Orijinal Araştırma


DOI :10.26650/eor.20200053   IUP :10.26650/eor.20200053    Tam Metin (PDF)

The effects of cavity disinfection on the nanoleakage of compomer restorations: an in vitro study

İpek ArslanÖzgül BaygınTamer TüzünerFatih ErdemirAykut ÇanakçıFatih Mehmet Korkmaz

Purpose Cavity disinfection, in addition to routine caries removal methods, is recommended to eliminate the microorganisms. The aim of this study was to compare the effect of various systems Er,Cr:YSGG lasers, diode lasers and FotoSan and agents Corsodyl; Cervitec and Cervitec Plus and Fluor Protector—on the nanoleakage of compomer restorations when used for cavity disinfection. Materials and Methods A total of 40 intact human deciduous molar teeth containing Black V cavities (3×2×1.5 mm) on the buccal and lingual surfaces parallel to the cementoenamel junction were randomly divided into 8 groups according to the cavity disinfection methods. The antibacterial agents and systems were applied according to the manufacturer’s instructions. Restorations were completed using a compomer. The restored teeth were then subjected to thermocycling for 500 cycles in a water bath at 5°C and 55°C with a dwell time of 30 seconds. After the thermocycling procedures, 1-mm sticks were obtained from the center of each cavity to prepare for the nanoleakage test. After the teeth were sectioned, they were immersed in 50 wt % ammoniacal silver nitrate solution for 24 hours and dipped in photo-developing solutions for 8 hours with fluorescent light irradiation. The samples were examined under a scanning electron microscope (SEM). The non-parametric Kruskal-Wallis and Mann-Whitney U test (p<0.05) were applied. Results The Er,Cr:YSGG laser group showed significantly less nanoleakage than all of the tested groups (p<0.01). The diode laser, Fluor protector and FotoSan groups showed similar nanoleakage to that of the control group (p>0.05). The Corsodyl (p<0.01) and Cervitec (p<0.001) groups showed significantly higher nanoleakage than the control group. Conclusion Er,Cr:YSGG laser irradiation which showed lower nanoleakage scores from either control or tested groups can be recommended for cavity disinfection Additionally, a diode laser and FotoSan, which have antibacterial effects and no negative effect on leakage, can be used for cavity disinfection. 


