Araştırma Makalesi


DOI :10.26650/ASE20241589821   IUP :10.26650/ASE20241589821    Tam Metin (PDF)

Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood

Dilek Kahraman YılmazNermin Berik

Safe food production faces significant challenges from both disease-causing bacteria and antibiotic resistant bacteria, as both pose serious risks to public health and food safety. This study investigated the presence of antibiotic-resistant bacteria in salted seafood (lakerda) samples obtained from fishermen and fish markets. Phenotypic analysis revealed that lakerda samples collected from fishermen contained bacteria with multi-antibiotic resistance, including Pseudomonas fluorescens, Staphylococcus haemolyticus, and Staphylococcus equorum. Carnobacterium maltaromaticum, Carnobacterium mobile, and Vibrio hibernica species were isolated in larkerda samples sold by fish markets. It was determined that among isolated bacteria, V. rumoiensis did not contain any of the genotypically tested genes. However, P. fluorescens carried blaTEM, qnrB, qnrS, blaZ, and msrA; S. haemolyticus harbored blaTEM, tetK, dfrD, blaZ, msrA, msrB, and mecA; C. maltaromaticum possessed blaTEM, qnrA, qnrB, qnrS, strA-strB, aphAI-IAB, and mecA; C. mobile included blaTEM, blaZ, msrA, dfrD, and mecA; and V. hibernica carried blaTEM, blaZ, mecA, and VanA. In addition, S. pasteuri and S. equorum had the mecA resistance gene. In conclusion, public health needs to provide hygiene conditions in the preparation of lakerda, determine the ways of transmission, take precautions, and raise awareness of producers and consumers.


