Derleme Makalesi


DOI :10.26650/ASE20241610955   IUP :10.26650/ASE20241610955    Tam Metin (PDF)

The Role of Microalgae in Enhancing Anaerobic Digestion: A Bibliometric Review

İremsu KayanNilgün Ayman Oz

Anaerobic digestion (AD) is a well-established and extensively explored technology for waste management. However, the literature review related to the effect of microalgae on biogas production in the anaerobic co-digestion with different substrates is limited. Using scientometric tools can offer valuable insights into research gaps and emerging trends, facilitate the updating of scientific datasets, and expand knowledge in this field. Therefore, this bibliometric review will focus on the investigation of the advancements, trends, and recent updates in the co-digestion of microalgae with different substrates. The Web of Science database was used for document selection, and the bibliometric analysis was conducted using the VOSviewer version 1.6.19 software. The findings of this study reveal that, up until 2024, the major focus areas in the field are environmental studies related to biogas production, emphasizing microbiological and engineering aspects. Key opportunities and trends identified include the integration of feedstock pretreatment before AD to enhance biogas yield and quality. Adding microalgae as a co-substrate in anaerobic reactors has emerged as a promising strategy to boost AD process efficiency. Microalgae contribute additional organic matter and nutrients for AD and provide environmental benefits such as carbon sequestration and wastewater treatment, aligning with Sustainable Development Goals (SDGs). Gaining a deeper understanding of the role of microalgae in the systems is essential to establishing AD as a profitable and sustainable waste management solution, offering substantial economic and environmental advantages.


