Araştırma Makalesi


DOI :10.26650/ekoist.2024.40.1344234   IUP :10.26650/ekoist.2024.40.1344234    Tam Metin (PDF)

Kahve Çekirdeği Kalitesi Sıralamasında TOPSIS Yöntemi Yaklaşımı

Fatih Boyar

Kahve, petrolden sonra ticareti en çok yapılan ikinci emtiadır. Son yirmi yılda nitelikli kahve alanında önemli gelişmeler olmuştur. Bu gelişmelerle birlikte kahvenin tadı, çekirdeğin kusurları, üretim koşulları, sürdürülebilirlik koşulları gibi birçok konu tartışılagelmektedir. Bu çalışmada Kahve Kalitesi Enstitüsü (KKE) (CQI - Coffee Quality Institute) tarafından kabul edilen kahve kalitesi standartları ile kahveler arasında en iyi alternatifin bulunması hedeflenmiştir. KKE veri tabanında bulunan veri, ağ kazıma yöntemi ile Python 3.10.5 programı kullanılarak elde edilmiştir. Elde edilen veride aroma, tat profili, damakta kalıcılık, asitlik, gövde, tat dengesi, tutarlılık, temizlik, tatlılık nitelikleri olumlu yönde etkileyen ölçütler; 1. kategori kusur, 2. kategori kusur ve kavurma sonrası açık renk kalmış nitelikleri kahvenin kalitesini olumsuz yönde etkileyen ölçütlerdir. Alternatifler arasında en iyisinin seçimi için Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) kullanılmıştır. Ağırlıklandırma adımında hem entropi yöntemi hem de eşit ağırlıklandırma ele alınmış, olumlu ve olumsuz yönleri açıklanarak tartışılmıştır. 

Anahtar Kelimeler: TOPSISağ kazımakahve kalitesi
DOI :10.26650/ekoist.2024.40.1344234   IUP :10.26650/ekoist.2024.40.1344234    Tam Metin (PDF)

TOPSIS Method Approach in Ranking Coffee Bean Quality

Fatih Boyar

Coffee is the second-most traded commodity after oil. Quantifying the quality of coffee is a critical topic of research. Many aspects such as the taste of coffee, bean defects, production conditions, and sustainability conditions are considered for rating the quality. In this study, the best alternative method for quality standards accepted by Coffee Quality Institute (CQI) was discussed. The web scraping method and the Python 3.10.5 program was used to obtain the data in the CQI database. Aroma, taste profile, aftertaste, acidity, body, taste balance, stability, cleanliness, sweetness qualities were believed to positively affect quality. First-category defect, second-category defect, and its light color after roasting were considered to negatively affect coffee quality. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was used to select the best among the alternatives. In the weighting step, both the entropy method and equal weighting were used, and their positive and negative aspects were explained and discussed.


GENİŞLETİLMİŞ ÖZET


Coffee beans are graded on criteria such as coffee taste and aroma quality as well as visual factors such as the appearance, size, and color tone of beans. Various taste and aroma profile tests have been developed to evaluate coffee quality. Factors such as quality control factors, sustainability, working conditions during production, processing and storage of coffee beans are also considered.

Many standards have been setup in numerous organizations at the international and national level. For example, the International Coffee Organization focuses on many areas such as establishing and implementing quality standards in coffee beans, supporting and guiding coffee producers, developing sustainable coffee standards, and establishing hygiene rules.

Coffee quality institute (CQI) develops and trains cupping protocols used in coffee tasting to assess coffee quality and establish a reference for coffee tasting notes around the world. As of May 2023, more than 8,000 CQI certified grading members (CQI Graders) evaluate coffee in many countries of the world according to CQI standards.

Because of the prevalence of using CQI for grading coffee quality, this study is based on the CQI standard..

Cupping standards developed by CQI are used to evaluate coffee quality. Cupping is a standardized method of tasting coffee. CQI’s cupping standards cover the evaluation of aroma, flavor, aftertaste, acidity, body, balance, uniformity, clean cup, and sweetness. 

Apart from the tasting taste grading, imperfections in coffee quality are undesirable properties that can occur in coffee beans during processing or storage and classified as category one and category two defects.