PDF Görünüm

Referanslar

  • 1. Anderson MH, Bales DJ, Omnell KA. Modern management of dental-caries - the cutting edge is not the dental bur. J Am Dent Assoc 1993;124(6):37-44. [CrossRef] google scholar
  • 2. Boston DW, Graver HT. Histobacteriological analysis of acid red-dye stainable dentin found beneath intact amalgam restorations. Oper Dent 1994;19(2):65-9. google scholar
  • 3. El-Housseiny AA, Jamjoum H. The effect of caries detector dyes and a cavity cleansing agent on composite resin bonding to enamel and dentin. J Clin Pediatr Dent 2000;25(1):57- 63. [CrossRef] google scholar
  • 4. Meiers JC, Kresin JC. Cavity disinfectants and dentin bonding. Oper Dent 1996;21(4):153- 9. google scholar
  • 5. Schouboe T, MacDonald, J.B. Prolonged viability of organisms sealed in dental caries. Arch Oral Biol 1962;7:5256. [CrossRef] google scholar
  • 6. Magni E, Ferrari M, Hickel R, Huth KC, Ilie N. Effect of ozone gas application on the mechanical properties of dental adhesives bonded to dentin. Dent Mater 2008;24(10):142834. [CrossRef] google scholar
  • 7. Ersin NK, Candan, U., Aykut, A., Eronat, C., Belli, S. No adverse effect to bonding following caries disinfection with chlorhexidine. J Dent Child (Chic) 2009;76(1):20-7. google scholar
  • 8. Mohan PV, Uloopi KS, Vinay C, Rao RC. In vivo comparison of cavity disinfection efficacy with APF gel, Propolis, Diode Laser, and 2% chlorhexidine in primary teeth. Contemp Clin Dent 2016;7(1):45-50. [CrossRef] google scholar
  • 9. Franzon R, Guimaraes LF, Magalhaes CE, Haas AN, Araujo FB. Outcomes of One-Step Incomplete and Complete Excavation in Primary Teeth: A 24-Month Randomized Controlled Trial. Caries Res 2014;48(5):376-83. [CrossRef] google scholar
  • 10. Ersin NK, Uzel A, Aykut A, Candan U, Eronat C. Inhibition of cultivable bacteria by chlorhexidine treatment of dentin lesions treated with the ART technique. Caries Res 2006;40(2):172-7. [CrossRef] google scholar
  • 11. Gurbuz T, Sengul F, Demirci T, Coruh M. Scanning electron microscopic analyses of the effects of different disinfection methods on dentinal structure. J Int Med Res 2013;6(2):65- 8. google scholar
  • 12. Turkun M, Ozata F, Uzer E, Ates M. Antimicrobial substantivity of cavity disinfectants. Gen Dent 2005;53(3):182-6. google scholar
  • 13. Brannstrom M, Johnson, G. Effects of various conditioners and cleaning agents on prepared surfaces: a scanning electron microscopic investigation. J Prosthet Dent 1974;31:422-30. [CrossRef] google scholar
  • 14. Zhou J, Tan J, Yang X, Cheng C, Wang X, Chen L. Effect of chlorhexidine application in a self-etching adhesive on the immediate resin-dentin bond strength. J Adhes Dent 2010;12(1):27-31. google scholar
  • 15. Mobarak EH, El-Korashy DI, Pashley DH. Effect of chlorhexidine concentrations on micro- shear bond strength of self-etch adhesive to normal and caries-affected dentin. Am J Dent 2010;23(4):217-22. google scholar
  • 16. Tulunoglu O, Ayhan H, Olmez A, Bodur H. The effect of cavity disinfectants on microleakage in dentin bonding systems. J Clin Pediatr Dent 1998;22(4):299-305. google scholar
  • 17. Jones CG. Chlorhexidine: is it still the gold standard? Periodontol 2000 1997;15(3):55-62. [CrossRef] google scholar
  • 18. Twetman S, Petersson LG. Comparison of the efficacy of three different chlorhexidine preparations in decreasing the levels of mutans streptococci in saliva and interdental plaque. Caries Res 1998;32:113-8. [CrossRef] google scholar
  • 19. Wallman C, Birkhed D. Effect of chlorhexidine varnish and gel on mutans streptococci in margins of restorations in adults. Caries Res 2002;36:360-5. [CrossRef] google scholar
  • 20. Savas S, Kucukyilmaz E, Celik EU, Ates M. Effects of different antibacterial agents on enamel in a biofilm caries model. J Oral Sci 2015;57(4):367-72. google scholar
  • 21. Erdem AP, Sepet E, Kulekci G, Trosola SC, Guven Y. Effects of two fluoride varnishes and one fluoride/chlorhexidine varnish on Streptococcus mutans and Streptococcus sobrinus biofilm formation in vitro. Int J Med Sci 2012;9(2):129-36. [CrossRef] google scholar