PDF Görünüm

Referanslar

  • Aksu, F., Uran, H., & Varlık, C. (2013). Geleneksel bir su ürünü “Palamut Lakerdası”. Dünya Gıda Dergisi, 8(26), 26-28. google scholar
  • Alfatemi, S. M. H., Motamedifar, M., Hadi, N., & Saraie, H. S. E. (2014). Analysis of virulence genes among methicillin-resistant Staphylococcus aureus (MRSA) strains. Jundishapur Journal of Microbiology, 7(6), e10741. google scholar
  • Algammal, A. M., et al. (2020). Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor opr L and tox A virulence genes and bla TEM, bla CTX-M, and tet A antibiotic-resistance genes. Scientific Reports, 10(15961). https://doi.org/10.1038/s41598-020-72264-4. google scholar
  • Argudın, M. A., Tenhagen, B. A., Fetsch, A., Sachsenröder, J., Kâsbohrer, A., Schroeter, A., ... & Guerra, B. (2011). Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Applied and Environmental Microbiology, 77(9), 3052-3060. https://doi.org/10.1128/AEM.02260-10 google scholar
  • Aarestrup, F. M. (2000). Characterization of glycopeptide-resistant Enterococcus faecium (GRE) from broilers and pigs in Denmark: genetic evidence that persistence of GRE in pig herds is associated with coselection by resistance to macrolides. Journal of Clinical Microbiology 38(7), 2774-2777. https://doi.org/10.1128/JCM.38.7.2774-2777.2000. google scholar
  • Aminov, R. I., Garrigues-Jeanjean, N., & Mackie, R. (2001). Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Applied and Environmental Microbiology 67(1), 2232. https://doi.org/10.1128/AEM.67.1.22-32.2001. google scholar
  • Bozdogan, B., Berrezouga, L., Kuo, M. S., Yurek, D. A., Farley, K. A., Stockman, B. J., & Leclercq, R. (1999). A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrobial Agents and Chemotherapy, 43(4), 925-929. https://doi.org/10.1128/AAC.43.4.925. google scholar
  • Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(493), 493-496. google scholar
  • Becker, K., Heilmann, C., & Peters, G. (2014). Coagulase-negative staphylococci. Clinical Microbiology Reviews, 27(870), 870-926. https://doi.org/10.1128/CMR.00109-13. google scholar
  • Brillantes, S., Paknoi, S., & Totakien, A. (2002). Histamine formation in fish sauce production. Journal of Food Science, 67(6), 2090-2094. https:// doi.org/10.1111/j.1365-2621.2002.tb09513.x google scholar
  • Calicioglu, O., Flammini, A., Bracco, S., Bellu, L., & Sims, R. (2019). The future challenges of food and agriculture: An integrated analysis of trends and solutions. Sustainability, 11(1), 222. google scholar
  • Cattoir, V., Poirel, L., Rotimi, V., Soussy, C. J., & Nordmann, P. (2007). Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. Journal of Antimicrobial Chemotherapy, 60(2), 394-397. https://doi. org/10.1093/jac/dkm204. google scholar
  • Chajçcka-Wierzchowska, W., Gajewska, J., Zadernowska, A., Randazzo, C. L., & Caggia, C. (2023). A comprehensive study on antibiotic resistance among coagulase-negative staphylococci (CoNS) strains isolated from ready-to-eat food served in bars and restaurants. Foods, 12(514). https://doi.org/10.3390/foods12030514. google scholar
  • Clinical and Laboratory Standards Institute. (2017). Performance Standards for Antimicrobial Susceptibility Testing, 27th ed. CLSI supplement M100. google scholar
  • Dale, G. E., Langen, H., Page, M. G., Then, R. L., & Stüber, D. (1995). Cloning and characterization of a novel, plasmid-encoded trimethoprim-resistant dihydrofolate reductase from Staphylococcus haemolyticus MUR313. Antimicrobial Agents and Chemotherapy, 39(9), 1920-1924. https://doi.org/10.1128/AAC.39.9J920. google scholar
  • Dallenne, C., Da Costa, A., Deere, D., Favier, C., & Arlet, G. (2010). Development of a set of multiplex PCR assays for the detection of genes encoding important Ş-lactamases in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 65(3), 490-495. https://doi. org/10.1093/jac/dkp498. google scholar
  • dos Santos Rocha, R., de Sousa, O. V., & dos Fernandes Vieira, R. H. S. (2016). Multidrug-resistant Vibrio associated with an estuary affected by shrimp farming in Northeastern Brazil. Marine Pollution Bulletin, 105(337), 337-340. https://doi.org/10.1016/j.marpolbul.2016.02.001. google scholar
  • Dutka-Malen, S., Evers, S., & Courvalin, P. (1995). Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. Journal of Clinical Microbiology, 33(1), 24-27. https://doi.org/10.1128/jcm.33J.24-27.1995. google scholar
  • Duyar, H. A., Kınay, A. G., & Sümer, Y. (2020). Shelf life of the lakerda as a gastronomic product: Potassium sorbate effect. Gastroia: Journal of Gastronomy and Travel Research, 4(3), 355-361. google scholar
  • Eltwisy, H. O., et al. (2020). Pathogenesis of Staphylococcus haemolyticus on primary human skin fibroblast cells. Virulence, 11(1142), 11421157. https://doi.org/10.1080/21505594.2020.1809962. google scholar
  • Erbaydar, T. (2003). Utilization of prenatal care in poorer and wealthier urban neighbourhoods in Turkey. European Journal of Public Health, 13(320), 320-326. https://doi.org/10.1093/eurpub/13.4.320. google scholar
  • Frana, T. S., Carlson, S. A., & Griffith, R. W. (2001). Relative distribution and conservation of genes encoding aminoglycoside-modifying enzymes in Salmonella enterica serotype Typhimurium phage type DT104. Applied and Environmental Microbiology, 67(1), 445-448. https://doi.org/10.1128/AEM.67.1.445-448.2001. google scholar