The first category of defects are primary defects that can be detected visually. Category Second defects are defects that are inconspicuous and can only be detected by taste.

Indicators of coffee quality are available in the CQI database. This database includes a unique ID number assigned to each coffee, type, origin, farm name, production altitude, harvest date, grading date, processing technique, and tasting scores.

The data of each type of coffees are kept on separate pages by using an ID number. The web scraping technique was applied to achieve rapid data collection as the data were kept on separate pages for each coffee. Network scraping was performed using Python 3.10.5. The content of the written Python program is presented in APPENDIX-1. Furthermore, web scraping files and data are available at GitHub Platform (GitHub, 2023).

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method was used for ranking according to coffee grading. This method is an efficient method that is preferred in finding the ideal one in multiple preferences.

Cost attributes have a negative effect on the decision. “Aroma”, “Flavor”, “Aftertaste”, “Acidity”, “Body”, “Balance”, “Uniformity”, “Clean Cup”, “Sweetness”, “Overall” attributes, which are referred to as taste scores in the dataset, have a positive effect. However, “Category One Defects,” “Category Two Defects,” “Quakers” have a negative effect. In the obtained data set, a total of 207 observations and 13 characteristics of the mentioned coffee quality indicators are presented.

In this study, two calculations were made with the entropy weighting method, in which the attributes have equal importance.

The aforementioned methods were used, and the best choices were suggested using the TOPSIS method according to the coffee quality. A general criterion was presented with the sum of the tasting scores, but this study suggests that a calculation method that considers tasting scores separately and accounting for the error qualities could considerably improve grading. 


