Mezenkimal Kök Hücre Sinyal Yolakları ve Etkileşim Faktörleri
Gülsemin Çicek, Selçuk Duman, Tahsin Murad AktanKök hücreler, farklı tip fonksiyonel hücrelere dönüşme potansiyeline sahip, kendi kendini yenileyebilen ve farklılaşmamış hücrelerdir. Bu hücreler, kökenleri temel alınarak iki ana tip olarak sınıflandırılabilir: Preimplante embriyonun iç hücre kitlesinden köken alan ve 3 germ yaprağını da yapılandırabilecek embriyonik kök hücreler ile farklı doku ve organlarda bulunan, en az bir tip fonksiyonel yapıya farklılaşabilme kapasitesine sahip erişkin kök hücreler. Bu her iki kök hücre tipi de çok farklı etkileşim faktörleri varlığında kendi sinyal yollarını kullanarak kendi özelliklerini ve kapasitelerini sunar. Bu kök hücrelerin özelliklerini ayrıntılı olarak bilmek, terapötik maddelere önemli katkı sağlayacaktır.
Mesenchymal Stem Cell Signaling Pathway and Interaction Factors
Gülsemin Çicek, Selçuk Duman, Tahsin Murad AktanStem cells are self-renewing and undifferentiated cells with potential to transform into different types of functional cells. These cells can be classified into two types based on their roots; embryonic stem cells that originate from the inner cell mass of preimplanted embryos and can structure the tree germinal layers and, mature stem cells that have the potential to differentiate into at least one type of functional structure. Both types of the stem cells present their own characteristics and capacities by using their own signal pathways in the presence of very different interaction factors. Knowing the characteristics of those stem cells in detail will importantly contribute to therapeutics.
PDF Görünüm
Referanslar
- 1. Abraham L, Kierszenbaum MD, Laura L. Tres, Cell Signaling, in Histology and Cell Biology. An Introduction to Pathology. Elsevier 2012. p. 89-109. [CrossRef] google scholar
- 2. Gündeşlioğlu AÖ, Altuntaş Z, İnce B, Dadacı M, Aktan M, Duman S. Adipose Tissue Derived Stem Cells and Their Uses in Plastic Surgery. Turk Plast Surg 2013; 21: 1-10. google scholar
- 3. Aktan TM, Duman S, Cihantimur B. Cellular and molecular aspects of adipose tissue. In: Illouz YG, Sterodimas A, editors. Adipose Stem Cells and Regenerative Medicine. Springer; 2011. p. 1-12. [CrossRef] google scholar
- 4. Duman S, Aktan TM, Cüce G, Cihantimur B, Tokaç M, Akbulut H. Effects of Lipokit® Centrifugation on Morphology and Resident Cells of Adipose Tissue. Int J Morphol 2013; 31: 64-9. [CrossRef] google scholar
- 5. Akbulut H, Cüce G, Aktan TM, Duman S. Expression of mesenchymal stem cell markers of human adipose tissue surrounding the vas deferens. Biomed Res 2012; 23: 0970-938X. google scholar
- 6. Cheng NC, Hsieh TY, Lai HS, Young TH. High glucose-induced reactive oxygen species generation promotes stemness in human adipose-derived stem cells. Cytotherapy 2016; 18: 371-83. [CrossRef] google scholar
- 7. Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol 2016; 301-12. [CrossRef] google scholar
- 8. Katsuda T, Ochiya T. Molecular signatures of mesenchymal stem cell-derived extracellular vesicle-mediated tissue repair. Stem Cell Res Ther 2015; 6: 212. [CrossRef] google scholar
- 9. Hoogduijn MJ, de Witte SF, Luk F, et al. Effects of Freeze-Thawing and Intravenous Infusion on Mesenchymal Stromal Cell Gene Expression. Stem Cells Dev 2016; 25: 586-97. [CrossRef] google scholar
- 10. Lai RC, Arslan F, Tan SS, Tan B, Choo A, Lee MM, et al. Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles. J Mol Cell Cardiol 2010; 48: 1215-24. [CrossRef] google scholar
- 11. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 2010; 4: 214-22. [CrossRef] google scholar
- 12. Tokac M, Aktan M, Ak A, Duman S, Tokgozoglu L, Aygul N, et al. Autologous transplantation of arterial cells improves cardiac function in a rabbit model of infarcted myocardium. Stem Cells Dev 2010;19: 927-34. [CrossRef] google scholar