PDF Görünüm

Referanslar

  • Avila, R., Carrero, E., Crivilles, E., Mercader, M., Vicent, T., & Blânquez, P. (2020). Effects of low temperature thermal pretreatments in solubility and co-digestion of waste activated sludge and microalgae mixtures. Algal Research, 50, 101965.https://doi.org/10.1016/j.algal.2020.101965 google scholar
  • Avila, R., Carrero, E., Vicent, T., & Blânquez, P. (2021). Integration of enzymatic pretreatment and sludge co-digestion in biogas production from microalgae. Waste Management, 124, 254-263. https://doi.org/10.1016/j.wasman.2021.01.042 google scholar
  • Arelli, V., Juntupally, S., Begum, S., & Anupoju, G. R. (2020). Significance of pretreatment in enhancing the performance of dry anaerobic digestion of food waste: an insight on full scale implementation strategy with theoretical analogy. Processes, 8(09), 1018.https://doi. org/10.3390/pr8091018 google scholar
  • Arias, D. M., Sole-Bundo, M., Garfı, M., Ferrer, I., Garda, J., & Uggetti, E. (2018). Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Bioresource technology, 247, 513-519.https://doi.org/10.1016/j. biortech.2017.09.123 google scholar
  • Bingül, D. Y., Demirel, Z., & Dalay, M. C. (2021). Chlorella sorokiniana’nın İzolasyonu, Moleküler Tanılanması, Fototrofik, Miksotrofik ve Heterotrofik Üretimi. Journal of Limnology and Freshwater Fisheries Research, 7(2), 128-137. https://doi.org/10.17216/limnofish.703234 google scholar
  • Bohutskyi, P., Phan, D., Spierling, R. E., Kopachevsky, A. M., Bouwer, E. J., Lundquist, T. J., & Betenbaugh, M. J. (2019). Production of lipid-containing algal-bacterial polyculture in wastewater and biomethanation of lipid extracted residues: Enhancing methane yield through hydrothermal pretreatment and relieving solvent toxicity through co-digestion. Science of the Total Environment, 653, 1377-1394.https://doi.org/10.1016/j.scitotenv.2018.11.026 google scholar
  • Caporgno, M. P., Trobajo, R., Caiola, N., Ibânez, C., Fabregat, A., & Bengoa, C. (2015). Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions. Renewable Energy, 75, 374-380. https://doi.org/10.1016/j. renene.2014.10.019 google scholar
  • Caporgno, M. P., Clavero, E., Torras, C., Salvado, J., Lepine, O., Pruvost, J.,& Bengoa, C. (2016). Energy and nutrients recovery from lipid-extracted nannochloropsis via anaerobic digestion and hydrothermal liquefaction. ACS Sustainable Chemistry & Engineering, 4(6), 31333139. google scholar
  • Carrillo-Reyes, J., Buitron, G., Arcila, J. S., & Lopez-Gomez, M. O. (2021). Thermophilic biogas production from microalgae-bacteria aggregates: biogas yield, community variation and energy balance. Chemosphere, 275, 129898.https://doi.org/10.1016/j.chemosphere.2021.129898 google scholar
  • Cea-Barcia, G., Lopez-Caamal, F., Torres-Zuniga, I., & Hernândez-Escoto, H. (2018). Biogas purification via optimal microalgae growth: A literature review. Biotechnology progress, 34(6), 1513-1532. https:// doi.org/10.1002/btpr.2686 google scholar
  • Chen, X., Xiang, X., Dai, R., Wang, Y., & Ma, P. (2017). Effect of low temperature of thermal pretreatment on anaerobic digestion of textile dyeing sludge. Bioresource technology, 243, 426-432.https:// doi.org/10.1016/j.biortech.2017.06.138 google scholar
  • Cheng, Q., Deng, F., Li, H., Qin, Z., Wang, M., & Li, J. (2018). Nutrients removal from the secondary effluents of municipal domestic wastewater by Oscillatoria tenuis and subsequent co-digestion with pig manure. Environmental technology, 39(24), 3127-3134.https:// doi.org/10.1080/09593330.2017.1375020 google scholar
  • Collivignarelli, M. C., Abbâ, A., Padovani, S., Frascarolo, M., Sciunnach, D., Turconi, M., & Orlando, M. (2015). Recovery of sewage sludge on agricultural land in Lombardy: current issues and regulatory scenarios. Environmental Engineering & Management Journal (EEMJ), 14(7). google scholar
  • Costa, J. A. V., Bezerra, P. Q. M., Moreira, J. B., Molina, A. N., & de Morais, M. G. (2022). Biogas from microalgae: Production approaches and strategies for process optimization. Role of Microbes in Industrial Products and Processes, 305-329. https://doi.org/10.1002/9781119901198.ch12 google scholar
  • Damtie, M. M., Shin, J., Jang, H. M., Cho, H. U., Wang, J., & Kim, Y. M. (2021). Effects of biological pretreatments of microalgae on hydrolysis, biomethane potential and microbial community. Bioresource Technology, 329, 124905.https://doi.org/10.1016/j. biortech.2021.124905 google scholar
  • Dçbowski, M., Kazimierowicz, J., Swica, I., & Zielinski, M. (2022). Ultrasonic Disintegration to Improve Anaerobic Digestion of Microalgae with Hard Cell Walls—Scenedesmus sp. and Pinnularia sp. Plants, 12(1), 53.https://doi.org/10.3390/plants12010053 google scholar
  • D^ez-Montero, R., Vassalle, L., Passos, F., Ortiz, A., Garcıa-Galân, M. J., Garda, J., & Ferrer, I. (2020). Scaling-up the anaerobic digestion of pretreated microalgal biomass within a water resource recovery facility. Energies, 13(20), 5484.https://doi.org/10.3390/en13205484 google scholar