PDF Görünüm

Referanslar

  • Alsalem, M. A., Zaidan, A. A., Zaidan, B. B., Hashim, M., Albahri, O. S., Albahri, A. S., ... & Mohammed, K. I. (2018). Systematic review of an automated multiclass detection and classification system for acute Leukaemia in terms of evaluation and benchmarking, open challenges, issues and methodological aspects. Journal of medical systems, 42, 1-36. google scholar
  • Aryza, S., & Ulandari, L. (2021). Analysis of technique for order preference by similarity to ideal solution in detecting coffee bean quality. google scholar
  • Chen, P. (2019). Effects of normalization on the entropy-based TOPSIS method. Expert Systems with Applications, 136, 33-41. google scholar
  • Chen, P. (2021). Effects of the entropy weight on TOPSIS. Expert Systems with Applications, 168, 114186. google scholar
  • Coffee Quality Institute Database. https://database.coffeeinstitute.org/coffees/arabica 01/05/2023 google scholar
  • Coffee Quality Institute Graders. Q ARABICA GRADERS. https://database.coffeeinstitute.org/users/graders/arabica 10/05/2023 google scholar
  • Barfod, M. B., Salling, K. B., & Leleur, S. (2011). Composite decision support by combining cost-benefit and multi-criteria decision analysis. Decision support systems, 51(1), 167-175. google scholar
  • Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with applications, 39(17), 13051-13069. google scholar
  • Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis: an integrated approach. Springer Science & Business Media. google scholar
  • Boran, F. E., Genç, S., Kurt, M., & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert systems with applications, 36(8), 11363-11368. google scholar
  • Borman, R. I., Megawaty, D. A., & Attohiroh, A. (2020). Implementasi Metode TOPSIS Pada Sistem Pendukung Keputusan Pemilihan Biji Kopi Robusta Yang Bernilai Mutu Ekspor (Studi Kasus: PT. Indo Cafco Fajar Bulan Lampung). Fountain of Informatics Journal, 5(1), 14-20. google scholar
  • Do, T. N., Kumar, V., & Do, M. H. (2020). Prioritize the key parameters of Vietnamese coffee industries for sustainability. International Journal of Productivity and Performance Management, 69(6), 1153-1176. google scholar
  • Emovon, I., & Oghenenyerovwho, O. S. (2020). Application of MCDM method in material selection for optimal design: A review. Results in Materials, 7, 100115. google scholar
  • GitHub, (2023) ağ kazıma ve elde edilen verinin olduğu kütüphane. https://github.com/fatih-boyar/coffee-quality-data-CQI 23/07/2023 google scholar
  • Galik, A., Bqk, M., Balandynowicz-Panfil, K., & Cirella, G. T. (2022). Evaluating labour market flexibility using the TOPSIS method: Sustainable industrial relations. Sustainability, 14(1), 526. google scholar
  • Huang, J. (2008, September). Combining entropy weight and TOPSIS method for information system selection. In _2008 ieee conference on cybernetics and intelligent systems_ (pp. 1281-1284). IEEE. google scholar
  • Hutasoit, R. A., Solikhun, S., & Wanto, A. (2018). Analisa Pemilihan Barista dengan Menggunakan Metode TOPSIS (Studi Kasus: Mo Coffee). KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), 2(1). google scholar
  • Hwang, C. L., & Masud, A. S. M. (2012). _Multiple objective decision making—methods and applications: a state-of-the-art survey_ (Vol. 164). Springer Science & Business Media. google scholar
  • Hwang, C. L., Yoon, K., (1981). Methods for multiple attribute decision making. Multiple attribute decision making: methods and applications a state-of-the-art survey, 58-191. google scholar
  • International Coffee Organization. Coffee Market Report-April 2023. https://www.icocoffee.org/documents/cy2022-23/cmr-0423-e.pdf 09/05/2023 google scholar
  • International Coffee Organization. Mission. https://www.ico.org/mission07_e.asp?section=About_Us 09/05/2023 google scholar
  • Jozi, S. A., Shafiee, M., MoradiMajd, N., & Saffarian, S. (2012). An integrated Shannon’s Entropy-TOPSIS methodology for environmental risk assessment of Helleh protected area in Iran. Environmental monitoring and assessment, 184, 6913-6922. google scholar
  • Kaynak, S., Altuntas, S., & Dereli, T. (2017). Comparing the innovation performance of EU candidate countries: an entropy-based TOPSIS approach. Economic research-Ekonomska istrazivanja, 30(1), 31-54. google scholar
  • Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. _European journal of operational research_, _156_(2), 445-455. google scholar
  • Özgürler, Ş., Güneri, A.F., Gülsün, B. and Yılmaz, O. (2011) ‘Robot selection for a flexible manufacturing system with AHP and TOPSIS methods’, Proceedings of 15th International Research/Expert Conference on Trends in the Development of Machinery and Associated Technology, pp.333-336. google scholar
  • Pernalete, C. G., van Baten, J., Urbina, J. C., & Arevalo, J. F. (2015). A molecular reconstruction feed characterization and CAPE OPEN implementation strategy to develop a tool for modeling HDT reactors for light petroleum cuts. In Computer Aided Chemical Engineering (Vol. 37, pp. 359-364). Elsevier. google scholar
  • SCAA Cupping Protocols.http://www.scaa.org/PDF/resources/cupping-protocols.pdf 15/05/2023 google scholar
  • SCAA Defects Handbook.https://www.coffeestrategies.com/wp-content/uploads/2020/08/Green-Coffee-Defect-Handbook.pdf 16/05/202 google scholar
  • SCAA Specialty Coffee. https://sca.coffee/research/what-is-specialty-coffee 27/09/2023 google scholar
  • Shanker, S., Sharma, H., & Barve, A. (2022). Analysing the critical success factors and the risks associated with third-party logistics in the food supply chain: a case of coffee industry. Journal of Advances in Management Research, 19(2), 161-197. google scholar
  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423. google scholar
  • Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and computer modelling, 45(7-8), 801-813. google scholar
  • Siksnelyte-Butkiene, I., Zavadskas, E. K., & Streimikiene, D. (2020). Multi-criteria decision-making (MCDM) for the assessment of renewable energy technologies in a household: A review. Energies, 13(5), 1164. google scholar
  • Siregar, I. (2019, December). Supplier selection by using analytical hierarchy process (ahp) and techniques for order preference methods with similarities to ideal solutions (topsis). In Journal of Physics: Conference Series (Vol. 1339, No. 1, p. 012023). IOP Publishing. google scholar
  • Sun, L. Y., Miao, C. L., & Yang, L. (2017). Ecological-economic efficiency evaluation of green technology innovation in strategic emerging industries based on entropy weighted TOPSIS method. Ecological indicators, 73, 554-558. google scholar
  • Tsaur, S.H., Chang, T.Y. and Yen, C.H. (2002) ‘The evaluation of airline service quality by fuzzy MCDM’, Tourism Management, Vol. 23, No. 2, pp.107-115. google scholar
  • Wang, T. C., & Lee, H. D. (2009). Developing a fuzzy TOPSIS approach based on subjective weights and objective weights. Expert systems with applications, 36(5), 8980-8985. google scholar
  • Yadav, S. K., Joseph, D., & Jigeesh, N. (2018). A review on industrial applications of TOPSIS approach. International Journal of Services and Operations Management, 30(1), 23-28. google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Boyar, F. (2024). Kahve Çekirdeği Kalitesi Sıralamasında TOPSIS Yöntemi Yaklaşımı. EKOIST Journal of Econometrics and Statistics, 0(40), 46-62. https://doi.org/10.26650/ekoist.2024.40.1344234