- 13. Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, et al. HucMSC‐Exosome Mediated‐Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells 2015; 33: 2158-68. [CrossRef] google scholar
- 14. Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 2011; 26: 1474-83. [CrossRef] google scholar
- 15. Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PloS one 2012; 7: e33115. [CrossRef] google scholar
- 16. Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin‐induced acute lung injury in mice. Stem cells 2014; 32: 116-25. [CrossRef] google scholar
- 17. Arreba-Tutusaus P, Heidel FH. Signaling Pathways Maintaining Stemness in Adult Hematopoietic Stem Cells. In: Kursad Turksen, editors. Adult Stem Cells 2014; Springer. p. 1-12. [CrossRef] google scholar
- 18. Zon LI. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 2008; 453: 306-13. [CrossRef] google scholar
- 19. Virant-Klun I, Stimpfel M, Skutella T. Adult Ovary Stem Cells. In: Kursad Turksen, editors. Adult Stem Cells 2014; Springer. p. 239-64. [CrossRef] google scholar
- 20. Mathieu J, Ruohola-Baker H. Regulation of stem cell populations by microRNAs. Adv Exp Med Biol 2013; 786: 329-51. [CrossRef] google scholar
- 21. Kallas A, Pook M, Trei A, Maimets T. SOX2 is regulated differently from NANOG and OCT4 in human embryonic stem cells during early differentiation initiated with sodium butyrate. Stem Cells Int 2014; doi: 10.1155/2014/298163. [CrossRef] google scholar
- 22. Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005; 280: 24731-7. [CrossRef] google scholar
- 23. Wu G, Schöler HR. Role of Oct4 in the early embryo development. Cell Regen 2014; 3: 7. [CrossRef] google scholar
- 24. Dubon MJ, Yu J, Choi S, Park KS. Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N‐cadherin. J Cell Physiol 2018; 233: 201-13. [CrossRef] google scholar
- 25. Avery S, Zafarana G, Gokhale PJ, Andrews PW. The role of SMAD4 in human embryonic stem cell self‐renewal and stem cell fate. Stem Cells 2010; 28: 863-73. [CrossRef] google scholar
- 26. Cadigan KM, Liu YI. Wnt signaling: complexity at the surface. J Cell Sci 2006; 119: 395-402. [CrossRef] google scholar
- 27. Jiang J, Ng HH. TGFβ and SMADs talk to NANOG in human embryonic stem cells. Cell Stem Cell 2008; 3: 127-8. [CrossRef] google scholar
- 28. Orlowski J. SMAD5 signaling: more than meets the nuclei. Cell Res 2017; 27: 1075-6. [CrossRef] google scholar
- 29. Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007; 13: 4042-5. [CrossRef] google scholar
- 30. Hülsken J, Behrens J. The Wnt signalling pathway. J Cell Sci 2000; 113: 3545. google scholar
- 31. Nusse R. Wnt signaling in disease and in development. Cell Res 2005; 15: 28-32. [CrossRef] google scholar
- 32. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 2016; 23: 1128-39. [CrossRef] google scholar
- 33. Evans AG, Calvi LM. Notch signaling in the malignant bone marrow microenvironment: implications for a niche‐based model of oncogenesis. Ann N Y Acad Sci 2015; 1335: 63-77. [CrossRef] google scholar
- 34. Penton AL, Leonard LD, Spinner NB. Notch signaling in human development and disease. Semin Cell Dev Biol 2012; 23: 450-7. [CrossRef] google scholar
- 35. Zhang K, Zhu L, Fan M. Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases. Front Mol Neurosci 2011; 4: 1-11. [CrossRef] google scholar
- 36. Koide H, Yokota T. The LIF/STAT3 Pathway in ES Cell Self-renewal. Embryonic stem cells-The hormonal regulation of pluripotency and embryogen‐esis. Rijeka 2011: InTech: p. 61-78. [CrossRef] google scholar
- 37. Nicola NA, Babon JJ. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev 2015; 26: 533-44. [CrossRef] google scholar
- 38. Stine RR, Matunis EL. JAK-STAT signaling in stem cells. Adv Exp Med Biol 2013; 786: 247-67. [CrossRef] google scholar
- 39. Park JH, Shin JE, Park HW. The Role of Hippo Pathway in Cancer Stem Cell Biology. Mol Cells 2018; 41: 83. google scholar
- 40. Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep 2014; 15: 642-56. [CrossRef] google scholar