  • Françoise, L. (2010). Occurrence and role of lactic acid bacteria in seafood products. Food Microbiology, 27(698), 698-709. https://doi. org/10.1016/j.fm.2010.05.016. google scholar
  • Guan, L., Cho, K. H., & Lee, J. H. (2011). Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiology, 28(101), 101-113. https://doi.org/10.1016/j.fm.2010.09.001. google scholar
  • Güngör, N., İpek, Z. Z., Er, A., & Kayış, Ş. (2021). Farklı sucul sistemlerden izole edilen bakterilerin antibiyotik dirençliliklerinin karşılaştırılması. Journal of Anatolian Environmental and Animal Sciences, 6(1), 25-30. https://doi.org/10.35229/jaes.804414. google scholar
  • Hammad, A. M., Watanabe, W., Fujii, T., & Shimamoto, T. (2012). Occurrence and characteristics of methicillin-resistant and-susceptible Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci from Japanese retail ready-to-eat raw fish. International Journal of Food Microbiology, 156(286), 286289. https://doi.org/10.1016/j.ijfoodmicro.2012.03.022. google scholar
  • Henriques, I., Moura, A., Alves, A., Saavedra, M. J., & Correia, A. (2006). Analysing diversity among Ş-lactamase encoding genes in aquatic environments. FEMS Microbiology Ecology 56(3), 418-429. https:// doi.org/10.1111/j.1574-6941.2006.00073.x. google scholar
  • Jokovic, N., Nikolic, M., Begovic, J., Jovcic, B., Savic, D., & Topisirovic, L. (2008). A survey of the lactic acid bacteria isolated from Serbian artisanal dairy product kajmak. International Journal of Food Microbiology, 127(3), 305-311. https://doi.org/10.1016/_j.ijfoodmicro.2008.07.026 google scholar
  • Jeong, D. W., Han, S., & Lee, J. H. (2014). Safety and technological characterization of Staphylococcus equorum isolates from jeotgal, a Korean high-salt-fermented seafood, for starter development. International Journal of Food Microbiology, 188(108), 108-115. https://doi.org/10.1016/j.ijfoodmicro.2014.07.022. google scholar
  • Kaase, M., Lenga, S., Friedrich, S., Szabados, F., Sakinc, T., Kleine, B., & Gatermann, S. G. (2008). Comparison of phenotypic methods for penicillinase detection in Staphylococcus aureus. Clinical Microbiology and Infection, 14(6), 614-616. https://doi.org/10.1111/ j.1469-0691.2008.01997.x. google scholar
  • Kahraman Yilmaz, D. & Berik, N. (2024). Phenotypic and Genotypic Antibiotic Resistance of Staphylococcus warneri and Staphylococcus pasteuri Isolated from Stuffed Mussels. Aquatic Sciences and Engineering, 39(3), 172-178. google scholar
  • Katalin, K. (2000). Nozokomiâlis fertözeseket okozo multirezisztens bakteriumok mikrobiologiai jellemzöi. PhD-disszertâcio, Semmelweis Egyetem, Patologiai Tudomânyok Interdiszciplinâris Doktori Iskola. google scholar
  • Koç, G., & Uzmay, A. (2015). Gıda güvencesi ve gıda güvenliği: kavramsal çerçeve, gelişmeler ve Türkiye. Turkish Journal of Agricultural Economics, 21(39), 39-48. google scholar
  • Kumar, H., Franzetti, L., Kaushal, A., & Kumar, D. (2019). Pseudomonas fluorescens: A potential food spoiler and challenges and advances in its detection. Annals of Microbiology, 69(873), 873-883. https://doi. org/10.1007/s13213-019-01501-7. google scholar
  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrant & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115-175). John Wiley & Sons. google scholar
  • Lee, J. H., & Jeong, D. W. (2015). Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiology, 28(101), 101-113. https://doi.org/10.1016/j.fm.2010.09.001. google scholar
  • Leisner, J. J., Laursen, B. G., Prevost, H., Drider, D., & Dalgaard, P. (2007). Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiology Reviews, 31(592), 592-613. https:// doi.org/10.1111/j.1574-6976.2007.00080.x. google scholar
  • Li, X., & Wang, H. H. (2010). Tetracycline resistance associated with commensal bacteria from representative ready-to-consume deli and restaurant foods. Journal of Food Protection, 73(1841), 1841-1848. https://doi.org/10.4315/0362-028X-73.10.1841. google scholar
  • Lina, G., Quaglia, A., Reverdy, M. E., Leclercq, R., Vandenesch, F., & Etienne, J. (1999). Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrobial Agents and Chemotherapy, 43(5), 1062-1066. google scholar
  • Measuring Infectious Causes and Resistance Outcomes for Burden Estimation. (2024). Available at: https://www.healthdata.org/. (Accessed on Dec 19th-2024). google scholar
  • Mougiou, N., et al. (2023). Microbial and biochemical profile of different types of Greek table olives. Foods, 12(1527). https://doi.org/10.3390/ foods12071527. google scholar
  • O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. HM Government and Wellcome Trust. google scholar
  • Ramos-Trujillo, E., Perez-Roth, E., Mendez-Alvarez, S., & Claverie-Martfn, F. (2003). Multiplex PCR for simultaneous detection of enterococcal genes vanA and vanB and staphylococcal genes mecA, ileS-2 and femB. International Microbiology, 6, 113-115. https://doi.org/10.1007/ s10123-003-0118-z google scholar
  • Regecovâ, I., Pipovâ, M., Jevinovâ, P., Maruskovâ, K., Kmet, V, & Popelka, P (2014). Species identification and antimicrobial resistance of coagulase-negative staphylococci isolated from the meat of sea fish. Journal of Food Science, 79(5), M898-M902. https://doi.org/10.4081/ijas.2014.3476. google scholar