  • Dolganyuk, V., Belova, D., Babich, O., Prosekov, A., Ivanova, S., Katserov, D., & Sukhikh, S. (2020). Microalgae: A promising source of valuable bioproducts. Biomolecules, 10(8), 1153. https://doi.org/10.3390/ biom10081153 google scholar
  • Du, X., Tao, Y., Liu, Y., & Li, H. (2020). Stimulating methane production from microalgae by alkaline pretreatment and co-digestion with sludge. Environmental technology.https://doi.org/10.1080/09593330 .2018.1540665 google scholar
  • Fardinpoor, M., Perendeci, N. A., Yılmaz, V., Taştan, B. E., & Yılmaz, F. (2022). Effects of hydrodynamic cavitation-assisted NaOH pretreatment on biofuel production from Cyanobacteria: promising approach. Bioenergy Research, 15(1), 289-302.https://doi.org/10.1007/s12155-021-10286-0 google scholar
  • Feng, R., Zaidi, A. A., Zhang, K., & Shi, Y. (2019). Optimisation of microwave pretreatment for biogas enhancement through anaerobic digestion of microalgal biomass. Periodica Polytechnica Chemical Engineering, 63(1), 65-72.https://doi.org/10.3311/PPch.12334 google scholar
  • Fernândez-Rodrfguez, M. J., Rincon, B., Fermoso, F. G., Jimenez, A. M., & Borja, R. (2014). Assessment of two-phase olive mill solid waste and microalgae co-digestion to improve methane production and process kinetics. Bioresource Technology, 157, 263-269. https://doi. org/10.1016/j.biortech.2014.01.096 google scholar
  • Greses, S., Gaby, J. C., Aguado, D., Ferrer, J., Seco, A., & Horn, S. J. (2017). Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal research, 27, 121-130. https://doi.org/10.1016/j. algal.2017.09.002 google scholar
  • Herrmann, C., Kalita, N., Wall, D., Xia, A., & Murphy, J. D. (2016). Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresource Technology, 214, 328337. https://doi.org/10.1016/j.biortech.2016.04.119 google scholar
  • Llamas, M., Magdalena, J. A., Greses, S., Tomâs-Pejo, E., & Gonzâlez-Fernândez, C. (2021). Insights on the microbial communities developed during the anaerobic fermentation of raw and pretreated microalgae biomass. Chemosphere, 263, 127942.https://doi.org/10.1016/j.chemosphere.2020.127942 google scholar
  • Li, R., Duan, N., Zhang, Y., Liu, Z., Li, B., Zhang, D., & Dong, T. (2017). Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation. Waste Management, 68, 120-127. https://doi.org/10.1016/j.wasman.2017.06.028 google scholar
  • Magdalena, J. A., Ballesteros, M., & Gonzâlez-Fernandez, C. (2018). Efficient anaerobic digestion of microalgae biomass: proteins as a key macromolecule. Molecules, 23(5), 1098.https://doi.org/10.3390/ molecules23051098 google scholar
  • Mahdy, A., Fotidis, I. A., Mancini, E., Ballesteros, M., Gonzâlez-Fernandez, C., & Angelidaki, I. (2017). Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Bioresource Technology, 225, 272-278. https://doi. org/10.1016/j.biortech.2016.11.086 google scholar
  • Muhammad Nasir, I., Mohd Ghazi, T. I., & Omar, R. (2012). Production of biogas from solid organic wastes through anaerobic digestion: a review. Applied microbiology and biotechnology, 95, 321-329. https://doi.org/10.1007/s00253-012-4152-7 google scholar
  • Nagarajan, D., Dong, C. D., Chen, C. Y., Lee, D. J., & Chang, J. S. (2021). Biohydrogen production from microalgae—Major bottlenecks and future research perspectives. Biotechnology journal, 16(5), 2000124. https://doi.org/10.1002/biot.202000124 google scholar
  • Olsson, J., Feng, X. M., Ascue, J., Gentili, F. G., Shabiimam, M. A., Nehrenheim, E., & Thorin, E. (2014). Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment. Bioresource technology, 171, 203-210. https://doi. org/10.1016/j.biortech.2014.08.069 google scholar
  • Panyaping, K., Khiewwijit, R., & Wongpankamol, P. (2018). Enhanced biogas production potential of microalgae and swine wastewater using co-digestion and alkaline pretreatment. Water Science and Technology, 78(1), 92-102.https://doi.org/10.2166/wst.2018.077 google scholar
  • Prajapati, S. K., Malik, A., Vijay, V. K., & Sreekrishnan, T. R. (2015). Enhanced methane production from algal biomass through short duration enzymatic pretreatment and codigestion with carbon rich waste. RSC advances, 5(82), 67175-67183. google scholar
  • Passos, F., Gutierrez, R., Uggetti, E., Garfı, M., Garda, J., & Ferrer, I. (2017). Towards energy neutral microalgae-based wastewater treatment plants. Algal research, 28, 235-243.https://doi.org/10.1016/j. algal.2017.11.006 google scholar
  • Passos, F., Cordeiro, P. H. M., Baeta, B. E. L., de Aquino, S. F., & Perez-Elvira, S. I. (2018). Anaerobic co-digestion of coffee husks and microalgal biomass after thermal hydrolysis. Bioresource technology, 253, 49-54.https://doi.org/10.1016/j.biortech.2017.12.071 google scholar
  • Rahman, M. H., Mia, S. H., Nessa, A., Badhan, M. A., & Islam, M. A. (2015). Reducing the Volume of Garbage and Production of Biogas through Anaerobic Decomposition. Journal of Environmental Science and Natural Resources, 8(2), 33-36. google scholar