  • 22. Jeevarathan J, Deepti A, Muthu MS, Rathna Prabhu V, Chamundeeswari GS. Effect of fluoride varnish on Streptococcus mutans counts in plaque of caries-free children using Dentocult SM strip mutans test: a randomized controlled triple blind study. J Indian Soc Pedod Prev Dent 2007;25(4):15763. [CrossRef] google scholar
  • 23. Mei ML, Ito L, Cao Y, Li QL, Lo EC, Chu CH. Inhibitory effect of silver diamine fluoride on dentine demineralisation and collagen degradation. J Dent 2013;41:809-17. [CrossRef] google scholar
  • 24. Bocangel JS, Kraul AOE, Vargas AG, Demarco FF, Matson E. Influence of disinfectant solutions on the tensile bond strength of a fourth generation dentin bonding agent. Pesq Odont Bras 2000;14(2):107-11. [CrossRef] google scholar
  • 25. Pourhajibagher M, Boluki E, Chiniforush N, Pourakbari B, Farshadzadeh Z, Ghorbanzadeh R, Aziemzadeh M, Bahador A. Modulation of virulence in Acinetobacter baumannii cells surviving photodynamic treatment with toluidine blue. Photodiagn Photodyn 2016;15:202-12. [CrossRef] google scholar
  • 26. Williams J PGJ, Colles J, Wilson M. The antibacterial effect of TBO on bacterial colonies in a collagen matrix and carious dentine. Caries Res 2004;38:530-6. [CrossRef] google scholar
  • 27. Zanin IC, Lobo MM, Rodrigues LK, Pimenta LA, Hofling JF, Goncalves RB. Photosensitization of in vitro biofilms by toluidine blue O combined with a light- emitting diode. Eur J Oral Sci 2006;114(1):64-9. [CrossRef] google scholar
  • 28. Zanin IC, Goncalves RB, Junior AB, Hope CK, Pratten J. Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother 2005;56(2):324-30. [CrossRef] google scholar
  • 29. Maver-Biscanin M, Mravak-Stipetic M, Jerolimov V, Biscanin A. Fungicidal effect of diode laser irradiation in patients with denture stomatitis. Lasers Surg Med 2004;35(4):259-62. [CrossRef] google scholar
  • 30. Turkun M, Turkun LS, Celik EU, Ates M. Bactericidal effect of Er,Cr:YSGG laser on Streptococcus mutans. Dent Mater J 2006;25(1):81-6. [CrossRef] google scholar
  • 31. Elkassas DW, Fawzi EM, El Zohairy A. The effect of cavity disinfectants on the micro- shear bond strength of dentin adhesives. Eur J Dent 2014;8(2):184-90. [CrossRef] google scholar
  • 32. de Mattos Pimenta Vidal C, Pavan S, Briso AL, Bedran-Russo AK. Effects of three restorative techniques in the bond strength and nanoleakage at gingival wall of Class II restorations subjected to simulated aging. Clin Oral Investig 2013;17(2):627-33. [CrossRef] google scholar
  • 33. Chiaraputt S, Roongrujimek P, Sattabanasuk V, Panich N, Harnirattisai C, Senawongse P. Biodegradation of all-in-one selfetch adhesive systems at the resin- dentin interface. Dent Mater J 2011;30(6):814-26. [CrossRef] google scholar
  • 34. Sano H, Takatsu T, Ciucchi B, Horner JA, Matthews WG, Pashley DH. Nanoleakage: leakage within the hybrid layer. Oper Dent 1995;20(1):18-25. google scholar
  • 35. Tay FR, Pashley DH, Yoshiyama M. Two modes of nanoleakage expression in single-step adhesives. J Dent Res 2002;81(7):4726. [CrossRef] google scholar
  • 36. Oznurhan F, Olmez A. Nanoleakage in primary teeth prepared by laser irradiation or bur. Lasers Med Sci 2013;28(4):1099-105. [CrossRef] google scholar
  • 37. Mjor IA. The location of clinically diagnosed secondary caries. Quintessence Int 1998;29(5):313-7. google scholar
  • 38. Agrawal N, Agrawal, H., Patel, P. Effect of cavity disinfection with chlorhexidine on microleakage of composite restorations using total etch and self etch single bottle adhesive systems: an invitro study. Int J Biomed Sci 2013;2(1):43-7. google scholar
  • 39. Mathis RS, DeWald JP, Moody CR, Ferracane JL. Marginal leakage in class V composite resin restorations with glass ionomer liners in vitro. J Prosthet Dent 1990;63(5):522-5. [CrossRef] google scholar
  • 40. Sano H, Takatsu T, Ciucchi B, Horner JA, Matthews WG, Pashley DH. Nanoleakage - Leakage within the Hybrid Layer. Oper Dent 1995;20(1):18-25. google scholar
  • 41. Malacarne-Zanon J, de Andrade ESSM, Wang L, de Goes MF, Martins AL, Narvaes- Romani EO, Anido-Anido A, Carrilho MR. Permeability of Dental Adhesives - A SEM Assessment. Eur J Dent 2010;4(4):429-39. [CrossRef] google scholar