  • Ruginescu, R., Gomoiu, I., Popescu, O., Cojoc, R., Neagu, S., Lucaci, I., Batrinescu-Moteau, C., & Enache, M. (2020). Bioprospecting for novel halophilic and halotolerant sources of hydrolytic enzymes in brackish, saline and hypersaline lakes of Romania. Microorganisms, 8(12), 1903. https://doi.org/10.3390/microorganisms8121903 google scholar
  • Rocha, R. D. S. (2011). Perfil de susceptibilidade antimicrobiana e preliminar de virulencia entre cepas de Vibrio spp. isoladas da âgua e sedimento do estuârio do Rio Acarau, Cearâ, Brasil. google scholar
  • Rodrigues, M. J., Ho, P., Lopez-Caballero, M. E., Vaz-Pires, P., & Nunes, M. L. (2003). Characterization and identification of microflora from soaked cod and respective salted raw materials. Food Microbiology, 20(471), 471-481. https://doi.org/10.1016/S0740-0020(02)00086-2. google scholar
  • Sengel0v, G., Halling-S0rensen, B., & Aarestrup, F. M. (2003). Susceptibility of Escherichia coli and Enterococcus faecium isolated from pigs and broiler chickens to tetracycline degradation products and distribution of tetracycline resistance determinants in E. coli from food animals. Veterinary Microbiology, 95(1-2), 91-101. https://doi.org/10.1016/ S0378-1135(03)00123-8. google scholar
  • Siripornmongcolchai, T., Chomvarin, C., Chaicumpar, K., Limpaiboon, T., & Wongkhum, C. (2002). Evaluation of different primers for detecting mecA gene by PCR in comparison with phenotypic methods for discrimination of methicillin-resistant Staphylococcus aureus. Southeast Asian journal of tropical medicine and public health, 33(4), 758-763. google scholar
  • Sharma, C., Singh, C., Sharma, L. N., Purvia, R., & Adlakha, M. (2014). Antibiotic resistant organism: An emerging public health problem and role of ayurveda (an overview). International Journal of Ayurveda and Pharmaceutical Research, 2(17), 17-29. google scholar
  • Sherif, A. H., Gouda, M., Darwish, S., & Abdelmohsin, A. (2021). Prevalence of antibiotic-resistant bacteria in freshwater fish farms. Aquaculture Research, 52(2036), 2036-2047. https://doi.org/10.1111/ are.15052. google scholar
  • Sunde, M., & S0rum, H. (2001). Self-transmissible multidrug resistance plasmids in Escherichia coli of the normal intestinal flora of healthy swine. Microbial Drug Resistance, 7(2), 191-196. https://doi. org/10.1089/10766290152045075. google scholar
  • Tao, Z., et al. (2022). Prevalence of histamine-forming bacteria in two kinds of salted fish at town markets of Guangdong province of South China. Journal of Food Protection, 85(956), 956-960. https://doi. org/10.4315/JFP-21-215. google scholar
  • Thomassen, G. M. B., Reiche, T., Tennfjord, C. E., & Mehli, L. (2022). Antibiotic resistance properties among Pseudomonas spp. associated with salmon processing environments. Microorganisms, 10(1420). https://doi.org/10.3390/microorganisms10071420. google scholar
  • Trzcinski, K., Cooper, B. S., Hryniewicz, W., & Dowson, C. G. (2000). Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 45(6), 763-770. https://doi.org/10.1093/jac/45.6.763. google scholar
  • Turan, H., Kaya, Y., & Kocatepe, D. (2009). Geleneksel bir gıdamız; Lakerda. II. Geleneksel Gıdalar Sempozyum Kitabı (27-29 Mayıs 2009, Van), 1-4. google scholar
  • Urban-Chmiel, R., et al. (2022). Antibiotic resistance in bacteria—A review. Antibiotics, 11(1079). https://doi.org/10.3390/antibiotics11081079. google scholar
  • Wang, M., Yao, M., & Zhu, Y. G. (2022). Antibiotic resistance genes and antibiotic sensitivity in bacterial aerosols and their comparisons with known respiratory pathogens. Journal of Aerosol Science, 161(105931). https://doi.org/10.1016/j.jaerosci.2021.105931. google scholar
  • Woods, D. F., Kozak, I. M., & O’Gara, F. (2020). Microbiome and functional analysis of a traditional food process: isolation of a novel species (Vibrio hibernica) with industrial potential. Frontiers in Microbiology, 11(647). https://doi.org/10.3389/fmicb.2020.00647. google scholar
  • World Health Organization. (2017). Fact sheets: https://www.who.int/ news-room/fact-sheets/detail/antimicrobial-resistance. google scholar
  • Xia, D., Esser, L., Tang, W. K., Zhou, F., Zhou, Y., Yu, L., & Yu, C. A. (2013). Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function. Biochimica et Biophysica Acta (BBA) -Bioenergetics, 1827(11-12), 1278-1294. https://doi.org/10.1016/j. bbabio.2012.11.008 google scholar
  • Yumoto, I., et al. (1999). Characterization of a facultatively psychrophilic bacterium, Vibrio rumoiensis sp. nov., that exhibits high catalase activity. Applied and Environmental Microbiology, 65(67), 67-72. https://doi.org/10.1128/AEM.65.1.67-72.1999. google scholar
  • Zeidler, C., Szott, V., Alter, T., Huehn-Lindenbein, S., & Fleischmann, S. (2024). Prevalence of Vibrio spp. in Seafood from German Supermarkets and Fish Markets. Foods, 13(24), 3987. https://doi. org/10.3390/foods13243987 google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Kahraman Yılmaz, D., & Berik, N. (2025). Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood. Aquatic Sciences and Engineering, 40(1), 9-17. https://doi.org/10.26650/ASE20241589821