- 41. Ramos A, Camargo FD. The Hippo signaling pathway and stem cell biology. Trends Cell Biol 2012; 22: 339-46. [CrossRef] google scholar
- 42. Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 2013; 14: 416-29. [CrossRef] google scholar
- 43. Rakian R, Block TJ, Johnson SM, Marinkovic M, Wu J, Dai Q, et al. Native extracellular matrix preserves mesenchymal stem cell “stemness” and differentiation potential under serum-free culture conditions. Stem Cell Res Ther 2015; 6: 1-11. [CrossRef] google scholar
- 44. Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 2012; 24: 645-51. [CrossRef] google scholar
- 45. Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 2010; 329: 1078-81. [CrossRef] google scholar
- 46. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474: 179-83. [CrossRef] google scholar
- 47. Yang C, Tibbitt MW, Basta L, Anseth KS. Mechanical memory and dosing influence stem cell fate. Nat Mater 2014; 13: 645-52. [CrossRef] google scholar
- 48. Kuo YC, Chang TH, Hsu WT, Zhou J, Lee HH, Hui-Chun Ho J, et al. Oscillatory shear stress mediates directional reorganization of actin cytoskeleton and alters differentiation propensity of mesenchymal stem cells. Stem Cells 2015; 33: 429-42. [CrossRef] google scholar
- 49. Wang X, Nakamoto T, Dulińska-Molak I, Kawazoea N, Chen G. Regulating the stemness of mesenchymal stem cells by tuning micropattern features. J Mater Chem B 2016; 4: 37-45. [CrossRef] google scholar
- 50. Wan LQ, Kang SM, Eng G, Grayson WL, Lu XL, Huo B, et al. Geometric control of human stem cell morphology and differentiation. Integr Biol (Camb) 2010; 2: 346-53. [CrossRef] google scholar
- 51. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126: 677-89. [CrossRef] google scholar
- 52. Kiss R, Bock H, Pells S, Canetta E, Adya AK, Moore AJ, et al. Elasticity of human embryonic stem cells as determined by atomic force microscopy. J Biomech Eng 2011; 133:101009. [CrossRef] google scholar
- 53. van der Sanden B, Dhobb M, Berger F, Wion D. Optimizing stem cell culture. J Cell Biochem 2010; 111: 801-7. [CrossRef] google scholar
- 54. Siciliano C, Ibrahim M, Scafetta G, Napoletano C, Mangino G, Pierelli L, et al. Optimization of the isolation and expansion method of human mediastinal-adipose tissue derived mesenchymal stem cells with virally inactivated GMP-grade platelet lysate. Cytotechnology 2015; 67: 165-74. [CrossRef] google scholar
- 55. Burnouf T, Strunk D, Koh MB, Schallmoser K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 2016; 76: 371-87. [CrossRef] google scholar
- 56. Schallmoser K, Bartmann C, Rohde E, Reinisch A, Kashofer K, Stadelmeyer E, et al. Human platelet lysate can replace fetal bovine serum for clinical‐scale expansion of functional mesenchymal stromal cells. Transfusion 2007; 47: 1436-46. [CrossRef] google scholar
- 57. Cobden SB, Oztürk K, Duman S, Esen H, Aktan TM, Avunduk MC, et al. Treatment of Acute Vocal Fold Injury With Platelet-Rich Plasma. J Voice 2015; 30: 731-5. [CrossRef] google scholar
- 58. Cesarz Z, Tamama K. Spheroid Culture of Mesenchymal Stem Cells. Stem Cells Int 2016; doi: 10.1155/2016/9176357. [CrossRef] google scholar
- 59. Tsai TL, Manner PA, Li WJ. Regulation of mesenchymal stem cell chondrogenesis by glucose through protein kinase C/transforming growth factor signaling. Osteoarthritis Cartilage 2013; 21: 368-76. [CrossRef] google scholar
- 60. Chang TC, Hsu MF, Wu KK. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PloS one 2015; 10: e0126537. [CrossRef] google scholar
- 61. Choi KM, Seo YK, Yoon HH, Song KY, Kwon SY, Lee HS, et al. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng 2008; 105: 586-94. [CrossRef] google scholar
- 62. Potdar PD, D’Souza SB. Ascorbic acid induces in vitro proliferation of human subcutaneous adipose tissue derived mesenchymal stem cells with upregulation of embryonic stem cell pluripotency markers Oct4 and SOX 2. Hum Cell 2010; 23: 152-5. [CrossRef] google scholar
