., Li, J. X., Zhang, Y. C., Li, Y., Luo, X. Q. (2020). Spatiotemporal dissolved silicate variation, sources, and behavior in the eutrophic Zhanjiang Bay, China. Water, 12(12), 3586. https://doi.org/10.3390/w12123586 google scholar
  • Zhou, L., Li, K., Duan, X., Hill, D., Barrow, C., Dunshea, F., Martin, G., Suleria, H. (2022). Bioactive compounds in microalgae and their potential health benefits. Food Bioscience, 49, 101932. https://doi. org/10.1016/j.fbio.2022.101932 google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Yeşiltaş, M., Koçer, M.A., Pak, F., Aktaş, Ö., & Koru, E. (2025). Investigating the Suitability of Remineralized Aquaponics Sludge for Microalgae Culture: Biomass Production and Nutritional Composition. Aquatic Sciences and Engineering, 40(2), 74-93. https://doi.org/10.26650/ASE20251577446


AMA

Yeşiltaş M, Koçer M A, Pak F, Aktaş Ö, Koru E. Investigating the Suitability of Remineralized Aquaponics Sludge for Microalgae Culture: Biomass Production and Nutritional Composition. Aquatic Sciences and Engineering. 2025;40(2):74-93. https://doi.org/10.26650/ASE20251577446


ABNT

Yeşiltaş, M.; Koçer, M.A.; Pak, F.; Aktaş, Ö.; Koru, E. Investigating the Suitability of Remineralized Aquaponics Sludge for Microalgae Culture: Biomass Production and Nutritional Composition. Aquatic Sciences and Engineering, [Publisher Location], v. 40, n. 2, p. 74-93, 2025.


Chicago: Author-Date Style

Yeşiltaş, Murat, and Mehmet Ali Turan Koçer and Faruk Pak and Özgür Aktaş and Edis Koru. 2025. “Investigating the Suitability of Remineralized Aquaponics Sludge for Microalgae Culture: Biomass Production and Nutritional Composition.” Aquatic Sciences and Engineering 40, no. 2: 74-93. https://doi.org/10.26650/ASE20251577446


Chicago: Humanities Style

Yeşiltaş, Murat, and Mehmet Ali Turan Koçer and Faruk Pak and Özgür Aktaş and Edis Koru. Investigating the Suitability of Remineralized Aquaponics Sludge for Microalgae Culture: Biomass Production and Nutritional Composition.” Aquatic Sciences and Engineering 40, no. 2 (May. 2025): 74-93. https://doi.org/10.26650/ASE20251577446


Harvard: Australian Style

Yeşiltaş, M & Koçer, MA & Pak, F & Aktaş, Ö & Koru, E 2025, 'Investigating the Suitability of Remineralized Aquaponics Sludge for Microalgae Culture: Biomass Production and Nutritional Composition', Aquatic Sciences and Engineering, vol. 40, no. 2, pp. 74-93, viewed 2 May. 2025, https://doi.org/10.26650/ASE20251577446


Harvard: Author-Date Style

Yeşiltaş, M. and Koçer, M.A. and Pak, F. and Aktaş, Ö. and Koru, E. (2025) ‘Investigating the Suitability of Remineralized Aquaponics Sludge for Microalgae Culture: Biomass Production and Nutritional Composition’, Aquatic Sciences and Engineering, 40(2), pp. 74-93. https://doi.org/10.26650/ASE20251577446 (2 May. 2025).


MLA

Yeşiltaş, Murat, and Mehmet Ali Turan Koçer and Faruk Pak and Özgür Aktaş and Edis Koru. Investigating the Suitability of Remineralized Aquaponics Sludge for Microalgae Culture: Biomass Production and Nutritional Composition.” Aquatic Sciences and Engineering, vol. 40, no. 2, 2025, pp. 74-93. [Database Container], https://doi.org/10.26650/ASE20251577446


Vancouver

Yeşiltaş M, Koçer MA, Pak F, Aktaş Ö, Koru E. Investigating the Suitability of Remineralized Aquaponics Sludge for Microalgae Culture: Biomass Production and Nutritional Composition. Aquatic Sciences and Engineering [Internet]. 2 May. 2025 [cited 2 May. 2025];40(2):74-93. Available from: https://doi.org/10.26650/ASE20251577446 doi: 10.26650/ASE20251577446


ISNAD

Yeşiltaş, Murat - Koçer, MehmetAli Turan - Pak, Faruk - Aktaş, Özgür - Koru, Edis. Investigating the Suitability of Remineralized Aquaponics Sludge for Microalgae Culture: Biomass Production and Nutritional Composition”. Aquatic Sciences and Engineering 40/2 (May. 2025): 74-93. https://doi.org/10.26650/ASE20251577446



ZAMAN ÇİZELGESİ


Gönderim04.11.2024
Kabul19.02.2025
Çevrimiçi Yayınlanma13.03.2025

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.