AMA

Kahraman Yılmaz D, Berik N. Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood. Aquatic Sciences and Engineering. 2025;40(1):9-17. https://doi.org/10.26650/ASE20241589821


ABNT

Kahraman Yılmaz, D.; Berik, N. Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood. Aquatic Sciences and Engineering, [Publisher Location], v. 40, n. 1, p. 9-17, 2025.


Chicago: Author-Date Style

Kahraman Yılmaz, Dilek, and Nermin Berik. 2025. “Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood.” Aquatic Sciences and Engineering 40, no. 1: 9-17. https://doi.org/10.26650/ASE20241589821


Chicago: Humanities Style

Kahraman Yılmaz, Dilek, and Nermin Berik. Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood.” Aquatic Sciences and Engineering 40, no. 1 (Feb. 2025): 9-17. https://doi.org/10.26650/ASE20241589821


Harvard: Australian Style

Kahraman Yılmaz, D & Berik, N 2025, 'Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood', Aquatic Sciences and Engineering, vol. 40, no. 1, pp. 9-17, viewed 5 Feb. 2025, https://doi.org/10.26650/ASE20241589821


Harvard: Author-Date Style

Kahraman Yılmaz, D. and Berik, N. (2025) ‘Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood’, Aquatic Sciences and Engineering, 40(1), pp. 9-17. https://doi.org/10.26650/ASE20241589821 (5 Feb. 2025).


MLA

Kahraman Yılmaz, Dilek, and Nermin Berik. Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood.” Aquatic Sciences and Engineering, vol. 40, no. 1, 2025, pp. 9-17. [Database Container], https://doi.org/10.26650/ASE20241589821


Vancouver

Kahraman Yılmaz D, Berik N. Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood. Aquatic Sciences and Engineering [Internet]. 5 Feb. 2025 [cited 5 Feb. 2025];40(1):9-17. Available from: https://doi.org/10.26650/ASE20241589821 doi: 10.26650/ASE20241589821


ISNAD

Kahraman Yılmaz, Dilek - Berik, Nermin. Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood”. Aquatic Sciences and Engineering 40/1 (Feb. 2025): 9-17. https://doi.org/10.26650/ASE20241589821



ZAMAN ÇİZELGESİ


Gönderim22.11.2024
Kabul25.12.2024
Çevrimiçi Yayınlanma14.01.2025

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.