AMA

Boyar F. Kahve Çekirdeği Kalitesi Sıralamasında TOPSIS Yöntemi Yaklaşımı. EKOIST Journal of Econometrics and Statistics. 2024;0(40):46-62. https://doi.org/10.26650/ekoist.2024.40.1344234


ABNT

Boyar, F. Kahve Çekirdeği Kalitesi Sıralamasında TOPSIS Yöntemi Yaklaşımı. EKOIST Journal of Econometrics and Statistics, [Publisher Location], v. 0, n. 40, p. 46-62, 2024.


Chicago: Author-Date Style

Boyar, Fatih,. 2024. “Kahve Çekirdeği Kalitesi Sıralamasında TOPSIS Yöntemi Yaklaşımı.” EKOIST Journal of Econometrics and Statistics 0, no. 40: 46-62. https://doi.org/10.26650/ekoist.2024.40.1344234


Chicago: Humanities Style

Boyar, Fatih,. Kahve Çekirdeği Kalitesi Sıralamasında TOPSIS Yöntemi Yaklaşımı.” EKOIST Journal of Econometrics and Statistics 0, no. 40 (Dec. 2024): 46-62. https://doi.org/10.26650/ekoist.2024.40.1344234


Harvard: Australian Style

Boyar, F 2024, 'Kahve Çekirdeği Kalitesi Sıralamasında TOPSIS Yöntemi Yaklaşımı', EKOIST Journal of Econometrics and Statistics, vol. 0, no. 40, pp. 46-62, viewed 23 Dec. 2024, https://doi.org/10.26650/ekoist.2024.40.1344234


Harvard: Author-Date Style

Boyar, F. (2024) ‘Kahve Çekirdeği Kalitesi Sıralamasında TOPSIS Yöntemi Yaklaşımı’, EKOIST Journal of Econometrics and Statistics, 0(40), pp. 46-62. https://doi.org/10.26650/ekoist.2024.40.1344234 (23 Dec. 2024).


MLA

Boyar, Fatih,. Kahve Çekirdeği Kalitesi Sıralamasında TOPSIS Yöntemi Yaklaşımı.” EKOIST Journal of Econometrics and Statistics, vol. 0, no. 40, 2024, pp. 46-62. [Database Container], https://doi.org/10.26650/ekoist.2024.40.1344234


Vancouver

Boyar F. Kahve Çekirdeği Kalitesi Sıralamasında TOPSIS Yöntemi Yaklaşımı. EKOIST Journal of Econometrics and Statistics [Internet]. 23 Dec. 2024 [cited 23 Dec. 2024];0(40):46-62. Available from: https://doi.org/10.26650/ekoist.2024.40.1344234 doi: 10.26650/ekoist.2024.40.1344234


ISNAD

Boyar, Fatih. Kahve Çekirdeği Kalitesi Sıralamasında TOPSIS Yöntemi Yaklaşımı”. EKOIST Journal of Econometrics and Statistics 0/40 (Dec. 2024): 46-62. https://doi.org/10.26650/ekoist.2024.40.1344234



ZAMAN ÇİZELGESİ


Gönderim16.08.2023
Kabul05.12.2023
Çevrimiçi Yayınlanma26.06.2024

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.