- 63. Li CJ, Sun LY, Pang CY. Synergistic protection of N-acetylcysteine and ascorbic acid 2-phosphate on human mesenchymal stem cells against mitoptosis, necroptosis and apoptosis. Sci Rep 2015; 5: 9819. [CrossRef] google scholar
- 64. Moll G, Alm JJ, Davies LC, von Bahr L, Heldring N, Stenbeck-Funke L, et al. Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem cells 2014; 32: 2430-42. [CrossRef] google scholar
- 65. François M, Copland IB, Yuan S, Romieu-Mourez R, Waller EK, Galipeau J. Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing. Cytotherapy 2012; 14: 147-52. [CrossRef] google scholar
- 66. Abdollahi H, Harris LJ, Zhang P, McIlhenny S, Srinivas V, Tulenko T, et al. The role of hypoxia in stem cell differentiation and therapeutics. J Surg Res 2011; 165: 112-7. [CrossRef] google scholar
- 67. Chung HM, Won CH, Sung JH. Responses of adipose-derived stem cells during hypoxia: enhanced skin-regenerative potential. Expert Opin Biol Ther 2009; 9: 1499-508. [CrossRef] google scholar
- 68. Larochelle A. Cord blood culture in hypoxia: making the cells feel at home. Cytotherapy 2012; 14: 900-1. [CrossRef] google scholar
- 69. Petruzzelli R, Christensen DR, Parry KL, Sanchez-Elsner T, Houghton FD. HIF-2α regulates NANOG expression in human embryonic stem cells following hypoxia and reoxygenation through the interaction with an Oct-Sox cis regulatory element. PloS One 2014; 9: e108309. [CrossRef] google scholar
- 70. Hubbi ME, Semenza GL. Regulation of cell proliferation by hypoxia-inducible factors. Am J Physiol Cell Physiol 2015; 309: 775-82. [CrossRef] google scholar
Atıflar
Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın
DIŞA AKTAR
APA
Çicek, G., Duman, S., & Aktan, T. (0001). Mezenkimal Kök Hücre Sinyal Yolakları ve Etkileşim Faktörleri. Experimed, 9(3), 120-129. https://doi.org/10.26650/experimed.2019.19022
AMA
Çicek G, Duman S, Aktan T. Mezenkimal Kök Hücre Sinyal Yolakları ve Etkileşim Faktörleri. Experimed. 0001;9(3):120-129. https://doi.org/10.26650/experimed.2019.19022
ABNT
Çicek, G.; Duman, S.; Aktan, T. Mezenkimal Kök Hücre Sinyal Yolakları ve Etkileşim Faktörleri. Experimed, [Publisher Location], v. 9, n. 3, p. 120-129, 0001.
Chicago: Author-Date Style
Çicek, Gülsemin, and Selçuk Duman and Tahsin Murad Aktan. 0001. “Mezenkimal Kök Hücre Sinyal Yolakları ve Etkileşim Faktörleri.” Experimed 9, no. 3: 120-129. https://doi.org/10.26650/experimed.2019.19022
Chicago: Humanities Style
Çicek, Gülsemin, and Selçuk Duman and Tahsin Murad Aktan. “Mezenkimal Kök Hücre Sinyal Yolakları ve Etkileşim Faktörleri.” Experimed 9, no. 3 (Dec. 2024): 120-129. https://doi.org/10.26650/experimed.2019.19022
Harvard: Australian Style
Çicek, G & Duman, S & Aktan, T 0001, 'Mezenkimal Kök Hücre Sinyal Yolakları ve Etkileşim Faktörleri', Experimed, vol. 9, no. 3, pp. 120-129, viewed 22 Dec. 2024, https://doi.org/10.26650/experimed.2019.19022
Harvard: Author-Date Style
Çicek, G. and Duman, S. and Aktan, T. (0001) ‘Mezenkimal Kök Hücre Sinyal Yolakları ve Etkileşim Faktörleri’, Experimed, 9(3), pp. 120-129. https://doi.org/10.26650/experimed.2019.19022 (22 Dec. 2024).
MLA
Çicek, Gülsemin, and Selçuk Duman and Tahsin Murad Aktan. “Mezenkimal Kök Hücre Sinyal Yolakları ve Etkileşim Faktörleri.” Experimed, vol. 9, no. 3, 0001, pp. 120-129. [Database Container], https://doi.org/10.26650/experimed.2019.19022
Vancouver
Çicek G, Duman S, Aktan T. Mezenkimal Kök Hücre Sinyal Yolakları ve Etkileşim Faktörleri. Experimed [Internet]. 22 Dec. 2024 [cited 22 Dec. 2024];9(3):120-129. Available from: https://doi.org/10.26650/experimed.2019.19022 doi: 10.26650/experimed.2019.19022
ISNAD
Çicek, Gülsemin - Duman, Selçuk - Aktan, Tahsin Murad. “Mezenkimal Kök Hücre Sinyal Yolakları ve Etkileşim Faktörleri”. Experimed 9/3 (Dec. 2024): 120-129. https://doi.org/10.26650/experimed.2019.19022