  • Ramos-Suârez, J. L., Martınez, A., & Carreras, N. (2014). Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production. Energy conversion and management, 88, 12631270. https://doi.org/10.1016/j.enconman.2014.02.064 google scholar
  • Saleem, M., Hanif, M. U., Bahadar, A., Iqbal, H., Capareda, S. C., & Waqas, A. (2020). The effects of hot water and ultrasonication pretreatment of microalgae (Nannochloropsis oculata) on biogas production in anaerobic co-digestion with cow manure. Processes, 8(12), 1558. https://doi.org/10.3390/pr8121558 google scholar
  • Scarcelli, P. G., Serejo, M. L., Paulo, P. L., & Boncz, M. Â. (2020). Evaluation of biomethanization during co-digestion of thermally pretreated microalgae and waste activated sludge, and estimation of its kinetic parameters. Science of the Total Environment, 706, 135745.https:// doi.org/10.1016/j.scitotenv.2019.135745 google scholar
  • Schwede, S., Kowalczyk, A., Gerber, M., & Span, R. (2013). Anaerobic co-digestion of the marine microalga Nannochloropsis salina with energy crops. Bioresource technology, 148, 428-435. https://doi. org/10.1016/j.biortech.2013.08.157 google scholar
  • Sole-Bundo, M., Cucina, M., Folch, M., Tâpias, J., Gigliotti, G., Garfı, M., & Ferrer, I. (2017). Assessing the agricultural reuse of the digestate from microalgae anaerobic digestion and co-digestion with sewage sludge. Science of the Total Environment, 586, 1-9. https://doi. org/10.1016/j.scitotenv.2017.02.006 google scholar
  • Sole-Bundo, M., Salvado, H., Passos, F., Garfı, M., & Ferrer, I. (2018). Strategies to optimize microalgae conversion to biogas: Co-digestion, pretreatment and hydraulic retention time. Molecules, 23(9), 2096.https://doi.org/10.3390/molecules23092096 google scholar
  • Sole-Bundo, M., Garfı, M., Matamoros, V, & Ferrer, I. (2019a). Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal. Science of the total environment, 660, 974-981. https://doi.org/10.1016/j.scitotenv.2019.01.011 google scholar
  • Sole-Bundo, M., Passos, F., Romero-Güiza, M. S., Ferrer, I., & Astals, S. (2019b). Co-digestion strategies to enhance microalgae anaerobic digestion: A review. Renewable and Sustainable Energy Reviews, 112, 471-482. https://doi.org/10.1016/j.rser.2019.05.036 google scholar
  • Sole-Bundo, M., Garfı, M., & Ferrer, I. (2020). Pretreatment and co-digestion of microalgae, sludge and fat oil and grease (FOG) from microalgae-based wastewater treatment plants. Bioresource technology, 298, 122563.https://doi.org/10.1016/j.biortech.2019.122563 google scholar
  • Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3 google scholar
  • Vargas-Estrada, L., Longoria, A., Arenas, E., Moreira, J., Okoye, P. U., Bustos-Terrones, Y., & Sebastian, P. J. (2022). A review on current trends in biogas production from microalgae biomass and microalgae waste by anaerobic digestion and co-digestion. BioEnergy Research, 15(1), 77-92. https://doi.org/10.1007/s12155-021-10276-2 google scholar
  • Vassalle, L., Passos, F., Rosa-Machado, A. T., Moreira, C., Reis, M., de Freitas, M. P., & Mota, C. R. (2022). The use of solar pre-treatment as a strategy to improve the anaerobic biodegradability of microalgal biomass in co-digestion with sewage. Chemosphere, 286, 131929. https://doi.org/10.1016/j.chemosphere.2021.131929 google scholar
  • Wang, M., Sahu, A. K., Rusten, B., & Park, C. (2013). Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge. Bioresource technology, 142, 585-590.https://doi.org/10.1016/j.biortech.2013.05.096 google scholar
  • Wang, M., Lee, E., Dilbeck, M. P., Liebelt, M., Zhang, Q., & Ergas, S. J. (2017). Thermal pretreatment of microalgae for biomethane production: experimental studies, kinetics and energy analysis. Journal of Chemical Technology & Biotechnology, 92(2), 399-407. https://doi.org/10.1002/jctb.5018 google scholar
  • Wannapokin, A., Ramaraj, R., Whangchai, K., & Unpaprom, Y. (2018). Potential improvement of biogas production from fallen teak leaves with co-digestion of microalgae. 3 Biotech, 8, 1-18.https://doi. org/10.1007/s13205-018-1084-7 google scholar
  • Xue, Z., Yu, Y., Yu, W., Gao, X., Zhang, Y., & Kou, X. (2020). Development prospect and preparation technology of edible oil from microalgae. Frontiers in Marine Science, 7, 402. https://doi.org/10.3389/ fmars.2020.00402 google scholar
  • Yu, Q., Sun, C., Liu, R., Yellezuome, D., Zhu, X., Bai, R., & Sun, M. (2021). Anaerobic co-digestion of corn stover and chicken manure using continuous stirred tank reactor: The effect of biochar addition and urea pretreatment. Bioresource Technology, 319, 124197.https://doi. org/10.1016/j.biortech.2020.124197 google scholar
  • Zhu, Z., Jiang, J., & Fa, Y. (2020). Overcoming the biological contamination in microalgae and cyanobacteria mass cultivations for photosynthetic biofuel production. Molecules, 25(22), 5220. https://doi.org/10.3390/ molecules25225220 google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Kayan, İ., & Ayman Oz, N. (2025). The Role of Microalgae in Enhancing Anaerobic Digestion: A Bibliometric Review. Aquatic Sciences and Engineering, 40(2), 124-132. https://doi.org/10.26650/ASE20241610955