  • 42. Arslan S, Yazici AR, Gorucu J, Pala K, Antonson DE, Antonson SA, Silici S. Comparison of the effects of Er,Cr:YSGG laser and different cavity disinfection agents on microleakage of current adhesives. Lasers Med Sci 2012;27(4):805-11. [CrossRef] google scholar
  • 43. Tuzuner T, Ulusoy AT, Baygin O, Yahyaoglu G, Yalcin I, Buruk K, Nicholson J. Direct and transdentinal (indirect) antibacterial activity of commercially available dental gel formulations against Streptococcus mutans. Med Princ Pract 2013;22(4):397401. [CrossRef] google scholar
  • 44. Moosavi H, Ahrari F, Mohamadipour H. The effect of different surface treatments of demineralised enamel on microleakage under metal orthodontic brackets. Prog Orthod 2013;14:2. [CrossRef] google scholar
  • 45. Selvaraj K, Sampath V, Sujatha V, Mahalaxmi S. Evaluation of microshear bond strength and nanoleakage of etch-and-rinse and self-etch adhesives to dentin pretreated with silver diamine fluoride/potassium iodide: An in vitro study. Indian J Dent Res 2016;27(4):421-5. [CrossRef] google scholar
  • 46. Nystrom GP, Holtan JR, Olin PS, Douglas WH. Technical note: fluoride pre- treatment effects on microleakage of a resin bonding agent. Dent Mater 1989;5(5):359-60. [CrossRef] google scholar
  • 47. Berutti E, Marini R, Angeretti A. Penetration ability of different irrigants into dentinal tubules. J Endod 1997;23(12):725-7. [CrossRef] google scholar
  • 48. Schoop U, Kluger W, Moritz A, Nedjelik N, Georgopoulos A, Sperr W. Bactericidal effect of different laser systems in the deep layers of dentin. Lasers Surg Med 2004;35:111-6. [CrossRef] google scholar
  • 49. Costa-Santos L, Silva-Junior ZS, Sfalcin RA, Mota A, Horliana A, Motta LJ, Mesquita- Ferrari RA, Fernandes KPS, Prates RA, Silva DFT, Deana A, Bussadori SK. The effect of antimicrobial photodynamic therapy on infected dentin in primary teeth: A randomized controlled clinical trial protocol. Medicine (Baltimore) 2019;98(15):e15110. [CrossRef] google scholar
  • 50. Odor TM, Chandler NP, Watson TF, Ford TR, McDonald F. Laser light transmission in teeth: a study of the patterns in different species. Int Endod J 1999;32:296-302. [CrossRef] google scholar
  • 51. Savadi Oskoee S, Alizadeh Oskoee P, Jafari Navimipour E, Ahmad Ajami A, Pournaghi Azar F, Rikhtegaran S, Amini M. Comparison of the Effect of Nd:YAG and Diode Lasers and Photodynamic Therapy on Microleakage of Class V Composite Resin Restorations. J Dent Res Dent Clin Dent Prospects 2013;7(2):74- 80. google scholar
  • 52. Madani L, Sarkisians E, Kiomarsi N, Kharazifard MJ, Chiniforush N. Effect of antimicrobial photodynamic therapy on microleakage of class cavities restored with composite resin. Photodiagn Photodyn Ther 2018;23:78-82. [CrossRef] google scholar
  • 53. Baygin O, Korkmaz FM, Arslan I. Effects of different types of adhesive systems on the microleakage of compomer restorations in Class V cavities prepared by Er,Cr:YSGG laser in primary teeth. Dent Mater J 2012;31(2):206-14. [CrossRef] google scholar
  • 54. Gunes S, Bahsi E, Ince B, Colak H, Dalli M, Yavuz I, Sahbaz C, Cangul S. Comparative Evaluation of the Effects of Ozone, Diode Laser, and Traditional Cavity Disinfectants on Microleakage. Ozone Sci Eng 2014;36:206-11. [CrossRef] google scholar
  • 55. Tengrungsun T, Smithrithee S, Vongsavan N, Chuckpaiwong S, Vongsavan K. Investigation of Er : YAG laser etching on enamel-sealant interface in vitro SEM study. Lasers in Dentistry, Proceedings 2003;1248:201-8. [CrossRef] google scholar
  • 56. Sungurtekin E, Oztas N. The effect of erbium, chromium:yttriumscandium-gallium- garnet laser etching on marginal integrity of a resin-based fissure sealant in primary teeth. Lasers Med Sci. 2010;25(6):841-7. [CrossRef] google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Arslan, İ., Baygın, Ö., Tüzüner, T., Erdemir, F., Çanakçı, A., & Korkmaz, F.M. (2020). The effects of cavity disinfection on the nanoleakage of compomer restorations: an in vitro study. European Oral Research, 54(1), 16-24. https://doi.org/10.26650/eor.20200053