AMA

Kayan İ, Ayman Oz N. The Role of Microalgae in Enhancing Anaerobic Digestion: A Bibliometric Review. Aquatic Sciences and Engineering. 2025;40(2):124-132. https://doi.org/10.26650/ASE20241610955


ABNT

Kayan, İ.; Ayman Oz, N. The Role of Microalgae in Enhancing Anaerobic Digestion: A Bibliometric Review. Aquatic Sciences and Engineering, [Publisher Location], v. 40, n. 2, p. 124-132, 2025.


Chicago: Author-Date Style

Kayan, İremsu, and Nilgün Ayman Oz. 2025. “The Role of Microalgae in Enhancing Anaerobic Digestion: A Bibliometric Review.” Aquatic Sciences and Engineering 40, no. 2: 124-132. https://doi.org/10.26650/ASE20241610955


Chicago: Humanities Style

Kayan, İremsu, and Nilgün Ayman Oz. The Role of Microalgae in Enhancing Anaerobic Digestion: A Bibliometric Review.” Aquatic Sciences and Engineering 40, no. 2 (May. 2025): 124-132. https://doi.org/10.26650/ASE20241610955


Harvard: Australian Style

Kayan, İ & Ayman Oz, N 2025, 'The Role of Microalgae in Enhancing Anaerobic Digestion: A Bibliometric Review', Aquatic Sciences and Engineering, vol. 40, no. 2, pp. 124-132, viewed 2 May. 2025, https://doi.org/10.26650/ASE20241610955


Harvard: Author-Date Style

Kayan, İ. and Ayman Oz, N. (2025) ‘The Role of Microalgae in Enhancing Anaerobic Digestion: A Bibliometric Review’, Aquatic Sciences and Engineering, 40(2), pp. 124-132. https://doi.org/10.26650/ASE20241610955 (2 May. 2025).


MLA

Kayan, İremsu, and Nilgün Ayman Oz. The Role of Microalgae in Enhancing Anaerobic Digestion: A Bibliometric Review.” Aquatic Sciences and Engineering, vol. 40, no. 2, 2025, pp. 124-132. [Database Container], https://doi.org/10.26650/ASE20241610955


Vancouver

Kayan İ, Ayman Oz N. The Role of Microalgae in Enhancing Anaerobic Digestion: A Bibliometric Review. Aquatic Sciences and Engineering [Internet]. 2 May. 2025 [cited 2 May. 2025];40(2):124-132. Available from: https://doi.org/10.26650/ASE20241610955 doi: 10.26650/ASE20241610955


ISNAD

Kayan, İremsu - Ayman Oz, Nilgün. The Role of Microalgae in Enhancing Anaerobic Digestion: A Bibliometric Review”. Aquatic Sciences and Engineering 40/2 (May. 2025): 124-132. https://doi.org/10.26650/ASE20241610955



ZAMAN ÇİZELGESİ


Gönderim31.12.2024
Kabul10.03.2025
Çevrimiçi Yayınlanma17.03.2025

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.