AMA

Arslan İ, Baygın Ö, Tüzüner T, Erdemir F, Çanakçı A, Korkmaz F M. The effects of cavity disinfection on the nanoleakage of compomer restorations: an in vitro study. European Oral Research. 2020;54(1):16-24. https://doi.org/10.26650/eor.20200053


ABNT

Arslan, İ.; Baygın, Ö.; Tüzüner, T.; Erdemir, F.; Çanakçı, A.; Korkmaz, F.M. The effects of cavity disinfection on the nanoleakage of compomer restorations: an in vitro study. European Oral Research, [Publisher Location], v. 54, n. 1, p. 16-24, 2020.


Chicago: Author-Date Style

Arslan, İpek, and Özgül Baygın and Tamer Tüzüner and Fatih Erdemir and Aykut Çanakçı and Fatih Mehmet Korkmaz. 2020. “The effects of cavity disinfection on the nanoleakage of compomer restorations: an in vitro study.” European Oral Research 54, no. 1: 16-24. https://doi.org/10.26650/eor.20200053


Chicago: Humanities Style

Arslan, İpek, and Özgül Baygın and Tamer Tüzüner and Fatih Erdemir and Aykut Çanakçı and Fatih Mehmet Korkmaz. The effects of cavity disinfection on the nanoleakage of compomer restorations: an in vitro study.” European Oral Research 54, no. 1 (Nov. 2024): 16-24. https://doi.org/10.26650/eor.20200053


Harvard: Australian Style

Arslan, İ & Baygın, Ö & Tüzüner, T & Erdemir, F & Çanakçı, A & Korkmaz, FM 2020, 'The effects of cavity disinfection on the nanoleakage of compomer restorations: an in vitro study', European Oral Research, vol. 54, no. 1, pp. 16-24, viewed 22 Nov. 2024, https://doi.org/10.26650/eor.20200053


Harvard: Author-Date Style

Arslan, İ. and Baygın, Ö. and Tüzüner, T. and Erdemir, F. and Çanakçı, A. and Korkmaz, F.M. (2020) ‘The effects of cavity disinfection on the nanoleakage of compomer restorations: an in vitro study’, European Oral Research, 54(1), pp. 16-24. https://doi.org/10.26650/eor.20200053 (22 Nov. 2024).


MLA

Arslan, İpek, and Özgül Baygın and Tamer Tüzüner and Fatih Erdemir and Aykut Çanakçı and Fatih Mehmet Korkmaz. The effects of cavity disinfection on the nanoleakage of compomer restorations: an in vitro study.” European Oral Research, vol. 54, no. 1, 2020, pp. 16-24. [Database Container], https://doi.org/10.26650/eor.20200053


Vancouver

Arslan İ, Baygın Ö, Tüzüner T, Erdemir F, Çanakçı A, Korkmaz FM. The effects of cavity disinfection on the nanoleakage of compomer restorations: an in vitro study. European Oral Research [Internet]. 22 Nov. 2024 [cited 22 Nov. 2024];54(1):16-24. Available from: https://doi.org/10.26650/eor.20200053 doi: 10.26650/eor.20200053


ISNAD

Arslan, İpek - Baygın, Özgül - Tüzüner, Tamer - Erdemir, Fatih - Çanakçı, Aykut - Korkmaz, FatihMehmet. The effects of cavity disinfection on the nanoleakage of compomer restorations: an in vitro study”. European Oral Research 54/1 (Nov. 2024): 16-24. https://doi.org/10.26650/eor.20200053



ZAMAN ÇİZELGESİ


Gönderim13.05.2019
Kabul27.09.2019
Çevrimiçi Yayınlanma23.01.2020

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.